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This paper presents a cooperative,multi-robot solution for searching, excavating,
and transporting mineral resources on the Moon. Our work was developed
in the context of the Space Robotics Challenge Phase 2 (SRCP2), which was
part of the NASA Centennial Challenges and was motivated by the current
NASA Artemis program, a flagship initiative that intends to establish a long-
term human presence on the Moon. In the SRCP2 a group of simulated
mobile robots was tasked with reporting volatile locations within a realistic lunar
simulation environment, and excavating and transporting these resources to
target locations in such an environment. In this paper, we describe our solution
to the SRCP2 competition that includes our strategies for rover mobility hazard
estimation (e.g. slippage level, stuck status), immobility recovery, rover-to-rover,
and rover-to-infrastructure docking, rover coordination and cooperation, and
cooperative task planning and autonomy. Our solution was able to successfully
complete all tasks required by the challenge, granting our team sixth place
among all participants of the challenge. Our results demonstrate the potential
of using autonomous robots for autonomous in-situ resource utilization (ISRU)
on the Moon. Our results also highlight the effectiveness of realistic simulation
environments for testing and validating robot autonomy and coordination
algorithms. The successful completion of the SRCP2 challenge using our
solution demonstrates the potential of cooperative, multi-robot systems for
resource utilization on the Moon.

KEYWORDS

multi-robot systems, aerospace robotics, planetary rovers, Moon, autonomous lunar
rover operations

1 Introduction

The 16 November 2022, launch of the Artemis 1 mission was a significant milestone
in the plans of the United States to return humankind to the surface of the Moon.
The long-term human presence on the Moon, as envisioned by the Artemis program
(NASA, 2020b; Smith et al., 2020), will require autonomous robotics technologies that
support in-situ resource utilization (ISRU) in extraterrestrial environments (Colaprete et al.,
2017). For example, extracting resources from the lunar soil, such as oxygen and
water, will be vital to sustaining humans and building outposts for future missions.
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As part of the initiative, NASA is planning a series of progressive
robotic missions to the lunar surface. For example, the Volatile
Exploring Polar Exploration Rover (VIPER) (Colaprete et al.,
2019) is scheduled to land on the Moon’s south pole in 2024
and will explore permanently shadowed regions and examine
subsurface material for the presence of volatile content using a
drill. This mission will try to confirm the presence of the materials
identified in orbital missions. Next, as part of the Artemis program
(NASA, 2020b), future rovers and landers will test technologies
such as site preparation, robotic mining, and energy storage
systems (NASA Space Technology Mission Directorate (STMD),
2020), leading to the establishment of an Artemis Base Camp
on the Lunar south pole (Smith et al., 2020). Moreover, NASA’s
Cooperative Autonomous Distributed Robotic Explorers (CADRE)
mission plans to explore the Lunar surface in 2024 by utilizing
cooperative exploration techniques with a group of rovers (Fong,
2021). Cooperative multi-agent missions allow for exploring the
regions of interest faster andmore efficiently by allocating tasks with
dedicated agents, improving the overall autonomy performance, and
enabling coordination between multiple robots (Polizzi et al., 2022).

A significant challenge in leveraging multi-robot coordination
for planetary surface missions is the lack of consideration for
multiple robots due to the mission profiles. This may be attributed
to the higher uncertainty associated with the previous exploration
missions on Mars and Moon. However, multi-robot coordination
is an important aspect of planetary missions, as is reflected in the
2020NASATechnology Taxonomy (NASA, 2020a). For Lunar ISRU,
the use of multiple robots can help to perform tasks more efficiently
(Thangavelautham and Xu, 2022). Coordination between the robots
can ensure that each robot is working on its assigned task and
the overall mission can be completed in less time (Burgard et al.,
2005; Stachniss and Stachniss, 2009). Also, by providing redundancy
and backup systems, the use of multiple robots, instead of a single
one, reduces the risk of system failure (Mahdoui et al., 2018).
Finally, since ISRU missions can be complex, by using multi-
robot coordination, the scalability of the mission can be increased
(Portugal and Rocha, 2013; Khamis et al., 2015).

Aligned with the needs for technology development on
multi-robot systems for the Artemis mission, from 2019 to
2021, the NASA Centennial Challenges Program sponsored
the NASA Space Robotics Challenge Phase 2 (SRCP2)
(NASA Centennial Challenges Program (CCP), 2021). This
challenge was an open-prize competition designed to engage the
public in developing robot localization, coordination, autonomy,
and control technologies for a team of robots dedicated to ISRU
in a virtual lunar environment. The challenge’s goal was to develop
reliable software to advance the surface mining capabilities of fully
autonomous robot teams on the Moon. The challenge field is a
simulated lunar environment where a heterogeneous team of robots
must cooperate to complete a series of tasks involving searching,
collecting, and delivering different types of lunar resources referred
to as “volatiles.”

The challenge was divided into a Qualification Round and a
Competition Round. The Qualification Round consisted of three
tasks to be completed independently. The goal of Task 1 was to
explore the lunar environment using an autonomous Scout rover
capable of detecting and identifying resources scattered across the
map. Using a Hauler and an Excavator rover, the goal of Task 2

was to excavate resources from the ground and haul them back to
a base station. The goal of Task 3 was to detect and localize an object
randomly placed in the environment, detect a marker on the base
station and align a Scout to it.More information on the specifications
of this round and the solution proposed by our team was presented
in (Kilic et al., 2021).

In the Qualification Round, 114 teams competed to develop
solutions for these tasks. Twenty-two teams qualified for the
Competition Round, in which the tasks were combined into a
single mission, adding another complexity layer given the increased
number of interactions between different types of robots. From
the Qualification Round to the Competition Round, additional
complexities, such as robot power constraints, harsh lighting
conditions, and randomized topography were included. In order to
execute the Competition round mission, a team of rovers with up to
six members could be selected from three types of rovers introduced
in the Qualification Round (i.e., Scout, Hauler, and Excavator). An
overview of Competition Round tasks and constraints is provided in
Section 3 of this paper, and the detailed descriptions can be found
in the SRCP2 official rule document (NASA Centennial Challenges
Program (CCP), 2021).

In this article, our main objective is to share the solutions
developed by our team for the Competition Round, which
have the potential to be utilized for multi-robot systems for
lunar ISRU and that granted us the sixth place in the challenge
(NASA’s Marshall Space Flight Center, 2021), being one of the only
seven declared winners. Our team at West Virginia University was
also one of the two winning teams composed solely of students
and faculty members, along with the team from the University
of Adelaide (Sachdeva et al., 2022). This paper provides an in-
depth explanation of the implementations for specific robots
that are planned to be utilized for future lunar ISRU missions,
as well as the strategies used to coordinate the autonomous
operation of multiple robots. It addresses a number of significant
technical challenges relevant to the true challenges described by
NASA, provides a summary of other competitors’ solutions in
the SRCP2 challenge, and offers a solution for a lunar multi-
robot system along with open-source software. We believe that
the information in this manuscript may be useful for researchers
and engineers interested in developing similar software systems for
lunar ISRU or those willing to participate in similar competitions.
The provided code can serve as an initial point of execution,
making it easier for other researchers to build upon this work.
The main contributions of this paper can be summarized as 1)
Techniques for rover mobility hazard estimation (e.g., slippage
level, stuck status) and immobility recovery, 2) Techniques for
rover-to-rover and rover-to-infrastructure docking maneuvers,
3) Strategies for rover coordination and cooperation, and 4)
Strategies for task planning and autonomy for multi-robot
lunar ISRU.

The rest of this paper is organized as follows: Section 2 provides
a literature review. Section 3 describes the competition and its goals
and summarizes our approach for solving the challenge. Section 4
describes each robot’s intrinsic algorithms and architecture. The
autonomy and cooperation strategies are presented in Section 5.
Section 6 compiles the results associated with our solution. Finally,
Section 7 contains conclusions and a summary of ideas for future
work.
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2 Literature review

Lunokhod 1, in 1970, was the first robot to travel on the
surface of another celestial body. It was deployed on the Moon
and remotely operated from Earth. The challenges of space
robotics are still big, but today we can see many other rovers
(e.g., Lunokhod 2, Sojourner, Spirit, Opportunity, Curiosity,
Perseverance, Zhurong), with different levels of technology,
scattered on the Moon and Mars (Skasiadek, 2013). Space robotics
is very challenging due to environmental constraints, such as
surviving launch and landing and operating in near-vacuum,
low gravity, extreme radiation, extreme temperatures, extreme
lighting, extreme abrasive and slippery, and extremely remote
environments; and system constraints such as high complexity,
long lifetime, extreme reliability and safety, limited onboard mass,
limited onboard energy, limited communication, limited testability,
etc. (Putz, 1998). Many of the needed technologies for planetary
surface exploration are only beginning to be studied (Weisbin and
Rodriguez, 2000) and one of the frontiers for the science of space
robotics exploration is the development of cooperative architectures
to control a team of robots to execute tasks that require coordination
and physical interaction such as site preparation, resource
collection, and remote science. as evidenced by (NASA, 2020a) and
exemplified by the Cooperative Autonomous Distributed Robotic
Explorers (CADRE) project (Fong, 2021), that could enable future
autonomous robotic exploration and is currently being developed by
NASA.

