
TYPE Original Research
PUBLISHED 21 August 2023
DOI 10.3389/frobt.2023.1206055

OPEN ACCESS

EDITED BY

Giovanni Iacca,
University of Trento, Italy

REVIEWED BY

Andrés Faíña Rodríguez-Vila,
IT University of Copenhagen, Denmark
Ali Emre Turgut,
Middle East Technical University, Türkiye

*CORRESPONDENCE

Mike Angus,
mike.angus@york.ac.uk

RECEIVED 14 April 2023
ACCEPTED 07 August 2023
PUBLISHED 21 August 2023

CITATION

Angus M, Buchanan E, Le Goff LK, Hart E,
Eiben AE, De Carlo M, Winfield AF,
Hale MF, Woolley R, Timmis J and
Tyrrell AM (2023), Practical hardware for
evolvable robots.
Front. Robot. AI 10:1206055.
doi: 10.3389/frobt.2023.1206055

COPYRIGHT

© 2023 Angus, Buchanan, Le Goff, Hart,
Eiben, De Carlo, Winfield, Hale, Woolley,
Timmis and Tyrrell. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Practical hardware for evolvable
robots

Mike Angus1*, Edgar Buchanan1, Léni K. Le Goff2, Emma Hart2,
Agoston E. Eiben3, Matteo De Carlo3, Alan F. Winfield4,
Matthew F. Hale4, Robert Woolley1, Jon Timmis5 and
Andy M. Tyrrell1

1School of Physics, Engineering and Technology, University of York, York, United Kingdom, 2School of
Computing, Edinburgh Napier University, Edinburgh, United Kingdom, 3Department of Computer
Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands, 4Bristol Robotics Laboratory,
University of the West of England, Bristol, United Kingdom, 5School of Computer Science, University of
Sunderland, Sunderland, United Kingdom

The evolutionary robotics field offers the possibility of autonomously generating
robots that are adapted to desired tasks by iteratively optimising across
successive generations of robots with varying configurations until a high-
performing candidate is found. The prohibitive time and cost of actually building
this many robots means that most evolutionary robotics work is conducted in
simulation, but to apply evolved robots to real-world problems, they must be
implemented in hardware, which brings new challenges. This paper explores
in detail the design of an example system for realising diverse evolved robot
bodies, and specifically how this interacts with the evolutionary process.
We discover that every aspect of the hardware implementation introduces
constraints that change the evolutionary space, and exploring this interplay
between hardware constraints and evolution is the key contribution of this paper.
In simulation, any robot that can be defined by a suitable genetic representation
can be implemented and evaluated, but in hardware, real-world limitations like
manufacturing/assembly constraints and electrical power delivery mean that
many of these robots cannot be built, or will malfunction in operation. This
presents the novel challenge of how to constrain an evolutionary process within
the space of evolvable phenotypes to only those regions that are practically
feasible: the viable phenotype space. Methods of phenotype filtering and repair
were introduced to address this, and found to degrade the diversity of the robot
population and impede traversal of the exploration space. Furthermore, the
degrees of freedom permitted by the hardware constraints were found to be
poorly matched to the types of morphological variation that would be the most
useful in the target environment. Consequently, the ability of the evolutionary
process to generate robots with effective adaptations was greatly reduced. The
conclusions from this are twofold. 1) Designing a hardware platform for evolving
robots requires different thinking, in which all design decisions should be made
with reference to their impact on the viable phenotype space. 2) It is insufficient
to just evolve robots in simulationwithout detailed consideration of how theywill
be implemented in hardware, because the hardware constraints have a profound
impact on the evolutionary space.
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1 Introduction

The objective of evolutionary robotics is to apply principles of
biological evolution to artificial systems, either to generate novel
designs for practical applications, or to study biological evolution
itself. This can be applied at the controller level, where the robot
hardware is predefined and only its behaviours are evolved, or at
the morphological level, where the body plan of the robot itself
is evolved. To gain the full benefit of the evolutionary approach,
it is desirable to do both, but morphological evolution is very
challenging to implement with real robot hardware, since it requires
a system capable of realising a wide range of body plans with highly
variable requirements. For this reason, evolution of real robots
is often only applied at the controller level, with few examples
of morphological evolution progressing beyond simulated models
(Pollack and Lipson, 2000; Hiller and Lipson, 2011; Brodbeck et al.,
2015; Jelisavcic et al., 2017; Auerbach et al., 2018; Kriegman et al.,
2020a; Kriegman et al., 2020b). However, to achieve the objective
of evolving robot bodies that are of practical use in real-world
applications, they must be implemented in hardware (Eiben, 2014).

