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Learning to generate pointing
gestures in situated embodied
conversational agents

Anna Deichler*, Siyang Wang, Simon Alexanderson and
Jonas Beskow

Division of Speech, Music and Hearing, KTH Royal Institute of Technology, Stockholm, Sweden

One of the main goals of robotics and intelligent agent research is to enable
them to communicate with humans in physically situated settings. Human
communication consists of both verbal and non-verbal modes. Recent studies
in enabling communication for intelligent agents have focused on verbal modes,
i.e., language and speech. However, in a situated setting the non-verbal mode is
crucial for an agent to adapt flexible communication strategies. In this work, we
focus on learning to generate non-verbal communicative expressions in situated
embodied interactive agents. Specifically, we show that an agent can learn
pointing gestures in a physically simulated environment through a combination
of imitation and reinforcement learning that achieves high motion naturalness
and high referential accuracy.We compared our proposed system against several
baselines in both subjective and objective evaluations. The subjective evaluation
is done in a virtual reality setting where an embodied referential game is played
between the user and the agent in a shared 3D space, a setup that fully assesses
the communicative capabilities of the generated gestures. The evaluations show
that our model achieves a higher level of referential accuracy and motion
naturalness compared to a state-of-the-art supervised learningmotion synthesis
model, showing the promise of our proposed system that combines imitation
and reinforcement learning for generating communicative gestures. Additionally,
our system is robust in a physically-simulated environment thus has the potential
of being applied to robots.

KEYWORDS

reinforcement learning, imitation learning, non-verbal communication, embodied
interactive agents, gesture generation, physics-aware machine learning

1 Introduction

1.1 Overview

Humans rely on both verbal and non-verbal modes of communications in physically
situated conversational settings. In these settings, non-verbal expression, such as face
and hand gestures, often contain information which is not present in the speech. A
prominent example is how people point to an object instead of describing it with words.
This complementary function makes communication more efficient and robust than speech
alone. In order for embodied agents to interact with humans more effectively, they need
to adapt similar strategies, i.e., they need to both comprehend and generate non-verbal
communicative expressions.
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Regarding comprehension, one focus has been on gesture
recognition in order to accomplish multimodal reference resolution
and establishing common ground between human and agent
Abidi et al. (2013); Häring et al. (2012); Wu et al. (2021). Regarding
generation, the main focus has been on generating co-speech
gestures that typically uses supervised learning techniques to map
text or speech audio tomotion [see Liu et al. (2021) for an overview].
While these approaches can generate natural looking gesticulation,
they only model beat gestures, a redundant aspect of non-verbal
communication. Moreover, these supervised methods require large
labeled datasets tied to a specific embodiment and are not physics-
aware, posing a major issue for transferring the results to robots.

The focus of our study is the generation of pointing gestures.
According to McNeill’s influential classification, pointing gestures
are among the four primary types of gestures, alongside with
iconical, metaphorical and beat gestures McNeill (1992). Iconic
gestures depict concrete objects or actions with the hands.
Metaphoric gestures express abstract concepts or ideas with the
hands. Beat gestures are simple movements that emphasize or
segment speech. Deictic gestures point to objects, locations, or
persons in space. Pointing is the most specialized of all gestures
in terms of its association with particular verbal expressions,
specifically reference and referring expressions Kibrik (2011).
Linguistic reference is the act of using language to refer to entities
or concepts. Linguistic elements that perform a mention of a
referent are called referring expressions or referential devices. People
use reference in discourse to draw the listener’s attention to a
referent or target, which can be in either the speech-external (deictic
reference) or speech-internal (anaphoric reference) environment.
The anaphoric referent is an element of the current discourse,
while the deictic referent is outside the discourse in the spatio-
temporal surroundings Talmy (2020). Deictic expressions are used
to indicate a location or point in time relative to the deictic centre,
which is the center of a coordinate system that underlies the
conceptualization of the speech situation. They are essential parts
of human communication, since they establish a direct referential
link between world and language. Demonstratives like “this,” “that”
or “there” are the simplest form of deictic expressions that focus
the interlocutor’s attention to concrete entities in the surrounding
situation Peeters et al. (2021). In everyday conversations people
often use non-verbal means (e.g., eyes, head, posture, hands)
to indicate the location of the referent alongside with verbal
expressions to describe it. Pointing and eye gaze are the most
prominent non-verbal means of deictic reference and also play
a key role in establishing joint attention in human interactions
Diessel and Coventry (2020), a prerequisite for coordination in
physical spaces. Pointing is ubiquitous in adult interaction across
settings and it has been described as “a basic building block” of
human communication Kita (2003). Demonstratives produced with
pointing gestures are more basic than demonstratives produced
without pointing Cooperrider (2020). Speakers also tend to prefer
short deictic descriptions when gesture is available, in contrast
to longer non-deictic descriptions when gesture is not available
Bangerter (2004).