Chien et al. (2000) compared three coordinated planning
methods for cooperating rovers: 1) centralized planning, 2) central
goal allocation with distributed planning, and 3) contract net
protocol. The task was to visit a set of science goals using three
identical rovers. The idea was to divide goals between the rovers to
minimize driving. The central planner provides a simple platform
for checking and planning interactions. However, using a central
planner comes with some disadvantages. For example, when the
environment is uncertain, a central planner does not perform well
because it has to monitor the activities, transmit large amounts
of data and execute replanning according to unaccounted events.
Additionally, when a central planner fails, the mission is interrupted
and ceases to provide the desired output. The central goal allocation
with distributed planning has a planner for each agent in addition
to a central planner. The central planner allocates the tasks based
on and each planner develops a more detailed and executable
plan. The advantages come from the reduced workload derived
from parallelism and faster reaction time due to diminished
communication delay. The disadvantage comes from the inability
to reassign goals to different rovers. The contract net protocol is
based on a central auctioneer distributing goals and rovers bidding
for goals as they are offered. It shares advantages and disadvantages
with the second approach, however, through the bidding process it
takes the rover resources into account.

A coordination strategy, called Control Architecture for
Multi-robot Planetary Outposts (CAMPOUT), was proposed by
Schenker et al. (2000) to control the mobility and manipulation
of multiple robots to perform site construction operations. The
architecture is described as hybrid reactive/deliberative, where a
high-level planner allocates tasks assuming finite resources and goal
constraints and a low-level planner prescribes behaviors for reactive

control in tight perception-action feedback loops. The approach
is highly distributed, and each robot can operate independently
based on its programmed perception-action behaviors. The authors
defend that this architecture has great advantages for space robotics
due to the efficient use of system resources, parallelization of
the task execution, and tolerance to the failure of individual
components. Further developments of these strategies were shown
in (Schenker et al., 2003).

More recently, Nishida and Wakabayashi (2012) provided an
architecture for lunar exploration, part of the Japanese Aerospace
Exploration Agency’s plans to deploy rovers and construct an
outpost on the Moon. The technical issues that are being mitigated
include electrical power management, limited communication,
low traction with the soil, inaccurate position determination, the
necessity for a high level of autonomy, and manipulation. Their
operation consists of a lander that is able to communicate with the
multiple rovers and also the ground segment on Earth. The lander
provides the paths which are followed by the rovers using their
sensing and control capabilities.

To mitigate complex inter-agent constraints during exploration
like collisions and inter-robot communication, Staudinger et al.
(2018) proposed a distributed coordination algorithm using
sampling-based motion planners to plan paths considering robot
dynamics, and a distributed decision-making algorithm (max-sum)
to obtain the solution that maximizes the utility function defined
for the problem. Additionally, they proposed technologies for in-situ
space exploration missions, more specifically learning a stationary
spatial process based on measurements of individual agents, using
a wireless system for communication and localization, and using
swarm strategies for navigation and exploration.

The framework used by our team and presented in this paper is
based on a centralized task planner and decentralized controllers. In
fact, similar to our work, most of the teams competing on SRCP2
also opted for a central task planner with decentralized capabilities
for each rover. However, each team had its own particularities.
Sachdeva et al. (2022) opted for an approach with two teams of
three rovers (one instance of each type of rover). In their approach,
each rover had localization, scene understanding, locomotion, and
specialized capabilities (e.g., exploration, volatile detection, digging,
dumping, parking) and a central coordinator that allocated tasks
for each of the rovers, synchronizing their actions and tracking the
activities of both teams, providing duplicity. Brabec (2021) opted for
two independent teams of three rovers (one instance of each type of
rover), separated by a minimum distance of 6 m. Each of the Scouts
was given half of the map to explore using a circular lawn-mower
pattern, once they found resources they served as a landmark for
their companion Excavator and Hauler.

Team Capricorn (2021) opted for a centralized strategy planner
with a team-level finite state machine (FSM), global map manager,
global resource recorder, global health manager, time estimator, and
scheduler. At the individual robot level, they had additional FSMs, a
health monitor, and packages for planning, SLAM, and perception.
They also had specialized packages for each type of rover: resource
finder, arm, and bin controllers. Team L3 (2022) opted for only
using one rover of each type. Their goal was to achieve scoring
cycles of 20 min. Decision-making and most of the autonomous
behavior (manipulation, volatile search, volatile hauling, and power
management) were performed by a central planner. Only local
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planning and object detection were performed individually for each
rover.

While these teams approached the same challenge, there was
virtually no overlap in how they realized their mission capabilities
when compared to our solution in terms of subsystem design,
rover coordination, and mission planning. Therefore, the purpose
of this paper is to share the details of our specific subsystem
implementations and overall mission strategy.

In summary, the field of space robotics is rapidly advancing,
with new solutions and technologies being proposed to overcome
the challenges of autonomous mobility, coordination, and control
of multiple rovers. Methods to coordinate multi-robots, such
as centralized planning, central goal allocation with distributed
planning; and architectures for multi-robot space missions will be
essential for achieving the goals of the Artemis program and its
plans for utilizing autonomous robots on the Moon. The goals of
the SRCP2 align with the need for technology development for
the Artemis program. To better understand the challenges that the
SRCP2 aimed to address, we provided an overview of the challenge
and our approach in the following section.

3 NASA space robotics challenge
phase 2 (SRCP2)

The challenge’s goal was to develop reliable software to advance
the surface mining capabilities of a fully autonomous team of robots
on the Moon. This section provides a high-level description of the
challenge and our approach to solving it.

3.1 Overview of the challenge—SRCP2
competition round

The simulation environment for the Competition Round, shown
in Figure 1, consisted of a 200 m × 200 m lunar terrain map with
randomly generated elevation topography, obstacles, and sparse
underground resources (i.e., volatiles). Two landmarks, a processing
plant where resources should be deposited, and a charging station,
were initialized in a fixed position in the center region of the map.
The bearing angles of these two landmarks were sampled from an
angle interval, guaranteeing that they were mostly aligned with the
illuminated side of the map but stipulating some randomization.
To fulfill the mission requirements, a heterogeneous team of up
to six rovers could be selected from three types of rovers: Scout,
Hauler, and Excavator (see Figures 1C–E). Each rover had unique
capabilities to assist in the lunar ISRU mission task. The Scout rover
was equipped with a sensor package to detect volatile resources
of different types underground. The Excavator rover included a 4
degrees of freedom robotic arm with a bucket end-effector to collect
the resources.TheHauler rover included a truck bed to transport the
resources to the processing plant.

The rovers were actuated through an interface with
simulated controllers using the Robot Operating System (ROS)
(Open Robotics, 2022), as specified by the competition rules, and
were initialized near the landmarks in a flat portion of the map.
Their positions were fixed and their orientations were the same for
all the robots but randomized from (0,2π]. All the rovers had similar

dimensions (i.e., they fit a 2 m× 2 m×2 mbounding box). Each rover
had four wheels that could be controlled by velocity commands.
Each wheel had independent steering that could be controlled
by joint angle commands, thus allowing different driving modes.
The maximum speed of the rovers was about 1.5 m s−1. All rovers
included a 5 Hz frame rate stereo camera that offered 640× 480
pixels of resolution and a 2D laser sensor, also at 5 Hz, with 150◦

wide field of view and 15 m maximum range mounted on a mast.
The mast can rotate by 360◦ and tilt by 120◦. All rovers included
an inertial measurement unit (IMU). All sensors were corrupted
with simulated sensor noise. The competitors were prohibited from
modifying the rovers’ hardware or simulation parameters.

An additional challenge of the competition was the battery
limitation of each rover. Batteries discharged as the rovers drove
or actuated their joints (e.g., camera pole and arm joints). If the
battery dropped below 30%, the robot was automatically set to a
power-saving mode. At this mode, all the sensors were deactivated,
and motion commands were set to 10% maximum capability of
the robot. Fast charging could be achieved by approaching the
charging station. Slow charging could be attained in illuminated
regions by aligning the rover solar panels with the direction of the
light. Each run of the competition was two hours (2 h) long in
simulated real-time. In the simulation, rover communication was
simplified such that no communication limitation or latency was
modeled among rovers. The information of all rovers was accessible
on a centralized system (in a single ROS master), and the only
limitations on communicationwere limits with respect to operations
throughput for real-time processing.

Apart from the shared capabilities, each portion of the mission
task had its complexity and constraints, in an effort to simulate a
realistic lunar ISRU mission in a virtual environment. For instance,
to simulate the excavation process, the robotic arm collisionwith the
terrain was disabled.Then, if the Excavator rover’s bucket was within
a specific angle range and below a certain depth threshold, five
particles, called clods, were spawned inside the bucket. Depending
on how close the center of the bucket was to the position of the
volatile resources on the map, the competition’s volatile simulator
would determine howmanyof the clodswere volatile or regolith.The
clods had simulated collision physics and mass. Once in the bucket,
the simulated clods could fall to the ground if not appropriately
handled. Any clod that fell to the ground was considered lost and
disappeared from the simulation. Once excavated from the ground,
the volatiles must be placed in the Hauler’s bin to be transported to
the processing plant.

A scoring system was defined to reward the retrieval of volatile
clods (NASA Centennial Challenges Program (CCP), 2021). Points
were scoredwhen resourceswere delivered to the processing plant by
a Hauler. A minimum quantity of a given volatile type was required
before it counted as points. The top ten scoring competitors in
the Competition Round that meet or exceed the given threshold
score (35) would be awarded prizes. Additionally, all the robots
had to be within bounds at the end of the simulation to obtain
a valid score. Due to the size of the map, limited time, number
of resources, and limited robot speed, teams were expected to
develop a strategy to enable robot teams to maximize the number of
points.

In summary, the main constraints and challenges of the SRCP2
competition included:

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2023.1149080
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Martinez Rocamora Jr. et al. 10.3389/frobt.2023.1149080

FIGURE 1
Competition simulation setup. (A) Rover initial positions. (B) Randomized lunar terrain consisting of one large crater defining the task area, multiple
smaller craters, plateaus, obstacles, and volatile resources hidden under the surface. Rover types: (C) Scout. (D) Excavator. (E) Hauler.