The Autonomous Robot Evolution (ARE) project1 sought to
achieve this with an autonomous fabrication system, using a
combination of 3D printing and modular functional parts to enable
a wide range of evolved body plans to be rapidly implemented in
hardware. This semi-modular approach is distinct from the discrete
modular approach, whereby robots are constructed entirely from
prefabricated modules (Brodbeck et al., 2015; Miras et al., 2020;
Moreno and Faiña, 2021), and little research has been carried
out with hardware robots that can take more arbitrary shapes
(Samuelsen and Glette, 2015; Kriegman et al., 2020b).

The challenges of developing this complete evolutionary system
were numerous and varied, and many of these are detailed in
other publications, such as autonomous manufacture (Hale et al.,
2019; Hale et al., 2020), evolutionary approaches (Buchanan et al.,
2020a; Buchanan et al., 2020b) and robot learning (Le Goff et al.,
2022). In this paper, the focus is on the challenges of developing
robot hardware for implementing morphological evolution, and
in particular how the design of this hardware interacts with the
evolutionary process.

We have found that the practical constraints introduced by real
hardware have a profound impact on the nature of the problem to
be solved by the evolutionary process, and reached the conclusion
that both the hardware and algorithm designers of any practical
robot evolution system need to keep careful consideration of these
interactions at the heart of their design decisions if the system is to
be effective (Buchanan et al., 2020b).

To clarify the basis of this discussion, it is helpful to visualise
the task that the evolutionary process is trying to solve. Robot
evolution may be regarded as an environment-driven, population-
based optimisation algorithm, whereby many different robot
configurations are evaluated in a target environment and assigned a
“fitness” based on their effectiveness in performing the desired task.
The objective is to efficiently find the best possible configuration, i.e.,
the robot with the highest fitness.

1 Website: https://www.york.ac.uk/robot-lab/are/

This task can be visualised as exploring a vast multidimensional
space comprising all the possible robot body plans that could be
represented by different combinations of genes, trying to find the
best one. This great crowd of potential robots is the phenotype space.
Overlaid on this space is the fitness landscape, a rugged terrain made
up of the fitness scores for each individual in the phenotype space.
Evolution attempts to find the best phenotype by sampling and
traversing this fitness landscape: evaluating generations of robots,
selecting for those with higher fitness, and applying mutation and
crossover operators to their corresponding genotypes with the aim
of discovering ever higher “peaks” in the fitness landscape that
correspond to more successful robot phenotypes.

The size of the phenotype space is very large for all but the
simplest structures, and even when using evolution to explore it
more efficiently, physically building and evaluating this many robots
is usually prohibitive in cost and time. For this reason, much of
evolutionary robotics takes place in simulation, with only selected
high-fitness individuals being implemented in hardware. A known
shortcoming of this approach is that the simulator does not perfectly
replicate reality, meaning that simulated robots behave differently to
their real counterparts, and therefore the fitness expected from their
evaluation in simulation may differ from the actual fitness observed
in real life. In other words, there is a discrepancy between the fitness
landscape in simulation, and the fitness landscape in hardware. This
discrepancy is known as the reality gap (Jakobi et al., 1995), and it
means that the optimum phenotypes obtained by an evolutionary
process operating on the fitness landscape in simulation may not
actually perform well in reality.