We proposed a new framework based on imitation and
Reinforcement Learning (imitation-RL) for this for generating
referential pointing gestures in physical situated environment.
Our method, adapted from Peng et al. (2021), learns a motor

control policy that imitates examples of pointing motions while
pointing accurately. By providing only a few pointing gesture
demonstrations, the model learns generalizable accurate pointing
through combined naturalness and accuracy rewards. In contrast to
supervised learning, our method achieves high pointing accuracy,
requires only small amounts of data, learns physically valid motion
and has high perceived motion naturalness. It is also considerably
more lightweight than compared supervised-learning methods. To
implement the method, we first collected a small dataset of motion-
captured pointing gesturewith accurate pointing positions recorded.
We then trained a motor control policy on a humanoid character
in a physically simulated environment using our method. The
generated gestures were then compared against several baselines
to probe both motion naturalness and pointing accuracy. This was
done through two subjective user studies in a custom-made virtual
reality (VR) environment. In the accuracy test, a full-body virtual
character points at one of several objects, and the user is asked to
choose the object that the character pointed at, a setup known as
referential game Lazaridou et al. (2018), Steels (2001). This setup is
also motivated by the notion that language use is a triadic behaviour
involving the speaker, the hearer, and the entities talked about Bühler
(1934).

We found that the proposed imitation-RL system indeed learns
highly accurate pointing gestures while retaining high level of
motion naturalness. It is also shown that imitation-RL is much
better at both accuracy and naturalness than a supervised learning
baseline. The results suggest that imitation-RL is a promising
approach to generate communicative gestures.

1.2 Related work

Our work concerns learning communication in embodied
agents through reinforcement learning, specifically learning
pointing gestures in a physically simulated environment with
imtation-RL.

Below we first review related work in the area of non-verbal
deictic expression and gesture generation for embodied agents,
followed by an overview of two reinforcement learning fields
related to our work: (a) reinforcement learning for communication,
(b) reinforcement learning for motion control. We believe that
our work is the first that learns non-verbal communication with
reinforcement learning, which can be seen as bridging the two
currently disjunct reinforcement learning fields.

1.2.1 Gesture and non-verbal deictic expression
generation

There has been substantial work considering the generation
of speech-driven gestures in embodied agents. Early work in
synthesis of gestures for virtual agents employed methods based
on rules, inverse kinematics and procedural animation to generate
co-speech gestures Cassell et al. (1994), Cassell et al. (2001); Kopp
and Wachsmuth (2004); Ng-Thow-Hing et al. (2010); Marsella et al.
(2013). Rule-based approaches, however, often require laborious
manual tuning and often struggle to achieve a natural motion
quality. More recently, supervised learning systems for co-speech
gesture generation have achieved high naturalness in certain
settings [Liu et al. (2021)]. Some of these systems take only speech
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audio as input [Hasegawa et al. (2018); Kucherenko et al. (2021a);
Ginosar et al. (2019); Ferstl et al. (2020); Alexanderson et al. (2020)]
but are limited to generating beat gestures aligned with speech.
Extending these supervised learning based gesture generation
methods to produce iconic, metaphoric or deictic gestures would
require more elaborate modelling and a large dataset containing
these gestures Ferstl and McDonnell (2018). Adding text as input
can potentially generate more semantic gestures but is still limited
Kucherenko et al. (2020); Yoon et al. (2020); Ahuja et al. (2020);
Korzun et al. (2020). Common for all these methods is that they
do not take into account the surrounding environment and
thus cannot communicate other than redundant information. On
the contrary, works related to deictic expression generation for
intelligent agents take into account the physical environment in
which the agent is situated. Pointing and gaze generation in general
have been extensively studied in virtual agents and robots. Rule-
based approaches for deictic expression generation are often used
in virtual agents Noma et al. (2000); Rickel and Johnson (1999);
Lester et al. (1999), as well as robotics. Fang et al. (2015) and Sauppé
and Mutlu (2014) both implemented rule-based pointing gestures
in a humanoid robot for referential communication. Holladay et al.
(2014) proposes a mathematical optimization approach to make
legible pointing, i.e., disambiguation of closely situated objects.
In Sugiyama et al. (2007) natural generate rule-based deictic
expressions consisting of pointing and a reference term are
generated in an interactive setting with a robot. Referential gaze
has been studied in virtual agents Bailly et al. (2010), Andrist et al.
(2017), as well as robotics Mutlu et al. (2009). Some studies have
adopted learning-based approaches to develop pointing gestures
generation. Huang and Mutlu (2014) proposes a learning based
modeling approach using dynamic Bayesian network to model
speech, gaze and gesture behavior in a narration task. Zabala et al.
(2022) developed a system of automatic gesture generation for a
humanoid robot that combines GAN based beat gesture generation
with probabilistic semantic gesture insertion, including pointing
gestures. Chao et al. (2014) takes a developmental robotics approach
to generating pointing gestures using reinforcement learning for a
2D reaching task. None of the above works consider human-like and
physics based pointing motion generation in 3D space.