• The absence of a GPS or similar satellite-based lunar
localization system.
• The need for fully autonomous rovers due to the lack of

interactions with a human operator during runtime.
• The constraints of using exteroceptive sensors that simulate the

noisy data acquisition in lunar conditions, which are coupled
on the mast (e.g., when the camera tilts to some degree, the 2D
LiDAR tilts with it).
• The limitations of using a single stereo camera in a

low-texture, high-contrast environment with permanently
shadowed areas that impair visual odometry (VO)
performance.
• The difficulties of navigating in terrain with steep slopes and

obstacles, which cause significant slippage and prevent safe
rover operation.
• The limitation of detecting volatiles at short-range distances and

only using Scout rovers.
• The management of rover battery charge and discharge.
• The difficulties of handling self-collisions and collisions

between rovers or with the stations.

3.2 Overview of our solution concept

Our overall SRCP2 solution concept utilized a six robots
configuration consisting of two of each robot type: Scout, Hauler,
and Excavator. Each of the six individual robots had a common set
of core capabilities (e.g., localization, navigation, object detection,
driving control, and recovery behaviors) developed irrespective of
robot type and are described in detail in Section 4. Each type of
robot had its actions controlled by a finite state machine (FSM)
customized for each of the three robot type’s particular missions.
The overall mission execution was controlled by a centralized task
planner responsible for assigning target waypoints to the six robots.

Each robot type had a distinct mission that was carried out by
leveraging both its core capabilities and its unique mission-specific
capabilities. The two Scouts’ mission was to search for resources
and create a centralized map of volatiles. Scouts were deployed to
opposite sides of the field to maximize search area and to reduce
the potential for robot collisions. To maintain accurate localization
and charge the battery, each Scout routinely performed homing
with respect to the charging station. Each Scout’s waypoint plan
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was loaded a priori and consisted of a simple search heuristic
that took into consideration the need to regularly perform homing
updates with respect to the base station. Once volatile resources
were identified, they were stored in a shared resource map that
was continuously updated. Following up, the task planner allocated
a team, composed of one Excavator and one Hauler, to collect
the resources. The allocation was dependent on the idleness of
the excavators and tried to minimize the distance traveled by
the excavators to move to the excavation sites. Once arriving at
the excavation site, the Excavator would identify a safe parking
place for their companion Hauler and then begin excavation.
Once an Excavator found volatile material, they commanded their
companion Hauler to perform a precise parking maneuver and
proceed with excavation once confirming the location of the Hauler.
Finally, each Hauler was responsible for traversing to an excavation
site, precisely parking next to anExcavator at a dig site, and returning
volatiles to the processing plant. After a volatile deposit, the Hauler
would charge its batteries in the charging station nearby and perform
a homing update to reduce its localization errors. In parallel,
Excavators would be moving to the following excavation site, and
Scouts continuously searched and mapped volatile locations.

The success of our mission concept heavily relies on the ability
to maintain accurate localization and reliable object detection and
recognition. These capabilities were crucial for the execution of
complex tasks such as approaching recognized objects for parking,
dumping, charging, and localization recovery. Object recognition
was also used to avoid stationary and moving obstacles, such as
rocks and other robots, during navigation toward a goal on the
map. To enhance the robustness of our solution, we implemented
multiple layers of redundancy through multiple methods to confirm
specific conditions, detect failures, and retry procedures using
different strategies.Thesemeasures were thoroughly tested to ensure
their effectiveness. The next two sections describe the technologies
developed at the rover level and at the team level.

4 Robot systems

Many systems and capabilities had to be developed to
operate the robots autonomously for two hours: object detection,
state estimation, computer vision, behavior control, mapping,
manipulation, and navigation and control. The rounded rectangles
in Figure 2 show the ROS nodes that compose these systems and
their interconnections. In this figure, it is also possible to see how
the software interacted with the simulation, i.e., receiving sensor
data and outputting setpoints for the controllers. In this section, a
brief overview of the approaches developed by our team is provided.
These approaches are further discussed in Section 5, where specific
usage cases and illustrative examples provide better insights.

4.1 Localization and navigation

The challenges of planetary localization and navigation were
evident in the provided lunar virtual environments, such as the
lack of a continuous global localization source, high slippage
on wheels (Asnani et al., 2009), scattered and numerous rocks

(Zakrajsek et al., 2005), and varying lighting conditions (Fong et al.,
2008). To overcome these challenges, the competition provided
a sensor bundle consisting of a stereo camera, 2D LiDAR, IMU,
and wheel encoder sensors. In addition to using the sensor bundle
for localization and navigation, competitors were given a one-time
opportunity to retrieve the rovers’ global position and orientation
(pose) information for the rovers in the virtual map during the
simulation runtime. This simulated pose fix was reported from a
Lunar orbiter.

Our localization and navigation architecture for the competition
round was based on the successful Qualification Round
implementation, as detailed in our previous work (Kilic et al., 2021).
The main differences between the Qualification and Competition
rounds that affected the previous architecture were the requirement
for accurate localization with noisy sensors within two hours of
operation, whereas the simulation runtime for the Qualification
Round was 45min, and the need for rover recharging in the
competition. The increased operation time led to position error
accumulation that needed to be addressed by the rovers to perform
reliable Lunar In-Situ Resource Utilization (ISRU). Additionally,
for recharging, the rover solar panels needed to be oriented
correctly with respect to the Sun, or the rovers needed to be near
the recharging station. For completeness, the architecture of the
implemented state estimation framework is depicted in Figure 3
and the critical points of this implementation are summarized as:

1. State estimation was performed utilizing an extended Kalman
Filter (EKF) (Ribeiro, 2004) that consists of fusing wheel
odometry (WO), visual odometry (VO), and a standalone
attitude estimation EKF.

2. The localization performance was improved with periodic
homing updates with the recharging station. The recharging
station had a cylindrical shape, and its center was registered in
the global frame as a global landmark. For this, the 2D LiDAR
data was used in a least-squares estimator to fit the data to a circle,
assuming the rover has accurate global attitude estimation.

3. Autonomous navigation tasks of the roverswere donemaking use
of Move Base framework for multi-robots (Pütz et al., 2018).

4. Awaypoint navigation strategy is used to explore the virtual map,
searching for the randomly distributed volatiles.

Because of the difficult terrain conditions presented in the initial
simulation, the decision was made not to utilize SLAM throughout
the competition. When SLAM packages were utilized, because the
terrain was featureless and dark, we observed an unsatisfactory loop
closure performance. As a result, a technique based on homing
updates was established to achieve loop closure instead. More
features were added to the terrain as the competition progressed,
such as a more realistic texture and lighting, which allowed other
teams to effectively deploy SLAM packages. However, by that stage,
our solution had already met the localization objectives and our
attention had shifted to other competition challenges.

4.2 Driving control

The three types of rovers shared the same motion system
hardware, four-wheel steering (4WS), with passive suspension. The
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FIGURE 2
Systems architecture. The virtual environment, simulated using Gazebo, provides access to the sensor data illustrated by the white rectangles on the
left side of the figure. The ROS nodes, represented by the rounded gray rectangles, were developed to control the robots and interact with each other
to produce setpoints for the controllers made accessible from the simulation.

steering angle and wheel speed could be controlled independently.
The maximum wheel speed was 10 rad s−1 and the steering angles
ranged from −180◦ to 180◦. In our approach, we implemented a
controller that selected one from three different locomotion modes
using body velocity commands accordingly. The three locomotion
types were pure translation, pure rotation, and a combination of
translation and rotation.

A body velocity command consists of three fields: linear speed
on the longitudinal axis (vx), linear speed on the lateral axis (vy),
and rotational speed on the vertical axis (ωz). Pure translation, also
known as synchronous-drive or crab motion (Li et al., 2022), was
selected by the driving controller when ωz = 0. In this mode, all the
wheels are steered to an angle that produces the desired combination
of vx and vy. Pure rotation, also known as point turns or turn-in-
place maneuver was selected by the driving controller when only
ωz > 0. In this mode, all the wheels are steered to have their axles
aligned with the radii of circles of a common center point located at
the vehicle’s center of gravity.

A Double Ackermann steering (Qiu et al., 2018) system was
used to combine translation and rotation. This mode was selected
by the driving controller when vy = 0 and vx > 0 and ωz > 0. In this
mode, all the wheels are steered to an angle that produces the desired
combination of vx and vy. In this mode, all the wheels are steered to
have their axles aligned with the radii of circles of a common center
point located at a distance from the vehicle’s center of gravity (in the
center of rotation point).

This multi-modal locomotion approach was chosen to optimize
the motion for different parts of the challenge. For example, a
simple skid-steering approach can provide pure rotation and the
combination simultaneously; however, the resulting wheel slip
degrades the localization estimation, especially when trying to turn
in place (Zuccaro et al., 2017). The different locomotion modes are
shown in Supplementary Figure S1.

Finally, the simulation also provided a braking service, with the
option of braking from 0% to 100%. At 100%, a braking torque of
500 N m rad−1 was delivered to each wheel simultaneously. A linear
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FIGURE 3
The architecture of the state estimation framework as is in our previous work (Kilic et al., 2021). Initialization of the state of each rover was performed at
the beginning of a competition run. A homing update was performed periodically to improve localization estimation. A standalone EKF was dedicated
to providing a filtered attitude estimation. Velocity information from the wheel and stereo camera is used in a sensor fusion EKF to provide the rover
velocity and position estimations. Finally, rover full state estimation (attitude, velocity, position) was generated by the combination of the data coming
from these two different sources.

ramp with adjustable time intervals was used to stop the rovers.
This adjustable time to go from 0% to 100% braking was fine-tuned
during the tests to stop the rover without causing excessive wheel
slippage.