However, there is a second, less-discussed issue with evolving
robots for hardware implementation. In the simulated environment,
there are very few constraints on the robots that can be built
and evaluated. Energy is limitless, parts can be of arbitrary size
and shape with no internal workings, and the robots can be
conjured into existence without any manufacturing or assembly
processes. Real hardware implementation, by contrast, imposes
many practical constraints. Power is limited, and a robot that
overloads its power system may become inoperable. The robot
parts must contain electronic and mechanical elements to provide
their functionality and connect them together, the design of
which involves many compromises between competing structural,
functional and financial objectives. The robots must also be
physically manufactured and assembled, and every fabrication
process has limitations on the shape and scale of structures that it
can produce. What does all this mean for the evolutionary process?

Applying this to the phenotype space of all possible robots, it
becomes apparent that many of these phenotypes are not feasible,
because the constraints of real hardware mean that they cannot be
successfully implemented as functional robots. This may be because
they cannot be physically constructed, or because their body plans
exceed the capabilities of the underlying hardware to support their
operation. In effect, these unfeasible phenotypes introduce no-go
regions in the phenotype space, which changes the nature of the
task faced by the evolutionary process. The evolvable phenotype
space, defined by all the possible robots that could be represented
by different combinations of the evolved parameters, is a contiguous
landscape in which the evolutionary algorithm can move freely,
in the sense that each genotype corresponds to a valid robot that
can be evaluated. The viable phenotype space, by contrast, is only a
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FIGURE 1
The simulation domain provides a large space of possible robots that
could be evolved, represented here as blue dots (top). However, only
portions of this space contain robots that are practically feasible in
hardware (bottom). The scatter plots representing the two landscapes
are taken from experimental data presented in Buchanan et al.
(2020a).

distributed subset of these possibilities, where regions of valid robots
are broken up by unfeasible regions, and the evolutionary algorithm
must somehow navigate around these obstacles in order to explore
the feasible regions of the space. The difference between these two
spaces is visualised in Figure 1. In this paper, we define these terms
as follows:

“The evolvable phenotype space is defined as the complete
set of possible phenotypes that could be generated by an
evolutionary process within a particular genetic representation”

“The viable phenotype space is defined as the subset of
evolvable phenotypes that can be implemented and reliably
evaluated in hardware, after manufacturing constraints and
hardware limitations are taken into account”

The distinction between this issue and the reality gap may be
further clarified by classifying the evolutionary search space into two
domains: the behavioural domain and the phenotype domain. The
reality gap refers to the difference between the evolvable behavioural
space and the real behavioural space, whereby imperfect simulation
of reality leads to divergence in behaviour between simulated and
physical robots. In principle, these are all differences that could
be reduced by improving the fidelity of the simulator. By contrast,
the differences between the evolvable phenotype space and viable
phenotype space arise not as a result of imperfect simulation, but
rather from the presence of physical hardware constraints that
render certain evolved robot configurations unfeasible. This is then
no longer a difference in their behaviour, but a difference between
whether or not those robots can be implemented and evaluated at
all.

This has two important consequences. The first is that some
method is required to restrict the evolutionary process to the feasible
regions of the space, and this will have an effect on its performance.
An evolutionary process which is effective at exploring the evolvable
phenotype space may not perform so well in the viable phenotype
space. The second consequence is that the design of the hardware
implementation will to a large extent define the viable phenotype
space. That is to say, each decision taken at the hardware design
level has the potential to directly influence where the valid regions
of the phenotype space are, how difficult it is for evolution to move
between them, and the usefulness of robots within those feasible
regions to the target application. This interplay between hardware
design constraints and evolution has not been discussed in detail
in the literature, and exploring this is the primary objective of this
paper.

The core conclusion of the paper is that consideration
of the viable phenotype space is central to the design of any
effective system for evolving practical robots, and this is relevant
to both the hardware designer and the evolutionary designer.
On the engineering side, making design decisions without
reference to the viable phenotype space may result in a hardware
platform that is undesirably restrictive to the evolutionary
process. On the evolutionary side, the challenge of restricting
evolution to feasible regions means it is insufficient just to apply
algorithms that have been optimised in simulation to perform
well in the evolvable phenotype space, because these may not
be effective when required to operate within realistic practical
constraints.