1.2.2 RL for communication in task-oriented
embodied agents

There have been a substantial amount of works in recent years
that focused on extending the capabilities of embodied RL agents
with language. This field has been reviewed in a recent survey
Luketina et al. (2019) which separates out these works into two
categories: language-conditioned RL, where language is part of the
task formulation and language-assisted RL, where language provides
useful information for the agent to solve the task. The simplest
form of language-conditioned is instruction following, in which a
verbal instruction of the task is provided to the agent. Examples
aremanipulation Stepputtis et al. (2019) andnavigation taskQi et al.
(2020). These studies focused more on comprehension of verbal
expressions and usually no interaction takes place between the
user and the agent. In more complex settings, the agent interacts
with humans using natural language. In Lynch et al. (2022) the
authors present a RL and imitation based framework, Interactive
Language, that is capable of continuously adjusting its behavior

to natural language based instructions in a real-time interactive
setting. There have also been a recent wave of datasets and
benchmarks created by utilizing 3Dhousehold simulators and crowd
sourcing tools to collect large-scale task-oriented dialogue aimed
at improving the interactive language capabilities of embodied
task-oriented agents Padmakumar et al. (2022), Gao et al. (2022),
Team et al. (2021). Most of the above mentioned works focus on the
verbal mode of communication and largely on the comprehension
side (e.g., instruction following). Less work has explored the non-
verbal communication in situated embodied agentsWu et al. (2021),
especially on the generation side, which we aim to address in our
work.

1.2.3 Learning motor control through RL
RL has been extensively applied to learning motor control

for both robotics and graphics applications Duan et al. (2016);
Heess et al. (2017). The learned motion dynamic for humanoid
characters from these methods are usually not very human-like. To
improve both the motion dynamics and also to facilitate learning, it
is proposed for the learning agent to imitate expert demonstration
or motion-capture animation Merel et al. (2017); Ho and Ermon
(2016). However, it is not until DeepMimic Peng et al. (2018)
that the RL-imitation approach achieved human-like motion. The
drawback in DeepMimic is that it uses several manually tuned
hyper-parameters in the imitation reward, a problem addressed by a
follow-up work Adversarial Motion Prior (AMP) Peng et al. (2021)
which replaces the “hard” imitation in DeepMimic with a learned
discriminator (similar toGAN).Through a combination of imitation
reward and task reward, methods like AMP can learn human-like
motion dynamics while completing a manually defined task, for
example, heading in a given direction while walking or spin-kick a
given target. It has been shown that even with just one motion clip
as imitation target, AMP learns generalizable motion control given
random task input (e.g., randomly sampled walking direction) while
maintaining high motion naturalness.

2 Materials and methods

2.1 Pointing gesture data collection

Our method for synthesizing human-like pointing gestures
for the humanoid character requires an appropriate full-body
motion capture dataset with diverse and accurate target locations
covering the 3D space surrounding the character. Multiple datasets
exist of referring expression with pointing as non-verbal modality
Schauerte and Fink (2010); Matuszek et al. (2014); Shukla et al.
(2015); Chen et al. (2021), but since most of these focus on
comprehension, they lack full body motion capture, which is
essential for ourmethod. Existing full-bodymotion capture datasets
for gesture generation Ferstl and McDonnell (2018), Ferstl et al.
(2020) focus on beat gestures with the aim to train speech-to-
gesture generative models and do not contain pointing gestures.
A recent dataset Islam et al. (2022) records multi-modal referring
expressions, including pointing gestures, but it is restricted to a
tabletop setting.

To obtain a collection of ground truth examples for training
and evaluation, we recorded a pointing gesture dataset in a optical
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motion capture studio equipped with 16 Optitrack Prime 41
cameras. The actor wore a suit with 50 passive markers, a pair of
Manus data gloves (hand motion capture) and a head-mounted
iPhone 12 (face motion and voice capture). In addition, we also
recorded a pointing target, consisting of a rigid structure equipped
with 4 markers. The marker data was solved to a representation of
the actor’s skeleton and the location of the target in 3D space using
the systems software (Motive 3.0).

Three different pointing tasks were recorded: single target
pointing, two targets selection and two targets moving (point-and-
place). In each setting the targets were moved around in order
to get a coverage of the surrounding space, while the actor was
in a stationary position. Between each pointing task the actor
returned to a neutral stance. The beginning and the end of the
movement is defined by the pointing hand leaving and returning to
the initial, downward position. We used this information to parse
the continuous recording of motion capture data into pointing clips.
For more details, see Deichler et al. (2022).

We focus on single target pointing in this study. Here, we
provide an overview of that data. We first divided the pointing
target positions to front and back. We only use the front data in
our study. The total sum of single target positions in the dataset
is 83, from which 52 are front target pointing movements (25 left-
handed and 27 right-handed). The actor’s dominant hand is right
hand. The target distribution of this subset is visualized in 3D space
in Figure 1 (blue balls). The single target dataset is parsed into
single arm pointing movement based on peaks in displacement on
the sagittal plane (yz). We further analyse the pointing movements
in terms of pointing accuracy (Figure 2) and velocity (Figure 3)
dividing into dominant (right) and non-dominant (left) hand. The
pointing accuracy is calculated based on inverse of alignment angle
between arm and arm to pointing target (Eq. 2), the more accurate
pointing the higher this measure is. As seen in Figure 2, both
dominant and non-dominant hands have a bell-shaped accuracy
curve. This reflects the pointing motion trajectory: the hand first
moves to pointing position as the accuracy rises, it stays there for
some time (holding), and then retracts. Moreover, we note that
neither hand achieves maximum accuracy. This shows that human
pointing is not accurate in terms of alignment angle, which has been
shown in previous pointing gesture studies Lücking et al. (2015).
The velocity trajectory (Figure 3) shows clear correspondence with
accuracy trajectory. No significant difference between dominant and
non-dominant hands was found.