4.3 Mobility hazard detection and
immobility recovery

The main aim of the rover mobility hazard detection and
immobility recovery system was to keep the rover safe and fully
operational to maximize the volatile exploration area coverage and
excavation. Even though the environment was mostly traversable,
there were potential physical threats to the rovers randomly
distributed in the environment, such as craters, small hills, and
rocks. The navigation subsystem could avoid these threats; however,
occluded small obstacles near craters and small hills on the
map, marked as traversable in some cases, endangered the rover
operations with possible tipping over and becoming stuck cases.

Considering these threats, several precautions to keep the rovers
safe were included for each type of rover. For example, the Scouts
were programmed to drive as safely as possible by limiting their
traversability over craters and rocks, assuming their speed could
compensate for the extra waiting time for path planning. Further,
the Scouts had no explicit requirement to reach the goals given by
the waypoints because their main goal was to explore the area to find
the volatiles.

Haulers and Excavators were programmed to follow strict
navigational goals since they needed to pinpoint the excavation
area for a successful digging operation. During testing, the rovers
successfully fulfilled their operational needs. However, sporadic
failures on any other system could lead to a cascade effect and
compromise the rover’s mobility. For example, whenever the visual
odometry node cannot generate a disparity image, it could interfere
with the obstacle detection node and lead to the inclusion of artifacts
in the cost map used by the navigation node, resulting in the rover
assuming that it was stuck on the terrain. In addition, when the
navigation stack was disengaged for any blind driving maneuver
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FIGURE 4
Stuck detection capability. (A) Stuck detection. (B) Recovery maneuver. (C) Mobility recovered.

(e.g., during an approach maneuver), the navigation stack could be
resumed at a location that the rover believes to be coincident with
an obstacle, which makes the navigation stack unable to provide a
navigation plan.

To overcome these topological and algorithmic threats, we
developed a rover mobility hazard detection and immobility
recovery system that could sense if any further rover operation
was unsafe or if the rover was unable to move due to being stuck.
When such a situation is detected, the rover performs several
predetermined recovery maneuvers.

The immobility sensing was performed in a localization
watchdog system where the wheel slip was calculated and classified
into one of five known cases. The reason for having five known
cases in the immobility sensing approach is to provide a multi-
layer of safety that properly identifies the immobility state of the
rover. In these cases, we leveraged the ratios between commanded
velocities versus estimated velocities, commanded steering angles
versus actuatedwheel steering angles, andwheel odometry estimates
versus visual odometry estimates. Detecting the wheel slippage or
steering angle anomaly was performed by an iterative indicator that
accumulated slip andwheel anomalies triggering the rover to declare
immobility after a certain threshold. After the declaration, the rover
would perform recovery maneuvers to try to recover. In addition to
immobility, the statemachine incorporated a pitch and roll indicator
that halts the rover and drives backward to generate a new plan if
the estimated pitch or roll exceeds a predetermined safety threshold.
This threshold was determined to be 27◦ based on the Scout’s center
of gravity during the tests and helped prevent the rover fromflipping
or rolling over due to excessive pitch or roll.

In a case of being stuck, which is a case when the rover tried
to traverse over a small hill, and all its wheels lost contact with the
terrain, whereas the rover frame was placed on top of the hill, the
rover started performing unstuck recovery maneuvers. The main
idea of recovering the stuck rover was to make the rover wheels
regain contact with the terrain. For this, we leveraged the geometric
specifications of the wheels, given that the diameter of the wheels
is longer than the width of the wheels, and utilized the four-wheel
steering capability of the rover. The maneuver was performed by

steering the wheels to gain traction at any point on the hill’s surface
enabling the rover to move and become mobile again. An example
scenario of the recovery after getting stuck is given in Figure 4.

The Mobility Hazard Detection and Immobility Recovery
system was developed to assure the rovers’ safety and their full
operating capabilities in a challenging environment with possible
physical dangers such as craters, steep slopes, and rocks. The system
identified any unexpected rover activity or immobility and executed
specified recovery operations, such as regaining traction and
becoming mobile again by exploiting the geometric specifications of
the wheels and the rover’s four-wheel steering capacity. The system
allowed the rovers to function safely and effectively, thus meeting
their operational requirements.

4.4 Manipulation

In order to reduce computational complexity and to perform
excavating actions within the mission time limit, a simple approach
where the kinematic equations were used to help control the motion
of the arm from predefined configurations to the target points
consisting of the volatile position or Hauler’s bin was used. First,
coordinate frames were assigned to each joint, and then Denavit-
Hartenberg parameters were obtained. With this information,
forward and inverse kinematics relations were derived for
the arm.

The forward kinematics formulation is straightforward for this
4R manipulator and the equations can be obtained geometrically
from the link lengths and joint angles. The inverse kinematics was
also obtained geometrically by using two orthogonal, uncoupled
planes of motion: one considers changing the azimuth of the
whole arm (shoulder yaw), and the other considers changing the
configuration of the arm (shoulder pitch, elbow pitch, wrist pitch)
in the z-r plane. The desired shoulder yaw joint angle was obtained
directly using the cylindrical coordinates and the other joint angles
were obtained using a standard geometrical method used for 3R
planar manipulators. More details on this approach can be found in
Kilic et al. (2021).
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After solving the Excavator arm’s forward and inverse kinematics
there are several ways to plan its motion. The planning constraints
included: 1) avoiding collisions and 2) maintaining the bucket’s
global angle within a specific range to ensure that the volatile clods
were collected from the terrain and not dropped unintentionally.
Predefined configurations were selected to act as safe waypoints
for the arm to guarantee that there will be no collision during the
motion. Between them, trajectories were obtained by interpolating
starting and ending joint angles using third-order polynomial
trajectories.

To know if the desired position (a point on top of the Hauler’s
bin) was reachable, we derived the workspace of the arm through
range and height maps given all possible shoulder pitch and
elbow pitch angles. A depiction of these maps can be seen in
Supplementary Figure S2. This considers that any yaw angle was
reachable and the wrist joint would be actuated to maintain the
bucket aligned with the horizon. These maps were interpolated and
functions were included for quick access inside the Manipulation
stack. Specific scenarios, for example, requiring shoulder yaw angles
that would lead to a collision with the Excavator’s camera, were dealt
with separately, and range and height were further restricted for
them.

4.5 Object detection

The goal of the object detection system is to help perceive
the environment surrounding the robot, allowing them to interact
with it autonomously. The most critical functions include detecting
relevant objects and features in the camera images and also
estimating geometric information with respect to the camera
frame. In our approach, the Single Shot Multi-Box Detector (SSD)
(Liu et al., 2016) is used to detect, in real-time, bounding boxes
around target objects appearing in the robot camera images. The
algorithm was chosen due to its detection performance and real-
time inference capabilities. When using SSD, the inference can
be processed at 60 Hz. The detection was implemented using a
centralized approach.

A custom algorithm was developed to select, synchronize, and
process images for object detection. Specifically, this algorithm
synchronizes stereo pairs and selects images from each robot. Later,
it feeds them to a single SSD neural network. In sequence, it
organizes the data output from the multi-box detector, distributing
back the information that is relevant to each robot, such as the
bounding box locations or the filtered point cloud of an object.
Using this approach, all six rovers were able to obtain information
about the environment in real-time because each of the robot camera
images was obtained at 5 Hz from the simulator.

An SSD 300 network, based on the VGG16 architecture,
was chosen due to its compatibility with the size of the dataset
obtained for training. This network takes 300× 300× 3 normalized
RGB images as inputs. The bounding box regression is similar to
Szegedy et al. (2014). A set of pre-defined bounding boxes, called
feature maps are connected to different layers from the VGG16
network so that the different scales of feature maps are processed
at different layers. The network estimates the bounding box position
and its class in a single shot. Therefore, the loss function is divided

into two parts. The classification loss, which is the object class,
is minimized using categorical cross-entropy, and the location
loss, which is how far the predicted bounding boxes are from
the ground truth is minimized using smooth L1-Norm Girshick
(2015).Theoutput bounding boxes are pruned using non-maximum
suppression, where only 400 boxes with a confidence of more
than 0.01 and intersection over the union of more than 0.7 are
kept. The network was pre-trained using the Microsoft Common
Objects in Context (MS COCO) (Lin et al., 2014), which consists
of 350,000 images and 80 object categories. Afterward, weights
were sampled for 22 new classes of objects seen in the competition
environment. These classes include the three types of rovers, two
types of obstacles, the processing plant, the charging station, and
specific features of these objects, such as the competition logo, solar
panels, and the Excavator’s bucket. The dataset was collected from
images randomly sampled from camera image recordings of the
robots being teleoperated in the simulation environment for more
than 6 h. A total of 5,629 images were manually annotated and
used as training data. Another 1,119 images were annotated and
used as validation. The image data reproduce the situations that
the rovers would encounter when deployed to perform their tasks
autonomously, such as approaching other rovers and landmarks and
driving through obstacles. Because the diversity of objects in the
lunar environment is small and restricted, and every object is known,
overfitting was not a major concern during training. Figure 5 shows
examples of bounding box detection with images captured by the
camera.

Thedisparity images from the stereo camera pair were calculated
using semi-global block matching (Hirschmuller, 2005). Then,
using the bounding box coordinates and stereo camera parameters,
each pixel inside the object bounding box was used to calculate
the 3D point cloud. Because artificial noise was added to the
simulated images, outlier points were removed. Also, points with a z
coordinate (optical axis) values larger than a threshold of 20 m were
discarded due to the low quality of images (640× 480), which caused
estimation to perform poorly above that distance.