These pitfalls on both engineering and evolutionary sides
were extensively encountered in the ARE project, as it sought to
evolve both morphology and behaviour of practical robots to be
implemented in hardware. This makes it an insightful case study on
the interplay between hardware and evolution, and this paper will
present a detailed exploration of the hardware constraints in this
system and their effect on the viable phenotype space. It should be
noted, however, that this is not a presentation of a successful system
for others to replicate, but rather a reflective discussion of lessons
learned through the attempt to create such a system without the
benefits of the insights presented here. In doing so, the aim is to
identify useful design principles for future work, and highlight areas
which are commonly overlooked.

Although the hardware under discussion is specific to the ARE
system, the principles are applicable to any system attempting to
evolve practical robots. Even the best hardware has limitations,
and pragmatic constraints such as funding and time will invariably
impose significantly more severe limitations on the type and quality
of hardware that can be used. The challenge, therefore, is how to
shape those constraints in such a way as to make the most of the
available resources, i.e., to maximise the usefulness of the viable
phenotype space.

The remainder of this paper explores these challenges using
the ARE hardware design as an illustrative case study, and will be
structured as follows:

• Section 2 focuses on the engineering aspects of the hardware
design, covering the key challenges of building evolved
bodies, makingmechanical/electrical interconnections, and the
underpinning electronic hardware.

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2023.1206055
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Angus et al. 10.3389/frobt.2023.1206055

FIGURE 2
An illustration of how the hardware design paradigm changes for an
evolvable robot platform. Rather than the design being defined by
fixed constraints derived from the desired functionality for the robot,
the hardware design comes first, and defines the constraints on the
functionality available to the evolved robots.

• Section 3 explores how these design decisions result in
constraints on the evolutionary space, with examples of how
these constraints can affect the evolutionary process.
• Section 4 draws the engineering and evolutionary aspects

together to reflect on the practical implications of the previous
observations, and what they mean for future work.

2 Materials and methods

2.1 Overview

Practical hardware design for evolvable robots presents an
unusual challenge, as visualised in Figure 2. Hardware is usually
designed to a fixed specification, where the requirements of the
system are known ahead of time and can be used as constraints,
guiding design decisions to ensure the specification is met. For
an evolvable robot system capable of implementing arbitrary body
plans, the specification is variable by definition, so there are very
few fixed constraints on the design. In practice, this means that the
hardware design decisions will determine the constraints of the system,
and not the other way round. Designing a hardware platform for
evolving robots means designing for flexibility, aiming to ensure
reliable and consistent performance whilst equipping evolution with
the largest possible space of potential robot body plans to explore.

The remainder of this section will begin by briefly describing
the ARE framework to provide an initial understanding of the
robot production system, before covering the different areas of the
implementation inmore specific detail in terms of the design choices
and their rationale.

The robots are constructed in a semi-modular fashion, with
prefabricated sensor and actuator modules known as “organs” being
affixed onto a 3D printed free-form plastic “skeleton.” Inserted into
the centre of each skeleton is a core unit known as the “head
organ,” which provides central processing and distributes power and
communications to the organs via connecting cables.

These robots are created by an autonomous production process2

as illustrated in Figure 3. To create a new robot, a body plan is
first evolved in simulation. This determines the morphology of the
skeleton and the placement of organs upon it to form a complete
robot. The skeleton is 3D printed 1), and then the complete robot
design is autonomously assembled by a robot arm (2–4c). To
assemble it, the robot arm first inserts the head organ into the
skeleton 2), which is still stuck to the build plate of the 3D printer.
The head organ is secured in place by a sprung clip mechanism
in its base, mating with corresponding structures that have been
integrated directly into the plastic of the skeleton when it was
printed. The head organ then provides a secure grasping point for
the robot arm to pull the printed skeleton off the build plate of the
printer and place it onto an assembly stand 3).The peripheral organs
have their own sprung clipmechanisms in their casings, allowing the
robot arm to attach each of them to matching mating points printed
into the skeleton. The connecting cable for each organ is stored
within an onboard cavity, from which it can be drawn out by the
robot arm and connected to the head organ to complete the assembly
(4a–4c). The robot then wirelessly receives its control algorithm and
is ready for operation. Additional details about the assembly process
may be found in Hale et al. (2020).