We applied left-right mirroring on the mocap data, which
doubled the total amount of data available for model training. This
is mainly due to the baselines MoGlow (Section 2.4.1.1) and GT-
nn (Section 2.4.1.2) require large amount of data to perform well.
For fair comparison, we used the same mirrored data for training all
systems including our proposed method even though our proposed
method does not have the same data quantity requirement as the
baselines.

2.2 Method

Our method is based on imitation-RL method AMP Peng et al.
(2021), capable of learning complex naturalistic motion on
humanoid skeletons and showing good transferrability of

FIGURE 1
Targets from training set (blue) and perceptual test set (red) visualized
in 3D space.

FIGURE 2
Averaged pointing accuracy profile for front targets in training set for
the dominant and non-dominant hands.

simulation-learned policy to real-world robots Escontrela et al.
(2022), Vollenweider et al. (2022). AMP is a subsequent work of
Generative Adversarial Imitation learning Ho and Ermon (2016),
that takes one or multiple clips of reference motion and learns a
motor control policy πθ that imitates the motion dynamics of the
reference (s) through a discriminator network Dϕ. An optional task
reward can be added for the specific motion task to encourage task
completion in the learned policy, for example, heading in a given
direction while walking.The full reward function is the combination
of rewards frommotion imitation rIt and the task reward rGt , weighted
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FIGURE 3
Averaged hand velocity profile for front targets in training set for the
dominant and non-dominant hands.

respectively by ωI ,ωG,

rt = ωIrIt +ω
GrGt . (1)

The policies are trained using a combination of GAIL and
PPO [Proximal Policy Optimization Schulman et al. (2017)]. The
schematic view of the system is presented on Figure 4. We kept
ωI = ωG = 0.5 and in all AMP models. We used same action and
state space as humanoid motion example presented in original
AMP Peng et al. (2021). The state is defined as the character’s
configuration in the character’s local root joint based coordinate
system. The state vector includes the relative positions of each link
with respect to the root, their rotation and linear and angular
velocities. The actions specify the target positions in the PD
controllers for the controllable joints.

We designed a reward function rPtt for pointing accuracy that
takes the angle between the hand-to-target vector V⃗HT and the
elbow-to-hand vector V⃗EH, and gives higher reward to smaller angle,
i.e., more accurate pointing. This is illustrated in Figure 5. The
angular distance from the index finger ray has been used as a
heuristics for pointing accuracy Lücking et al. (2015), here we use
the lower-arm extension, due to the limitations of the simulated
agent’s morphology. Similarly to previous closely related work in
humanoid motion generation with RL and imitation Peng et al.
(2021), Peng et al. (2018), we apply exponential scaling to angular
distance term to form the task reward function as follows,

θ̂ = 1−
∠(V⃗HT, V⃗EH)

π
, rPtt =

eθ̂ − 1
e

(2)

Since our task is to point at a given position, the x-y-z
coordinates of the pointing position are concatenated to policy
newtork input. Additionally, it is common in methods like AMP

to sample the task input randomly to achieve good generalization
Peng et al. (2021); Peng et al. (2018), for example, to randomly
sample walking directions when learning directional walking. We
also applied this approach by randomly sampling pointing target
positions in the training process. The sampling process takes in
a ground-truth pointing position (corresponding to the current
pointing gesture demonstration) as input and uniformly samples
points within a square box of size 20 × 20 × 20 cm centered at that
ground-truth position.

Through preliminary experiments, we found that the
original AMP algorithm does not learn pointing gesture
effectively. We subsequently implemented changes described in
the following sections to improve AMP in learning pointing
gesture.

2.2.1 Phase input to network: AMP base
Inmotion imitation it is common to provide as input normalized

running time called phase (p ∈ [0,1], 0 is beginning of a clip, 1 is the
end) to the policy network in order to synchronize the simulated
character with the reference motion. This was proven to be effective
in imitation of single motion clips in DeepMimic Peng et al. (2018).
In AMP this is not needed, since the policies are not trained to
explicitly imitate a singlemotion clip.However, we found that vanilla
AMPwithout phase input struggles to learn pointing gesturemotion
dynamics, thus we provided the policy network with phase to help
the system learn the dynamics of the pointing motion. We call this
model AMP base.

2.2.2 Phase-functioned neural network with
pointing target clustering: AMP-pfnn

We found that the discriminator network in AMP, which learns
what “plausible” motion looks like through adversarial loss and
provide imitation reward to the policy network, has difficulty
learning pointing gesture dynamics even with phase as input.
Specifically, it has trouble distinguishing between the raising phase
of pointing gesture and the retraction phase, resulting in the learned
motion stuck in the middle between idle and pointing positions.
This is unsurprising since both phases of the pointing gesture have
similar trajectories (in opposite directions). We tackled this issue by
changing discriminator network from a simple MLP (as in original
AMP) to a phase-functioned neural network (PFNN) Holden et al.
(2017).

Through early experiments, we also found that having a single
network to learn pointing in all directions can be challenging. Thus,
we grouped the training set pointing positions into clusters in the
3D space. The clustering is done with the MeanShift algorithm,
which is based on kernel density estimation (KDE). Using Scott’s
rule the estimated bandwidth is 0.78 for the univariate KDE, which
results in 8 clusters in the target space. The estimated bandwidth is
quite wide given the target space limits, but this is expected with
a limited amount of data. Based on this clustering, we separated
the motion clips into subgroups and trained specialized networks
for the different subgroups. During test time, the subgroup which
contains the closest training target to the test target in terms of
Euclidean distance is chosen to generate the pointingmovement.We
denote this version of AMP with pfnn and cluster group training as
AMP-pfnn.
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FIGURE 4
Schematic view of the AMP framework, which allows using a composite reward of task rGt and imitation rIt rewards by combining RL policy gradient
methods (PPO) with a GAN-like disriminator.