The processed data was pipelined to the navigation system
of the rovers in two ways. The obstacles’ point clouds were sent
continuously to the MoveBase node of each rover, guaranteeing
safe driving. The bounding boxes for objects of interest and the
corresponding estimated point clouds were sent on demand to the
ROS node that provided the control during approach maneuvers
for each rover when they had to interact with each other and the
stations.

4.6 Approach procedures

Besides obstacle avoidance, visual perception was mainly used
for target-approachingmaneuvers.The approach procedures started
with the rover at a waypoint near its goal followed by controllers
based on vision and LiDAR to approach reliably. Three types of
approaches were performed during the mission:

(1) A Hauler approaching an Excavator for volatile collection,
(2) A Hauler approaching a processing plant to dump the volatile

and score points,

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2023.1149080
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Martinez Rocamora Jr. et al. 10.3389/frobt.2023.1149080

FIGURE 5
Object detected during approach sequence. (A) Charging station. (B) Excavator and obstacles. (C) Processing plant and its bin.

(3) Any rover approaching the charging station for recharging and
updating rover localization with the LiDAR.

The three types of approaches followed similar steps. The first
step was to rotate in place to identify the object we aimed to
approach. Once the object’s bounding box is found, the rover moved
forward, centralizing the box in the center of the image. LiDAR and
disparity images were used to estimate the distance from the object
and to decide when to stop. Given the features of the data, some
objects were better identified with lights on and some with lights off.

So, the rover lights were toggled on and off to maximize the chances
of identifying features. Additional maneuvers were developed to
handle multiple robot interactions and coordination in order to
increase success rates. For example, to coordinate the behavior of
two rovers when they both needed to access the base stations, a flag
that was triggered when the base station was needed. This would
act as a stoplight to prevent a second rover from approaching at
the same time. Further, to handle a rover crossing in front during a
visual servoing approach, a stopwas triggered anytime another robot
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appeared in front during the approach drive. Another coordination
that was developed was to have a rover drive backward 0.5 m for the
robot to better align the rover with the goal and provide sufficient
space to maneuver. Figure 5A shows the bounding boxes seen by
the Scout during an approach to the charging station, Figure 5B
shows the bounding boxes seen by a Hauler during the maneuver
to approach an Excavator, and Figure 5C shows the bounding boxes
seen by the Hauler during the approach bin maneuver.

5 Autonomous operation and
coordination

This section provides detailed explanations of the developed
approaches and their specific usage cases with demonstrations to
overcome the competition challenges. Additionally, this section
describes how each approach presented in Section 4 works in
harmony to facilitate the multi-robot system to perform the lunar
ISRU mission in the SRCP2 challenge. The framework for the
autonomous operation in our solution consisted of a central
task planner and volatile map, and decentralized finite state
machines (FSMs) to control individual robots. The task planner was
responsible for allocating waypoints for the scouts, excavation sites
for excavators and haulers, and coordinating the access to dumping
at the processing plant. The volatile map was tasked with recording
the location and status of the resources found on the map. All
the rovers had their operation controlled by individual FSMs, as
depicted in Figure 6.

Most of the FSM states were common to the three types of
rovers, namely, “Initialization”, “Planning”, “Traverse”, “Localization
Recovery” and “Emergency Charging” states. During the
“Initialization” state, the rovers initialized their localization
estimates, as described in Subsection 4.1, and were spread out
in the map to predefined locations to reduce the chances of rover-
to-rover and rover-to-infrastructure interactions at the beginning
of their operation. Next, they proceed to the “Planning” state and
waited for a goal. Upon receiving a goal, they proceeded to the
“Traverse” state, which traversed them to the location that a task
planner desired them to be. This location can be, for example, an
explorationwaypoint for a Scout, an excavation site for an Excavator,
or a waypoint to aid in dumping for a Hauler. After reaching their
goal, they can either switch back to the “Planning” state and wait
for another goal or proceed to a specialized task such as excavating.
The “Emergency Charging” state was activated immediately if the
rover battery dropped under 30%.The “Localization Recovery” state
was activated for Scouts upon receiving a recovery waypoint and for
Haulers after each dumping. This state was used for resetting the
localization estimates using a homing strategy and recharging the
batteries at the charging station.

The remaining FSM states were specific to each type of
robot, depending on their mission. The “Volatile Handling” state
was present only for Scouts, the “Excavation” state was present
only for Excavators, and the “Parking” and “Dumping” states
were present only for Haulers. The “Volatile Handling” state
was activated whenever a Scout detected volatile material in the
map and tried to minimize the distance of the robot to the
location of the resource. When initiated, the “Excavation” state

activated another FSM that was for controlling the actions of an
Excavator’s arm to search, excavate, and drop volatile clods in the
Hauler’s bin. The Haulers used their “Parking” state to approach
and park close to their partner Excavator and the “Dumping”
state to haul the excavated material back to the processing
plant. The following sections provide more details regarding the
task planner developed and the operation of the three types of
robots.

5.1 Central task planning and volatile
mapper

Mission task planning consisted of assigning waypoints to each
robot when requested. This was centralized in a Task Planner ROS
node. The two Scouts performed a preprogrammed search of the
field with regular stops for homing. To reduce the immobility risks
on harsh terrain, Scouts could skip waypoints except for homing.
The two Excavators were sent to the next closest available volatile.
At the start of the mission, special handling was developed to
ensure that the two excavations were performed within a reasonable
distance. Therefore, if the first two volatiles were found close to one
another, the second excavation teamwould wait for the third volatile
to be discovered. For communication simplicity, each Hauler was
partnered with a specific Excavator. Their waypoints from the task
planner were assigned to be the same as their partner Excavator,
slightly offset by a distance (10 m). The volatile mapper ROS node
was tasked with recording the volatile resources that were found
by the Scouts and keeping track of their properties and status.
The properties of the volatile resources included the index, type,
position, and minimum distance measured to the corresponding
Scout. The status of the volatile resource was recorded in regards
to whether the resource had been previously observed if an attempt
had been made to collect it, and if the collection was successful or
unsuccessful.

5.2 Scout mission and autonomy

The scouts were equipped with a dedicated sensor that is able
to detect volatiles below the Lunar surface. This sensor is able
to detect any volatiles within a 2 m radius. It returns (as a ROS
message) a noisy measurement of the distance to the center of the
closest volatile, and its type (i.e., ice, ethane, methane, methanol,
carbon dioxide, ammonia, hydrogen sulfite, or sulfur dioxide).
Since the dedicated volatile sensor could only detect the volatiles
at such a short range with respect to the rover, keeping a reliable
and continuous localization solution for the rover played a critical
role in correctly reporting the resource locations and reaching the
desired waypoints for exploration. Dedicated FSMs (Figure 6) were
used to control each of the Scouts. In the “Initialization” state, the
Scouts’ localization filters were initialized using the initial positions
provided by the competition.The global heading angle was the same
for all six robots andwas obtained using one of the available position
fixes (i.e., a single-use competition-provided true pose service). For
each Scout, the provided position fix was used during the detection
of the second volatile, which pinpointed the location of the second
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FIGURE 6
Coordination architecture for autonomous operation. A central task planner communicates and has access to the states of each individual robot, and
resource collection states from a shared volatile map. The goals and resource states are updated by the task planner and the robots as their operations
progress. Each robot has its behavior controlled by a Finite State Machine. Three kinds of finite state machines (FSMs) were developed, one for each
type of rover. Most of the states are common (gray) to the three kinds of FSM, however, each type of rover had specialized states (colored) related to
their tasks. For the Excavator, another FSM was nested to control the manipulator behavior.

excavation site. The rover state transitioned to “Planning” upon
completion of the initialization phase.

5.2.1 Exploration strategy
Approximately one hundred waypoints were used for exploring

the inner region (|x| < 50, |y| < 50) of the map. We decided to focus
on this region because it was observed that the volatile distribution
was denser closer to the center of the map. The map was divided
into two-halves and each Scout was tasked with exploring one of
them. This strategy minimized possible interactions and overlaps in
their exploration area. Exploration routes were designed to start and
end close to the center of the map and a sequence of waypoints was
distributed along the routes. By finishing an exploration route at the
center of the map, the robot would be in proximity to the recharging
station plant such that a homing update could be performed before
the robot enters the next exploration plan.

In the “Planning” state, the robot requested a waypoint from the
task planner node. If there was no collision in its field of view, the
waypoint was passed to the navigation framework, and the state was
transitioned to traverse. In the “Traverse” state, the rover drives from

one waypoint to another using navigation and driving subsystems
(see Subsections 4.1, 4.2). The “Localization Recovery” state aimed
to minimize the possible failures in planning and traversing states.
If the rover was experiencing immobility issues, the recovery state
was triggered by the stuck detection and steep slope detection. Also,
when the navigation plan was not achievable in the “Planning” state,
the rover reset its current plan and switched to the “Planning” state
to generate a new navigational plan.

5.2.2 Volatile honing strategy
When a volatile was sensed during driving by a Scout, the

“Volatile Handling” state was activated. During this state, the rover
reported the location of the volatile using its localization solution
while considering the lever arm of the mounting location of the
volatile sensor with respect to the center of localization (e.g., volatile
sensor location to IMU location). For volatile reporting, the rover
uses the logic to anticipate the volatile position by a honing strategy
moving sideways and forward to minimize the distance between the
rover and the volatile until the rover naturally finds its minimum
distance to the volatile.
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FIGURE 7
Honing Procedure. (A) Along its exploration trajectories (yellow dashed line), a Scout can find a volatile and will perform maneuvers to guess the
position of the center of the resource. (B) The scout will decrease its speed and continue on its original trajectory while the sensed distance decreases
(between timestamps t1 and t2). Once the distance increases (t2), it expects the volatile to be to its left or right, orthogonally to the exploration
trajectory. In sequence, it will move a few meters to the left (t3) and to the right (t4) to hone the reported volatile position. Once the sideways
maneuvers end (t5), the Scout resumes its exploration trajectory with and regular speed (t6).