A core aim in the development of the ARE system was full
autonomy, i.e., the ability to manufacture evolved robots from
genome to hardware phenotype without human intervention. The
goal of thiswas to reduce someof the practical barriers to conducting
evolution with real robots, which is otherwise a highly labour-
intensive process. The additional requirements of this objective
heavily restricted the choices of hardware for the robot platform,
as will become apparent throughout the following description of
the system. This highlights an important reality of designing any
practical robot evolution system: it is rarely an option to simply
select high-performance hardware that is the least restrictive to the
evolutionary process. Application-specific design objectives such
as this one, in combination with other practical, technical, and
financial constraints, will invariably result in a setup that is less
than optimal. The ARE system, being limited in many such ways,
therefore provides insights which are of relevance to all future work,
even though other implementations will differ in the exact nature of
their limitations.

The upcoming subsections will consider the three key problems
that must be solved by any hardware platform for evolving
robots: building evolved bodies, making mechanical/electrical
interconnections, and the design of underpinning electronic
hardware.

2.2 Building evolved bodies

To manufacture generations of robots with evolved body plans,
the chosen implementation is required to provide as much scope for
body plan variation as possible, whilst keeping the dimensionality
of the evolutionary search space small enough to make the problem
tractable within an acceptable time frame. It is also desirable for

2 An example of production can be found in this video https://youtu.be/
cXChkZloPN4

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2023.1206055
https://youtu.be/cXChkZloPN4
https://youtu.be/cXChkZloPN4
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Angus et al. 10.3389/frobt.2023.1206055

FIGURE 3
The production process to create a robot designed by evolution, from digital to physical. The step numbers correspond to those described in detail in
the main text. Firstly the skeleton must be 3D printed before the head (containing the controller and battery) is inserted. Then wheels and sensors can
be attached and connected to the head via retracting cables. The complete process of producing a physical robot from its digital specification is done
autonomously.

the system to have a high throughput and require minimal human
involvement, in order to maximise the number of robots that can
be produced. The ARE system uses 3D printing to manufacture
“skeletons” that enable a wide range of morphological variations to
be evolved, and equips them with functional robot parts by using
prefabricated modular “organs.”

2.2.1 3D printed skeletons
The evolved skeletons are produced by using Fused Deposition

Modeling (FDM) 3D printing to manufacture algorithmically
generated Standard Triangle Language (STL) models. The objective
of using this technology was to enable a very rich morphological
space since the skeletons could in principle take any arbitrary form
that could be manufactured by the printer. It turns out that there
are a great many caveats to this assumption as discussed later, but
this technology does lend itself well to realising novelmorphological
structures.

The Lulzbot TAZ 63 printer model was selected since these
printers have a large build volume, an open-framed style for easy

3 Website: https://lulzbot.com/store/taz-6

access by the robot arm, and open-source hardware and software
for easier integration into the automated ARE system. To improve
throughput and model strength, the “MOARstruder” extrusion
head is used, which has an oversize 1.2 mm nozzle, enabling rapid
printing using a layer height of 0.9 mm. Polylactide (PLA) plastic
was selected as a cheap and reliable build material.

2.2.2 Modular organs
To evolve robots that are capable of intelligent interaction

with the environment, arbitrary configurations of both sensors
and actuators need to be combined with the body structure.
The ARE approach to this is to use prefabricated modules
called “organs.” These integrate all the supporting electronics
and mechanical/electrical connections required for each sensor
or actuator to function as part of a robot, which can then be
simply combined with the 3D printed skeleton to produce a fully-
functioning robot.

Each robot is built around a central processing and power unit
known as the “head organ,” which handles power distribution and
communication with a variable number of peripheral organs. These
are the sensor organ, wheel organ and joint organ, the latter of
which can be used individually or daisy-chained to form limbs.
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FIGURE 4
The organs available for the ARE system are the following: head, wheel, sensor, joint and castor. The controller of the robot is run in the head organ,
which also supplies the other organs with power and communications. The wheel organ provides rotary locomotion. The sensor organ contains two
sensors, enabling the measurement of distance from objects and the detection of infrared light. The joint organs provide powered articulation points
for forming limbs, as in the pictured example of a two-jointed leg (joints in blue). The castor ball is the unique passive organ designed to reduce the
friction between the robot and the floor.