FIGURE 5
Pointing reward based on angle between vector from elbow joint (E) to
hand joint (H) and vector from hand joint to target position (T). Agent
rendered in the IssacGym physics engine Makoviychuk et al. (2021).

2.3 Implementation

We use a GPU-based physics simulation software Isaac gym
Makoviychuk et al. (2021), a rendered example of which can be
seen in Figure 5. For implementation of our proposed method, we
modified an existing AMP implementation provided by authors

of Isaac gym1. The modifications also include enabling learning
pointing gesture in humanoid characters and adding our proposed
reward function for pointing accuracy.

2.4 Experiment

The goal of our proposed system is to produce natural and
accurate pointing gestures in an interactive agent. In order to
evaluate both aspects in an embodied interaction, we created a novel
virtual reality (VR) based perceptual evaluation using a 3D game
engine. This is described with more details in Section 2.4.2. We
further probed the specific aspects of our proposed model in an
object evaluation. We benchmarked our proposed method with two
baselines, a supervised learning motion synthesis model MoGlow,
and a simple nearest-neighbour retrieval method.

2.4.1 Baselines
2.4.1.1 MoGlow

We used a state-of-the-art animation synthesis model MoGlow
Henter et al. (2020) as supervised learning baseline. This model is
based on machine learning framework normalizing flow Dinh et al.
(2014) Dinh et al. (2016) which directly estimates data probability
distribution with invertible neural network. MoGlow utilizes a
popular normalizing flow architecture Glow Kingma and Dhariwal
(2018) and is able to synthesize animation in a conditional or
unconditional probabilistic manner, and has shown state-of-the-
art performance in synthesizing locomotion Henter et al. (2020),
dancing Valle-Pérez et al. (2021), and gesture Alexanderson et al.
(2020).

1 https://github.com/NVIDIA-Omniverse/IsaacGymEnvs.
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We extended the conditional generation mode of MoGlow to
achieve pointing gesture synthesis. We provided the model with
a 4-dimensional vector as condition, consisting of pointing target
position (x-y-z coordinates) and an indicator variable of whether the
current frame is pointing or idling. This indicator variable differs
from the AMP phase variable, as it takes binary values, whereas
the phase variable is the normalized running time. This difference
stems from a fundamental difference between the two models. The
MoGlow model is based on autoregressive supervised learning, and
therefore has a “sense of time,” AMP is RL based and does not get
the history as input, therefore the phase in used as an input.

The data preparation consists of first downsampling the mocap
data to 20 frames per second, then cutting it into training clips with
a sliding window of window length 6 s and step size 0.5 s. Such
data preparation is consistent with prior studies using MoGlow for
locomotion generation Henter et al. (2020) and gesture generation
Alexanderson et al. (2020).

2.4.1.2 Nearest-neighbor queried ground-truth animation
(GT-NN)

We also created a simple baseline through nearest-neighbor
querying of the dataset. Given an input pointing position, this
baseline model queries the closest pointing position in the dataset
and plays the corresponding pointing gesture animation.We call this
baseline Ground-truth Nearest-Neighbor (GT-nn). This baseline
is the topline in motion naturalness since it is playing back
motion-captured animation. On the other hand, its performance
in referential accuracy would be determined by how close is the
input position to positions in the dataset. If the input is close
to some pointing position already existing in the dataset, then
this method is expected to perform well, otherwise poorly. Thus,
comparing a more complex learned model with this simple baseline
in referential accuracy should reveal howmuch the learned model is
able to generalize beyond the training data to unseen pointing target
positions.

2.4.2 VR perceptual test
The perceptual test is an embodied interaction in VR. A user

is put in a shared 3D space with an embodied virtual agent. In
this setting, the virtual agent makes pointing gestures and the user
is asked to evaluate motion naturalness of the gesture and play
a referential game, i.e., guessing which object is the virtual agent
pointing at. The two aspects are evaluated in two separate stages as
seen in Figure 6.

In the first stage, the naturalness of the pointing gesture is
evaluated by presenting a pointing gesture to the user, then asking
the user to rate “How natural do you find the animation?” on a
1-5 scale [ in Figure 6A]. The avatar is in a fixed position, facing
the user in this stage. We intended for this naturalness test to
only evaluate motion dynamics and not pointing accuracy, so
we did not show the pointing object at this stage so that the
user is not distracted by potentially inaccurate pointing. It is
likely that a user would rate a pointing motion as unnatural even
though the motion dynamics itself is natural but it does not point
accurately at the object.We avoided this by not showing the pointing
object at this stage. This evaluation setup is similar to the one
in the GENEA co-speech generation challenge Kucherenko et al.
(2021b). In the GENEA challenge the evaluation metrics included

“human-likeness” and “appropriateness” where the first one
measures motion quality, like naturalness in our study, and the
second one measures task performance - in their case how well
motionmatches speech, in our case the equivalentmetric is pointing
accuracy.