The honing strategy is demonstrated in Figure 7. During the
traverse, a Scout follows a path represented by the dashed yellow
line (Figure 7A). Once a volatile is detected, the Scout has its speed
sharply reduced. In our approach, the Scout stops at a position
marked with the cross in (Figure 7A) once it naturally gets to the
minimum distance to the center of the volatile while still following
its original path. Then it drives sideways to both sides before going
back to moving forward Ideally, this strategy would achieve near
zero minimum detected distance. In reality, when the slip and
rough terrain are involved, we observed that the Scouts were able
to achieve a minimum detected distance at the decimeter level
(Figure 7B) while not altering the Scout’s trajectory or odometry
solution significantly.

5.2.3 Homing update
After visiting some predetermined locations, each Scout

performs homing by activating the “Localization Recovery” state. In
this state, the rover drives to the charging station, approaches it with
visual servoing, and performs a localization update. The localization
update used LiDAR to fit a circle to the cylindrically shaped charging
station and estimate the location of the circle’s center with respect
to the robot’s position. Given that the charging station is a static
landmark (i.e., its location is known), it was possible to use the
difference between the estimated position and the true position to
get a correction vector. Additionally, with this information we were
able to reject the result when the estimated radius was smaller or
larger than the expected radius of the recharging station. Likewise,
because we used a least squares estimator to determine the fit to a
circle, the magnitude of the residuals of the fit was used to eliminate
outliers. In particular, if a rock or some other object were present
and obstructed the circle fit, the estimation residuals were very large

and the estimate could be rejected. In these instances, we simply
did not use the update and waited until the next recharging. These
checks were empirically tuned. This LiDAR-based approach was
only used when the station was present in the camera image.

In the absence of a loop-closure strategy such as, for example,
periodic homing update, the localization error of the robotic system
is likely to significantly increase due to the challenging terrain
characteristics (i.e., steep slopes and low features), leading to wheel
slippage and visual odometry (VO) failures (Gonzalez et al., 2018;
Strader et al., 2020; Kilic et al., 2022). Consequently, any localization
inaccuracy issue can yield consecutive unsuccessful reports for
the sensed volatiles. Even though some of the homing updates
could be unnecessary for localization errormitigation; these updates
provided considerable assistance in keeping the rover’s localization
accuracy sufficient to map the sensed volatiles.

5.3 Excavator mission and autonomy

The principles behind the Excavator mission consisted in going
to a position determined by the task planner where a Scout has
previously found a volatile. Dedicated FSMs (Figure 6) were used to
control each of the Excavators. As excavation sites become available,
an Excavator was sent a goal through the “Planning” state and
navigates to that location using the “Traverse” state. Once the
Excavator arrives at the excavation site, it activates the “Excavation”
state. First, during this state, it defines an appropriate parking
position for the Hauler by analyzing its surroundings. Afterward,
it initiates the digging process, actively searching for the found
volatile. Since there are accumulated localization errors (self and
mapped volatile location), it needs to search in a region using some
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driving maneuvers before digging. Upon successfully locating the
volatile resources, the Excavator communicates with the Hauler
that it may proceed with its approach maneuver. Then, once the
Hauler indicates that the approach is complete, the Excavator utilizes
its camera to scan the area and employs object detection services
to identify and determine the position of the Hauler’s bin. The
excavation process continues if the bin position is reachable, and
volatile can be dropped into the bin. If not, the Excavator asks its
Hauler for a re-parkingmaneuver. After successfully identifying that
volatile can be deposited at theHauler’s bin, the Excavator executes a
series of arm trajectories based on the relative heading and range of
the target bin. At each scoop, the Excavator reconfirms the Hauler’s
bin position to guarantee that the relative localization is still valid
since skidding may cause drifts. The digging process ends once one
of the following conditions applies: the volatile is fully captured,
the volatile clods cannot be found anymore, a maximum number of
scoops is reached (set to 12), or the entire process reaches a timeout
(about 20 min in simulation time). The most important parts of this
procedure are detailed next.

5.3.1 Deciding the best side to park
Once the Excavator reaches (or thinks it reaches) the position

of a volatile, it rotates its camera 360 degrees and, by counting the
number of obstacles identified on each of its sides (left or right), it
decides the best side for the Hauler to park by counting the number
of large rock objects are detected on each side of the excavation side.
It then computes a pose perpendicular to the Excavator, 10 m away
at the chosen side, and communicates it to the Hauler, which uses
that pose as a set point. The Hauler will wait in this position until
the Excavator indicates it needs to approach.

5.3.2 Searching for volatile
After finding the best side to park the Hauler, the Excavator

inserts the scoop into the ground and checks if a volatile is present. If
a volatile is found, the Excavator moves to the next step. If a volatile
is not found, the Excavator removes the scoop from the ground and
starts a search procedure within the maximum detection radius of
1.5 m around the current point. It moves in eight directions to cover
the region to detect the volatile specified by the angles 0, 45, −45,
−90, 90, 135, −135, and 180 degrees. For each position, the Excavator
searches for the presence of volatile by inserting and removing the
scoop in the ground. The Hauler is commanded to approach if the
volatile is found. If the volatile is not found after this procedure, the
excavation is canceled, and the team waits for a new volatile location
to be sent by the Task Planner (Subsection 5.1).

5.3.3 Finding the partner Hauler
After successfully finding the volatile, the partner Hauler is

commanded to park on one of the sides of the Excavator. However,
the Excavator does not know the exact position the Hauler is
parked, given the meter-level inaccuracies of the position estimate
of the robots. To mitigate this problem, the Excavator rotates its
camera until it finds the Hauler. The Hauler is detected in the
camera image based on the color and the size of the Hauler
bin, which is easily distinguished from other objects around the
robot. Supplementary Figure S3 shows the Hauler as seen by the
Excavator’s camera. Finally, the region containing the bin is masked

on the depth image obtained from the stereo pair. It is used to
compute the relative 3D position of the bin with respect to the
Excavator with centimeter-level accuracy. This position is used in
the next excavation step.

5.3.4 Excavation state machine
Once the Excavator reached the location close to the volatile

that needed to be excavated, it enabled a secondary state machine
to actuate the arm, as shown in the top right of Figure 6. Its states,
namely, “HomeArm”, “Search”, “LowerArm”, “Scoop”, “ExtendArm”,
and “Drop”, had predefined actions associated with them to simplify
the manipulation motion planning problem. The “Home” state is
used as an intermediate waypoint to many different trajectories.
The “Search” state executes a search pattern (see Subsection 5.3.2),
tells the Hauler that it has found volatile, and then starts a waiting
period for theHauler to park at the Excavator’s side. Once theHauler
parks, the Excavator transitions to the “Scoop” state. During the
“Scoop” state, the first step was to lower the arm below the terrain
and try to find the Hauler’s bin with the “FindHauler” service (see
Subsection 5.3.3). Once it finds the Hauler, it scoops material and
checks if volatile is detected in the Excavator’s bucket. If there is, it
proceeds to an “Extend” state that extends the arm in the direction
of the Hauler’s bin, and finally, to a “Drop” state that turns the bucket
and drops the contents. This sequence is repeated until all the mass
of the volatile is collected. The sequence of actions is exemplified in
Figure 8.

5.3.5 Communication with Hauler
Two custom ROS messages were created to coordinate the

actions between a Hauler and an Excavator team during an
excavation process. These messages were used to transmit tasks
status and target waypoints between the excavators and haulers. The
excavation process begins when the Excavator identifies a suitable
parking spot on its left or right side and sends this information to
the Hauler along with a target waypoint for the Hauler to arrive
at. The Hauler then informs the Excavator by sending a message
that indicates the Hauler is approaching the Excavator. Once the
Hauler has reached the target side waypoint, it relays a message to
the Excavator indicating that it has approached the target site. After
this, the Hauler waits for the Excavator to report that the volatile was
found and ready to excavate. The waiting process for the Excavator
message is necessary since the Excavatormayneed to search the local
area to find the volatile.

Once the Excavator reports that it has found the volatile, the
Hauler starts its parking sequence to reach the identified parking
spot through a visual approach (approached Excavator flag), then
gets an estimate of the global Excavator location in its reference
frame using either computer vision (primary) or laser (secondary)
and communicateswith the Excavator indicating that it is attempting
final parking. Once theHauler ensures that it has successfully parked
(parked Hauler flag) the Excavator uses its camera to find the
Hauler’s bin, as discussed in the Subsection 5.3.3. Once the bin
has been identified and determined to be in a suitable location, the
excavator proceeds with excavation, utilizing a number of scooping
actions. In the event that the Hauler bin is not detected or is
determined to be too distant, a parking recovery protocol is initiated.
This process includes requesting a parking recovery and setting a
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FIGURE 8
Excavation procedure is achieved by a sequence of actions followed by the Excavator’s arm. (A) The Excavator lowers its arm and identifies the position
of the Hauler’s bin. (B) The arm is lowered to scoop for volatile clods, which are spawned 0.4 m below the terrain level. (C) The arm is taken to a Home
position to prevent collisions with the Hauler’s wheels. (D) The arm is raised to avoid collisions with the Excavator’s camera when moving to a specific
heading. (E) The arm is extended on top of the Hauler’s bin. The range and heading of the bin define the joint angles. (F) The bucket is emptied, and the
volatile is dropped into the Hauler’s bin. (G) The arm is retracted to a safe position. (H) The arm is brought back to the front of the Excavator. (I) The
process starts again. It loops until no more volatile is found.