The leg organ is a two-jointed construct of these combined with a
rubber-tipped foot.There is also an additional passive organ with no
electronics, the castor organ, which is a simple ball castor enabling
evolution to generate free-rolling points on a robot. The organ types
and their functionality are summarised in Figure 4.

2.3 Interconnections

Having determined how to implement the fundamental building
blocks of a robot, the question of how they can be connected together
to build a working robot must be considered. This is trivial in
simulation, where multiple bodies can be simply instructed to stick
together, communication happens through omniscience, and energy
can be created at will wherever it is needed. In the physical world,
however, this is not so straightforward—mechanical connections to
assemble the structural parts together are required, and all active
parts of the robot must be supplied with power and communication
links to the controller. The choice of interconnection method will
have far-reaching impacts on the performance, flexibility and ease
of use of the evolvable platform.

In the ARE system, a combination of mechanical clips and
headphone cables were used. Although somewhat bulky and
restrictive, this is one of the simplest ways to create secure, reversible
mechanical and electrical connections in this context. For example,
magnetic connectors like those used in the EMERGE modular
platform, Moreno and Faiña (2021) or latching PCBs such as those
used in Faina et al. (2015) would not be suitable for autonomously
connecting organs to a printed robot skeleton, because one-half
of the connection must come straight from the 3D printer, and
hence be plastic-only.This is a trade-off of having themorphological
complexity afforded by 3D printing, combined with the needs of

automated assembly. These connections are a revealing example of
how hardware design decisions form a complex web of knock-on
effects and compromises. The rationale behind these decisions will
be briefly outlined in this section.

2.3.1 Mechanical connections
A simple and reliable method of mechanically connecting the

organ modules to the robot skeleton was required, one that would
be suitable for autonomous assembly and also solid enough to not
disengage or break when the robot is functioning. It also needed to
be quick and easy to reverse so that the organs could be re-used in
subsequent robots.

It was therefore decided to use mechanical clips, shown in
Figure 5, allowing the robot to be assembled simply by pushing
the clips into place. The more complex female half of the clip is
integrated into the organ casings where there is much more design
freedom, enabling the male half to be simple enough in structure to
directly incorporate into the printed skeleton.

2.3.2 Electrical connections
All of the organs needed a means of being supplied with

sufficient power, and to have a reliable communications link with
the robot head. The chosen method of achieving this also needed to
be suitable for autonomous assembly.

One approach could have been the use of independently
powered, wireless organs. However, the practicalities of this were
considered prohibitive, since each organ would have been much
bulkier, heavier, more expensive, and complex to configure. Instead,
a cabling system was chosen for this.

For autonomous manufacture, it is advantageous for the
chosen cabling to be easy to reliably insert, and tolerant of
some misalignment. These attributes were obtained by using
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FIGURE 5
This figure shows the mechanical connector used in the ARE platform. The female side (A) uses two sprung arms to engage with the indentations on
the male side (B) to form the final connection (C).

FIGURE 6
Retractable cables are used to interconnect organs, shown here at the different stages of the connection process: 1) The organ is clipped onto the
skeleton. 2) The retractable cable is drawn out from a cavity in the organ casing. 3) The cable is connected to the head. 4) The coiled cable self-adjusts
its length to the distance between the head and the organ.

3.5 mm TRRS (tip-ring-ring-sleeve) jack connectors, i.e., standard
headphone cables in the four-conductor format sometimes used
for hands-free headsets. They have the key advantages of rotational
symmetry around the connector axis, and a tapered tip shape which
can assist in compensating for misalignment during automated
insertion. Coiled cables are used to avoid trailing lengths of excess
wire, as shown in Figure 6.