In the second stage, the pointing accuracy is evaluated through a
simplified embodied referential game Steels (2001),Lazaridou et al.
(2018). The participants were presented with 3 balls in the
environment, 1 pointing target and 2 distractors (the sampling
process are described in Section 2.4.3). In this stage, the avatar’s
relative position to the user is varied between “across” and “side-
by-side” conditions. In case of the “side-by-side” condition, the user
stands by the shoulder of the avatar, allowing for a shared perspective
on the target. In case of the “across” condition, the avatar is facing the
user. After observing the agent’s pointing motion, participants were
asked to guess which object the agent was pointing at. The target
selection mechanism was implemented using a raycast selection
[red ray seen in of Figures 6B, C]. The raycast selection becomes
available to the user after the motion has ended and this is indicated
to the user by the objects color changing from black to white.
This setup prevents the user from selecting before seeing the entire
motion.

Each participant saw 5 samples for each of the 4 models in
motion naturalness test (first stage) and 10 samples for each model
in referential accuracy test (second stage). Thus each participant
sees 20 samples in total for motion naturalness test and 40 in
total for referential accuracy test. There are more samples in the
referential accuracy test because a model’s pointing accuracy may
vary depending on the pointing position thus requiresmore samples
to estimate true mean, while motion naturalness is easier to judge
with less samples since it varies little given different pointing
positions. We separated the two stages, i.e., the participant would
finish motion naturalness test (first stage) before doing referential
accuracy test (second stage). We also randomized ordering of the
samples within each test tomitigate unwanted factors that could bias
resulting statistics, such as the participant might take some time to
get used to the VR game setup thus making data in the early part of
the test less reliable. Lastly, the pointing positions in both tests (5 for
stage 1, 10 for stage 2) were randomly picked from the 100 sampled
test positions (Section 2.4.3) and were shared amongmodels for the
same user to ensure fair comparison.

2.4.3 Sampling test pointing targets and
distractors

Wesampled 100 test pointing target positionswithin the range of
ground-truth positions. The ground-truth positions roughly form a
half-cylindrical shape as seen in Figure 1. We thus defined the range
of ground-truth position as a parameterized half-cylinder. We used
3 parameters, the height of the cylinder, the arc, and the radius of
the cylinder. Given the ranges of these 3 parameters obtained from
the ground-truth data, we then sampled new positions by uniformly
sampling these 3 parameters within their respective ranges. The
sampled 100 test positions are visualized in Figure 1 (red balls are
sampled positions, blue balls are ground-truth).

For each sampled test position, we sampled 2 distractors in the
following way. For each test position, we first sampled a distractor
position the same way as the test positions (within the parameter
ranges), we then checked if that distractor is within 20–40 cm away
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FIGURE 6
Examples of user view in the VR based perceptual test. Stage 1 shown in (A): the user rates the naturalness of the pointing gesture. Stage 2 shown in (B,
C): the virtual agent first makes a pointing gesture in the presence of the actual pointing target and two distractor objects (B), the user then guesses the
pointed object (referential game) with the raycast selection mechanism (C).

from the input test position. If not, we resampled. We repeated this
process until we got 2 distractors that met the distance condition.
This process was done for each of the 100 test pointing positions.

We note that the distance range 20–40 cm effectively determines
the difficulty of the distractors. Referential game is more difficult
if the distractors are closer to the actual pointing target. Through
preliminary experiments, we found that 20–40 cm range is difficult
enough that the model would have to point with a high level
of accuracy, and at the same time not too difficult that even
ground-truth pointing would not be able to distinguish the correct
position from distractors. Admittedly, our process is not fully
theoretically driven, and future studies could explore varying
distractor distance or choose this distance in a more theoretical
manner.

3 Results

3.1 VR perceptual test results

We recruited 39 participants (age: min = 20, median = 23,
max = 39; female: 16, male: 23). Before conducting statistical
analysis on the results, we first averaged each participant’s scores for
each model in the two measures, referential accuracy and motion
naturalness, thus obtaining a participant’s average scores for the four
models in the two measures. Subsequent analysis is done on this
data.

Results from VR perceptual evaluation are shown in Figure 7.
AMP-pfnn (2.2.2) obtains highest referential accuracy (mean =
95.5%) and highest naturalness MOS (mean = 3.57) among models.
GT-nn (2.4.1.2) is second best overall at accuracy (mean = 85.6%)
and is the naturalness MOS topline (mean = 4.01) since it is
playing back motion-captured animation. AMP-base (2.2.1) obtains
comparable referential accuracy (mean = 83.0%) as GT-nn, but
has much worse naturalness (mean = 2.93) than either AMP-
pfnn or topline GT-nn. MoGlow (2.4.1.1) performs worst in both
accuracy (mean = 45.9%) and naturalness (mean = 2.61). All but one

FIGURE 7
VR perceptual evaluation results. Red dashed line at the top indicates
maximum possible values for referential accuracy and naturalness
MOS. The blue dotted line at accuracy 33.3% corresponds to uniform
guessing among 3 possible choices in the referential accuracy
evaluation. All between-model differences in the two measures are
significant (Wilcoxon signed-rank test with Holm-Bonferroni
correction at α = 0.01), except for referential accuracy between
AMP-base and GT-nn.

between-sample differences are significant at α = 0.01 according to
Wilcoxon signed-rank test with Holm-Bonferroni correction. The
only insignificant difference is between AMP-base and GT-nn in
accuracymeasure.These results show that AMP-pfnn is able to point
with very high referential accuracy in the presence of challenging
distractors, and with high motion naturalness approaching ground-
truth motion capture. Analysis on the avatar’s relative position to
the user in stage two shows that there is no significant between-
sample difference for the “across” and “side-by-side” conditions
at α = 0.01 according to Wilcoxon signed-rank test with Holm-
Bonferroni correction for any of the models. Further results on the
position analysis can be found in Table 1.
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TABLE 1 Referential accuracy results (mean and standard deviation) for
“across”and“side-by-side”agent positions inVR perceptual evaluation.