“failed to find Hauler” flag. The excavation process then restarts,
beginning with the approach phase, up to a maximum of three
attempts as determined by the parking recovery counter. If the
Excavator is unable to locate volatile, the Excavator-Hauler team
requests a new excavation site from the task planner, and the Hauler
returns to the charging station to recharge its battery and re-establish
its localization.

5.4 Hauler mission and autonomy

The Hauler’s mission was designed to work in conjunction with
its partner Excavator at an excavation site. During the “Planning”

state, it receives a designated staging area from the Task Planner
(see Subsection 5.1). It switches to the “Traverse” state and moves
until that goal is reached. Next, it waits until the Excavator indicates
from which side the Hauler should approach (as described in
Subsection 5.3.1.TheHauler thenmoves to awaypoint located 10 m
to the left or right of the Excavator. This distance is predetermined
by tests to give the Hauler a safe maneuvering space before reaching
the parking spot. Next, the Hauler activates its “Parking” state
and proceeds with parking at the side that was selected by the
Excavator. These procedures are illustrated in Figure 9. Once the
excavation process ends, theHauler switches to the “Dumping” state,
is commanded to leave the site and begins transporting the extracted
volatile clods back to the processing plant. The Hauler proceeds
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FIGURE 9
Parking Procedure. (A) Once the Excavator arrives at the excavation site, the Hauler drives using its navigation stack and stops at a radius (white dashed
circle) from the volatile position in a staging waypoint. Then it waits for new instructions from the Excavator about the best side to park. (B) The
Excavator chooses which side it wants the Hauler to park and the Hauler goes to this waypoint, again using its navigation stack. It stops at a 10 m range
and perpendicularly to the Excavator’s orientation. Again it waits for the Excavator to instruct it to start approaching. (C) After finding volatile the
Excavator requests the Hauler to approach. The Hauler approaches using visual servoing until it gets to a 3 m range. (D) Then it tries several methods to
determine a precise position to park. After deciding the best position to park, the Hauler goes to that position using a position-feedback velocity
controller and it waits until the load is fully deposited in its bin by the Excavator.

to an intermediate waypoint located in front of the processing
plant. To avoid interference between two haulers wanting to dump
its bin at the same time, we implemented a simple “semaphore”.
This way, the Hauler requests permission from the Task Planner to
proceed with unloading the materials, which will only be granted
if no other Haulers are currently unloading. Once permission is
granted, the Hauler executes a sequence of actions that result in
the unloading of the volatile clods into the processing plant’s bin.
The Hauler then proceeds to a charging station where it corrects
its localization using a homing update and recharges its batteries.
Finally, the Hauler traverses to the next excavation site to repeat the
process.

5.4.1 Parking procedure
Once the Hauler arrives at the side waypoint that the Excavator

chose, it rotates in place in order to align its camera with the
Excavator. When the Excavator finds a volatile, it commands
the Hauler to start approaching. This procedure (explained in
Subsection 4.6) detects the Excavator in Hauler’s camera image
and drives towards it using visual servoing. This approach stops

the Hauler at a 3 m range from the Excavator, a distance that
guarantees that the Excavator showed up with sufficient detail in
the depth image and LiDAR measurements. In sequence, the Hauler
tries to park very close to the Excavator, so that the Excavator’s
arm can reach the hauler bin. Then, three methods are attempted
sequentially. First, the Hauler tries to estimate a parking position
using computer vision. The Excavator raises its bucket, the Hauler
checks for a red blob of the right size in its camera image, and
from there a parking location is calculated. If this method fails,
the Hauler tilts its sensor suite up and down, to generate a 3D
scan of the Excavator with its LiDAR. Then, it estimates the
Excavator position and, from this, a parking location. If these
two methods fail, the robot falls back to using a visual servoing
approach to park near the Excavator.Thesemethods are illustrated in
Supplementary Figure S4. Once the Hauler believes it has parked,
based on the relative position feedback, it sends a message to
the Excavator. The Excavator verifies that the Hauler is parked by
reciprocally estimating the relative position of the Hauler bin. If the
Hauler bin is detected and its position is estimated to be within a
specified range (as described in Subsection 5.3.3), the Excavator

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2023.1149080
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Martinez Rocamora Jr. et al. 10.3389/frobt.2023.1149080

FIGURE 10
Dumping Procedure. (A) Once the excavation is complete, the Hauler drives to a predetermined staging waypoint using its full navigation stack
including obstacle avoidance. (B) After arriving at the staging waypoint, visual servoing approach is used to guide the robot to the processing bin. The
Hauler has a slight forward velocity when against the bin to ensure proper alignment and executes a deposit. (C) After depositing the materials a blind
backup maneuver is executed. During this entire sequence of events, the other Hauler would not be allowed to approach the processing bin by
coordinating through the task planner. The Hauler then enters a new state to approach the charging station to refill batteries. Another visual approach
is used to align the robot with the charging station. (D) Once at the charging station, a LiDAR-based homing update is performed to reduce localization
errors. After this step, the Hauler proceeds to the following excavation site. During this period, its partner Excavator has already been traversing to this
next site, finding a suitable parking spot for Hauler, and confirming the presence of volatile material.

has confirmed that the Hauler is parked and excavation can be
continued.

5.4.2 Dumping procedure

The dumping procedure starts when the Excavator
communicates that the excavation is over to the Hauler. Then,
the Hauler backs up a couple of meters to give a safe space to
the Hauler for performing maneuvers and drives to a waypoint
in front of the processing plant. When it arrives at this waypoint,
if permission to proceed is granted by the Task planner, it calls the
service to approach the processing plant’s bin using visual servoing
to drive the rover closer (ApproachBin service). Once it is there,
it activates its bin and dumps the contents. Due to localization
errors, sometimes it is possible that the known waypoint in front
of the processing plant is not reached. This would lead to a poor
approach. To mitigate this, we included another service to find the
bin using the camera images, and estimate the relative location of the
processing plant’s bin (FindBin service). Since the robot orientation
is measured directly and noise is reduced using the Attitude EKF

(see Subsection 4.1), it is possible to know if the robots are outside
of the region where theApproachBin service would work well.When
this happens, FindBin also generates another intermediate waypoint
whose coordinates (in the odometry frame of the rover) will take
the rover to the front of the processing plant. From that waypoint,
the ApproachBin service is executed normally. After dumping the
contents, the Hauler proceeds to the charging station to refill its
batteries and execute Homing, to correct its localization estimates.
This procedure is illustrated in Figure 10.

6 Results and discussion

To evaluate the overall performance of our system, we first show
the results of a single run inmore detail, and thenwe share the results
obtained from our actual submission to the challenge evaluation
system. Each run consisted of 2 h of simulation time, however,
using our computer setup (desktop with an Intel i9-9900K Octa-
core (8 Core) 3.60 GHz Processor, 32 GB RAM, NVIDIA GeForce
RTX 2080), the simulation took around 10 h in real time to be
complete.
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FIGURE 11
Score achieved during a two-hours mission with six robots.

6.1 Two-hours sample run

During each simulation run, six robots were operated in a
randomly generated terrain world. On a typical run, all tasks
described before were performed successfully and consistently.
However, many unexpected events occurred due to uncertainties,
unanticipated logical sequences, interactions, or behaviors. For
example, some of the excavation processes were not completed
successfully for a variety of reasons including incorrectly mapped
volatiles, poor Excavator localization, difficulties with parking, failed
scoop dumps, robot collisions, and harsh terrain.

Figure 11 shows the points collected over time for this run.
When points are collected by a Hauler, a Scout was able to detect
a volatile and report its position on the map. Subsequently, an
Excavator and a Hauler moved to that site, and the Excavator
searched, dug, and dumped the volatile material in the Hauler’s bin.
When points are scored, the Haulers were able to transport the
collected resources back to the processing plant. In this particular
run, our solution was able to complete this maneuver seven times,
which resulted in a score of 111 points.

Figure 12 shows the trajectories of the six rovers during a
simulation run. Figure 12A shows the location of the volatiles in the
map and the trajectories that the different kinds of robots executed.
It also shows the reported volatiles in green. It is possible to see
that the Scouts’ trajectories cover the area on the map and that the
failure observed on the localization estimate for Scout 1 led to a set
of wrongly reported volatiles. It also shows how the Excavators were
sent to a sequence of volatiles given by proximity and Haulers were
also sent to these places and back to the processing plant to deposit
the resources.

The x and y coordinates of the rovers are shown in Figure 12B.
The Scouts’ graphs show more jagged trajectories since they are
moving all around their sides of the map. Scout 1 searches the
positive-x half side of the map, while Scout 2 searches the negative-x
half side until they shift sides between timestamps 4,550 and 6,750.
The Haulers and Excavators have matching positions. However, the

Haulers, every so often, move to the coordinates of the processing
plant to dump the clods in their bin. Excavators barely move. Most
of the time they are still, waiting for a new goal or digging. We
observed that the small drifts in localization error were caused by
the movement of the rovers in slippery terrain and the integration
of noisy measurements in the localization filter. In general, the big
jumps in localization errors were caused by one of the following:
collision with other robots or landers, getting stuck in rocks, and
incorrect homing updates. While Scout 2 did not experience any of
these problems during this simulation, it was subject to small drifts,
which were corrected with good homing updates. Scout 1, on the
other hand, experienced one of these big jumps. Our procedure for
correction of the localization was based on homing, and that was
performed every 4 or 5 waypoints given to the navigation stack. In
this simulation, Scout 1 had to go through these waypoints before
calling the homing update service that used visual servoing to drive
to the base station. Notice that the visual servoing approach is able
to work even without a localization solution because it only relies
on the camera images to find or drive to the station. Once the Scout
got to the base station, it was able to correct its localization estimate
to meter level and go back to functioning correctly. We chose this
simulation run specifically to exemplify some of the features that
were added to the robots’ behaviors to provide robustness in our
solution.