Model Across Side-by-side

All 0.78 ± 0.41 0.76 ± 0.42

GT nearest neighbor 0.84 ± 0.37 0.88 ± 0.33

MoGlow 0.5 ± 0.5 0.39 ± 0.49

AMP base 0.83 ± 0.38 0.84 ± 0.37

AMP PFNN 0.96 ± 0.20 0.95 ± 0.22

FIGURE 8
Visualization of KDE estimation values over the 3D grid for objective
evaluation. The KDE was fitted on the training set targets.

3.2 Objective evaluation results

We also conducted objective evaluations in order to gain further
insights into the performance of the different models. This is done
by calculating the pointing accuracy (Eq. 2) over a uniform grid in
the 3D space. This is also a more principled way to measure the
generalization capabilities of the learning systems. In this evaluation,
the pointing accuracy was calculated from the pointing reward
function (Figure 5). The grid was created by taking the x,y,z limits
of the training set targets and generating a spherical grid of 1,000
test points (Figure 8). We defined the accuracy of the pointing
movement as the maximum of the reward curve 1, where the
velocity is below 0.5 m/s in a window of frames corresponding to
0.15 s around the time of pointing. Apart from the systems in the
perceptual evaluation, we also added ablations to examine the effect
of run time (phase) input to the AMP policy network (AMP base
no runtime, compared to AMP base which has run time input
Section 2.2.1), as well as varying the number of clusters in AMP-
pfnn training (Section 2.2.2). Cluster variations include 1, 3 and
8, denoted as AMP-pfnn 1, AMP-pfnn 3 and AMP-pfnn 8, where
the 8-cluster model is AMP-pfnn model evaluated in the perceptual
test.

We visualized the results for the objective evaluation in Figure 9.
AMP-pfnn 8 obtains the highest accuracy overall (mean = 0.62),

FIGURE 9
Comparison of objective evaluation results of normalized pointing
accuracy for the different systems.

TABLE 200Correlation (Spearman-r) between accuracy and KDE density
measure.

Model Acc corr. KDE p-value

GT nearest neighbor −0.118 < 0.001

MoGlow 0.718 < 0.001

AMP base no runtime −0.020 0.532

AMP base −0.128 < 0.001

AMP-pfnn 1 −0.043 0.176

AMP-pfnn 3 0.149 < 0.001

AMP-pfnn 8 −0.135 < 0.001

consistent with perceptual evaluation results. The graphs also shows
that using 8 clusters slightly outperforms using 1 or 3 clusters
and also has less outliers. This further validates the use of clusters
(and specifically 8) in AMP-pfnn for learning generalizable accurate
pointing. The performance gain from concatenating the run time to
the policy network input is clearly visible by comparing “AMP base
no runtime” (mean = 0.56) and “AMP base” (mean = 0.59), where
the latter has the runtime input. We can also observe that similarly
to the perceptual evaluation, MoGlow performs worst amongst the
compared systems (mean = 0.46), again showing the limitation of a
supervised system for learning communicative gesture. Overall, the
results from the objective evaluation show the same performance
ranking as the perceptual referential accuracy with actual users,
suggesting that our objective evaluation could also be used as a
system development tool for pointing gestures in the future.

Since both MoGlow and AMP are systems learned from data,
it is interesting to examine how well the models generalize outside
training data distribution. We hypothesized that generalization (as
measured by pointing accuracy) is correlated with how far away
a test pointing position is from training position distribution. We
first quantify training position distribution by fitting a multivariate
kernel density estimation (KDE) on the training target positions.The
bandwidth for KDE is estimated with Scott’s rule and the resulting
bandwidth is [0.80,0.36,0.35]. The estimated KDE density function
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FIGURE 10
Correlation analysis between MoGlow model accuracy and training data density (measured by KDE). (A) Shows moderate correlation between the
accuracy and the KDE that corresponds to correlation Spearman-r = 0.718 (p< 0.001) as presented in Table 2. (B) and (C) show the KDE grid density
and MoGlow accuracy respectively condensed to the x-z axis by averaging over y coordinates.

is evaluated over 1,000 test grid points as depicted on Figure 8. The
resulting density estimate is then correlated with the corresponding
accuracy values for these points in the examined systems; Table 2
shows the results of the correlation analysis. Only MoGlow shows
strong correlation between accuracy and data density. We fully
visualized the MoGlow data points in Figure 10A, which shows
clearly that MoGlow is more accurate in test points with high
training data density. We also plotted the KDE in flattened 2D
heatmap (Figure 10B) and MoGlow’s accuracy (Figure 10C), and it
is shown that the regionswith high training data density (red regions
in Figure 10B) correspond to regions where MoGlow obtained high
accuracy (red regions in Figure 10C). This result is not surprising
since MoGlow is a supervised learning system that highly depends
on training data distribution. In other systems, GT-nn, AMP base,
AMP-pfnn 3, and AMP-pfnn 8 have small amount of significant
correlation between training position density and model accuracy.
Curiously, some of these correlations are negative, meaning that the
models are more accurate further away from the training position
distribution. This could be due to several factors, such as, KDE
may not fully represent data density, or that the pointing position
sampling mechanism in AMP models helps generalization outside
of training position distribution.