Figure 13 shows the localization error for the six rovers. The
visual inertial odometry (VIO) solution slowly drifts from the
ground truth when the rovers move. The Excavators barely move
during the run, so they do not need to return to the repair station
to recharge their batteries and perform homing. They are able
to recharge using solar panels only and maintain a reasonable
localization estimate. The Haulers and Scouts move more often,
and their localization estimates are kept bounded (<5 m) by doing
frequent homing, allowing for much longer operation time. Scout 1
shows an interesting case where an error occurs and it completely
loses its localization estimate. However, by doing homing, it is able
to re-localize itself and become functional again.
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FIGURE 12
Localization during a two-hours mission for multiple robots. (A) Truth trajectories during the two-hours simulation for all six robots. (B) Estimated (solid
lines) and truth (dashed lines) trajectories during the two-hours simulation for all six robots.

Figure 14 shows a portion of the Scouts, Excavators, and
Haulers’ truth trajectories to illustrate some of their behavior.
Figure 14A shows the two Scouts executing search maneuvers
whenever volatile was detected, trying to minimize the distance
measured by the volatile sensor to the location of its center.
Figure 14B shows the localization estimate (solid line) and the
actual trajectory executed by Scout 1 from 6,500 s to 6,900 s. At
6,725 s, Scout 1 updates its localization estimate using the homing
update at the repair station and the horizontal position error
dropped to 0.3 m. Notice on Figure 14C that the Excavator (blue
dots) sequentially visited sites on the map that were reported by a
Scout. The first three sites were well-reported, and the Excavator
was able to find the resources in its first dig. On the following two
sites, it performed an 8-directional grid search. For the first one,
it was not able to find the resource and it gave up, proceeding to
the next, where it was able to find the resource. It is also possible
to notice that the Hauler (red dots) parked at a distance and slowly
approach the Excavator as described in Sect. 5.4.1. In Figure 14D

it is possible to see the Haulers’ movements to stop in front of
the processing plant, approach the processing plant bin, back up,
move to the charging station, and move to the following excavation
site.

Figure 15 shows the battery level for all the rovers during the
run.The background color indicates the rate of change in the battery
level. During most of the operation, the rovers charge and discharge
in the interval −1 (red) to 1 W (green), depending on its action
and solar panels status. Whenever any of the rovers approach the
repair station, the battery rate becomes 200 W (dark green), and
the battery level increases almost instantaneously to the maximum
level.This figure shows the difference in battery management for the
different types of robots.Given that the Scouts’ task requires constant
traverse, the repair station was used both for improving localization
and charging them. The top graphs also show that whenever the
Scouts’ batteries drop to 30%, they go to a charging state and recharge
to 50% before proceeding. By doing so they can eventually reach
the repair station and fully recharge. The Haulers do not move as
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FIGURE 13
Horizontal error during a two-hours mission for multiple robots.

A B

C D

FIGURE 14
Rover operations in detail. The volatiles true position is shown in dark grey and the position recorded by the scouts is shown in green. (A) Volatile
search and mapping for Scout 1 (blue) and Scout 2 (red). (B) True (dashed) and estimated (solid) trajectory for Scout 1 when it performs a homing
update to correct its localization estimate. (C) Excavator (blue) and Hauler (red) visiting sites to excavate and transport resources. It is possible to see
that the excavator had to use its 8-directions search at least twice to find volatiles. (D) Hauler dumping and fast recharge.
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FIGURE 15
Battery management during a two-hours mission for multiple robots.

TABLE 1 Sample runmetrics.

Score Hauler score Number of resources types
collected at conclusion

Robots working at conclusion Volatiles

Mapped Attempted Collected

111 0 4 (CO2, H2O, H2S, C2H6) 6 25 14 8

TABLE 2 Final submissionmetrics.

Score Hauler score Number of resources types
collected at conclusion

Robots working at
conclusion

Volatiles

Mapped Attempted Collected

Map 1 63 12 2 (H2O, SO2) 6 15 14 8

Map 2 83 0 4 (C2H4, H2S, H2O, CH3OH) 6 23 15 8

Map 3 63 0 4 (H2S, H2O, CH4, SO2) 5 17 16 8

much as Scouts, since they are waiting to be filled most of the time.
Their battery level only changed when they traverse the map to
drop when their bins’ contents in the processing plant and headed
back to the excavation site. However, we took advantage of the fact
that the repair station was close to the processing plant and had
the Haulers fully recharged before going back to the excavation
site. The Excavators only move between excavation sites, and very
infrequently.Their battery level wasmaintained nearly full by slowly
charging with the solar panels.

Table 1 shows the main metrics for this sample run. The ROS
bag is provided in our Supplemental Data. In this particular run,
our solution was able to score about three times the minimum
requirement. The Scouts were able to map more than 24 volatiles in
each round.TheExcavator andHauler teamswere able to attempt the

collection of around 14 volatiles, however, they were only successful
in collecting 8 out of the 14 resources attempted.

6.2 Competition performance

The methodology was submitted for testing in July 2021.
The competition returned back the results from an independent
analysis of our solution. The solution was tested in three different
randomized maps. As shown in the competition rule document
(NASA Centennial Challenges Program (CCP), 2021), the main
criterion for deciding the winners of the challenge was scoring the
largest number of points at the end of the simulation. A minimum
required score of 35 points was stipulated by NASA for the solution

Frontiers in Robotics and AI 22 frontiersin.org

https://doi.org/10.3389/frobt.2023.1149080
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Martinez Rocamora Jr. et al. 10.3389/frobt.2023.1149080

to be considered. The tie-breaking criteria ordered by importance,
were 1) the least combined mass of the virtual robotic team, 2) the
point value of resources in haulers, 3) the number of resource types
collected, and 4) the number of original robotic team members still
performing their intended function(s).

Table 2 shows the main metrics demonstrating the success
of our solution. The ROS bags and logs are provided in our
Supplemental Data. Our solution was able to score about two times
the minimum requirement, with an average score of 69.6 points.
According to the logs, immobility recovery was triggered for two
robots, and was able to recover their functionality. However, in one
of the rounds, a Scout became ceased working properly by the end of
the simulation.The Scouts were able tomapmore than 15 volatiles in
each round.TheExcavator andHauler teamswere able to attempt the
collection of around 15 volatiles, however, they were only successful
in collecting 8 out of the 15 resources attempted.

7 Conclusion

This paper introduces the robotic systems and the autonomous
operation methodology used by our team to solve the NASA Space
Robotics Challenge Phase 2.We explained the difficulties that can be
encountered in a lunar environment and how they can be overcome
with our solution, which successfully demonstrated the operation
and cooperation of six robots autonomously for two hours. In this
complex multi-robot mission, we presented possibilities to navigate
Scouts, Excavators, and Haulers; improve their global and relative
localization, and their localization estimation recovery; detect and
correct mobility failures.

While our solution was able to generate good results, it still had
several limitations. The best score we obtained was 2171. Arguably,
this is around themaximumscore our solution could achieve: during
that simulation, the excavators were able to find all the resources that
were assigned to them, and haulers were able to transport them back
to the processing plant safely. However, we are aware that the team
ranked second scored up to 403 points (Brabec, 2021), and the team
ranked third scored up to 339 points (Sachdeva et al., 2022). Despite
implementing an effective localization system for this environment,
we opted not to utilize SLAM with loop closures, cooperative
localization techniques between rovers, and slip compensation
techniques, which may have the potential further improve our
localization solution. On another note, themobility of the rovers was
substantially impacted by the high level of slippage resulting from
challenging obstacles in the environment, which required the rovers
to perform a homing update in order to regain their localization. To
minimize the immobility risks, the rovers were driven slower than
their achievable speeds which resulted in having less exploration
time on the map for the scouts.

During the competition, several key lessons were identified. One
such lesson was the realization that utilizing simpler strategies may
lead to increased scoring. For example, since the scouts were driven
slowly, the strategy was to maximize their exploration capabilities
by moving them as frequently as possible without stopping them

1 https://www.youtube.com/watch?v=NhOFn3zNXbA

at a location. In this strategy, once a scout located a volatile,
the position information was recorded and indexed, and then
a state machine was used to determine which excavator-hauler
team should be dispatched to the location. Rather than relying
on localization estimates from the scouts, an alternative approach
could have been to use the scouts as landmarks for the excavators
after a volatile location detection. This would have allowed for
more precise volatile location identification and reduced the time
required for searching in the reported location, while alsomitigating
the impact of localization drift on excavating operations. Another
lesson learned was regarding the use of FSMs for many robots
and states. FSMs lack modularity and reactivity (Colledanchise
and Ögren, 2018). Their complexity can grow very quickly and
software development can quickly get concentrated on a few people
that can understand them. Communication between FSMs is also
complex and, in our experience, resorts to a large number of Boolean
flags, opening up for unaccounted logical sequences and leading to
failures. Alternative approaches to FSMs, like the use of behavior
trees, were successfully implemented by another winning team
(Burtz et al., 2020).

To improve our solution some future work could include 1) the
implementation of a multi-objective optimization to decide which
type of resources found would be excavated first and by which
team, 2) the implementation of a terrain assessment or terrain
semantic segmentation to improve obstacle detection and avoidance,
3) implementation of visual SLAM algorithm to provide another
layer of robustness to our localization system, 4) employment of
reinforcement learning techniques for excavating and dumping the
resources, and 5) implementation of behavior trees to reduce the
complexity of controlling the behavior of individual rovers and their
interaction.
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