4 Discussion

While perceptual test results show a trend of correlation between
motion naturalness and referential accuracy, i.e., models with higher
naturalness also obtained higher accuracy, it is still not clear what
role does motion dynamics play in referential accuracy. We did
not show referential target in motion naturalness test in order to
not distract naturalness judgement with some models’ inaccurate
pointing. But we hypothesize that the motion dynamics itself

contributes to referential accuracy. A factor ofmotion dynamics that
we already noticed could have contributed to referential accuracy
is how long was the pointing phase held and how much the hand
moved during that phase, i.e., how stable was the pointing phase.
One of the baselines, MoGlow, sometimes has long and unstable
pointing phase; it points to one position and slowly moves to a
nearby position before retraction. Different users reported both
choosing the initial position or the ending position as the perceived
referent.

However, one user mentioned that this type of unstable and
confusing pointing gesture feels quite natural and human-like, as
if the avatar is trying to convey that the pointing is not certain.
This example suggests a level of communicative capacity in motion
style. That is, pointing gesture style, i.e., pointing at the same
position with different dynamics, can convey more information to
the interlocutor than just what is the referent. It can also convey, for
example, degrees of certainty of the made reference. A quick motion
with short but steady pointing phase shows certainty. On the other
hand, a slow motion with unsteady/constantly moving pointing
phase can convey uncertainty. Previous research in cognitive science
has shown that speakers tailor the kinematics of their pointing
gestures to the communicative needs of the listener, by modulating
the speed and duration of the different sub-components of the
pointing gesture Peeters (2015) and gesture kinematics has also
been exploited in human robot interaction, e.g., to signal hesitation
Moon et al. (2021). Future research could explore ways to model
pointing styles and uncover what communicative capacity motion
style has in pointing gesture.

In our current study we focused solely on the generation
of non-verbal mode for referent localization in the 3D space.
However, in most cases pointing gestures appear as part of multi-
modal expressions, where the non-verbal mode (gesture) and verbal
(language, speech) mode carry complementary information. In
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these multi-modal expressions pointing gestures are accompanied
by verbal descriptors, which can range from simple demonstratives
(“this,” “that”) Peeters and Özyürek, (2016) to more complex forms
of multi-modal referring expressions describing the referent Clark
and Bangerter (2004) (e.g., “that green book on the table, next to
the lamp”). Furthermore, since the goal of our study was to create
accurate and human-like pointing gestures, we used a simple 3D
position target representation as input to the network. In order to
make the pointing gesture generation more realistic and flexible,
image features could be provided to the agent. This raises further
questions about efficient visual representation for pointing and
establishing eye-body coordination in embodied intelligent agents
Yang et al. (2021).

It should also be noted that the AMP systems achieved higher
pointing accuracy (Figure 9) than the ground-truth training data
(Figure 2) in terms of the defined pointing reward function
Section 2.2. On one hand, this is not surprising, since AMP is
trained to maximize the pointing reward, as part of its full reward.
On the other hand, it raises the question of how well-suited is
the designed reward function for the pointing task. Pointing is an
interactive communication process, which can be modeled as a
referential game. Referential games are a type of signaling game
Lewis (1969), where the sender (gesture producer) sends a signal to
the listener (observer), who needs to discover the communicative
intent (localize referent) from the message. In recent years language
games have been used in emergent communication studies, mostly
in text and image based agents Lazaridou et al. (2018), but also in
embodied agents Bullard et al. (2020). In these, the sender and the
listener jointly learn a communication protocol, often through anRL
setup.This could also be relevant for our framework, sincemodeling
the observer as an agent could substitute the current reward function
based on simple geometric alignment. However, it is important to
note that this kind of reward signal in emergent communication
setup is very sparse, compared to our continuously defined dense
reward function, which could pose further learning difficulties.
Furthermore, current studies within emergent communication
have largely focused on the theoretical aspects and the learned
communication protocols are not interpretable to humans by design,
therefore they have limited use in interactive applications. Extending
these emergent communication frameworks with our pointing
gesture generation framework is a promising direction in learning
more general non-verbal communication in embodied interactive
agent.

5 Conclusion

In this paper, we presented the results of learning pointing
gestures in a physically simulated embodied agent using imitation
and reinforcement learning. We conducted perceptual and objective
evaluations of our proposed imitation-RL based method, and
showed that it can produce highly natural pointing gestures with
high referential accuracy. Moreover, we showed that our approach
generalizes better in pointing gesture generation than a state-of-
the-art supervised gesture synthesis model. We also presented a
novel interactive VR-based method to evaluate pointing gestures in
situated embodied interaction.
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