2.4 Electronic hardware

Now a system has been established that can bring the building
blocks of a robot together to realise novel body plans in hardware.
However, the inner workings of those building blocks have not yet
been considered. Robots cannot function without electronics, so

the electronic hardware underpinning the platform is absolutely
fundamental to its functionality. This is easily overlooked in
simulation, where no electronics are required, and we may make the
assumption that we can combine building blocks at will and expect
them to perform more or less consistently in all configurations, but
this is not true in reality.

The paramount aim here is reliability, because if a robot
is subject to even intermittent electronic failure, it is effectively
non-functional and cannot be evaluated. It is essential for the
hardware to perform consistently under variable conditions, and
for the limits of reliability to be clearly defined. Any robot
configuration which exceeds those limits must be considered
invalid and excluded from the viable phenotype space. Ensuring
reliability of the electronic system primarily depends on the
communications and power delivery infrastructure, and it is
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these areas that will form the focus of the remaining design
description.

These challenges will be explored in greater depth, since they
are critical to understand for implementing evolved robots in
hardware, but rarely considered in the evolutionary robotics field.
The remainder of this section will be structured as follows. Firstly, a
brief overview of the electronic system used in the ARE platform,
followed by a look at the communications infrastructure. Then,
a detailed exploration of the crucial issue of electrical power,
identifying the key challenges, followed by some examples of how
they are addressed in theARE electronics design. Finally, an example
of how actuators can be adapted to improve the range of available
phenotypes within the power constraints.

2.4.1 Overall structure
The electronic hardware comprises a set of bespoke printed

circuit boards (PCBs), which together form a modular platform
that can be arranged into different configurations to provide
functionality for evolved robot body plans. The structure is shown
in Figure 7. In the head organ is located the main motherboard
PCB, which interfaces directly with a Raspberry Pi microcontroller
(Figure 7B). This provides power regulation for the Raspberry
Pi, an assortment of utility functions, and breakout headers for
the communications bus and power. To these are connected two
daughter board PCBs, each of which has four TRRS sockets to
which organs can be connected with their cables, forming a star
topology for the delivery of power and communications (Figure 7C).
In the special case of the joint organ, a daisy-chain topology can be
used, whereby the proximal joint connects to the daughter board as
normal, but the distal joint can then be connected to a second socket
on the proximal joint, allowing it to share the same power supply and
communication bus segment (Figures 7D, E). In principle this can
be used to form chains of any length, but in practice this is limited
by the power system. This will be further discussed in later sections,
after first describing the communication system.

2.4.2 Communications
For the robot to control its sensors and actuators, some form

of communication method is required. In a modular application, it
is desirable to have a bus structure, in which devices can be easily
added and individually addressed. I2C was selected for this, since it
is compatible with a wide range of hardware and requires only two
signal lines, enabling our single four-conductor TRRS cable to carry
both communications and power for each organ.

I2C communication can fail if the total bus capacitance exceeds
400 pF, so a method is needed to limit the effect of the distributed
capacitance in the cables, since this can vary arbitrarily between
different robot configurations. Each TRRS socket on the daughter
boards is equipped with a PCA9517ATP I2C repeater chip, to
electronically subdivide the bus and prevent the capacitance from
reaching a problematic level.

2.4.3 Power is everything
The challenge of reliable power delivery turned out to be so

fundamental to the design of the electronics for an evolvable robot
platform that it merits a detailed explanation here.

At the simplest level, it should be considered that the power
delivery capacity of any real system is limited. The rate at which

energy can be drawn from a battery is not infinite, and electronic
components will overheat and cut out if they exceed their rated
current-carrying capacity. From this, we might imagine that this
could be considered a simple scalar constraint on the maximum
continuous current that can be drawn from the power system.
Indeed, this limit must be adhered to, and it places restrictions on
the number of actuators that can be used and their power. However,
this is insufficient. A robot platform could be designed and operated
within such a limit and still not function reliably. The principal
reason for this is the effect of load-dependent fluctuations in the
supply voltage, which can result in both inconsistent behaviour of
sensors/actuators, and intermittent failure of microcontrollers.

To understand this requires only Ohm’s Law V = IR, and an
understanding of the non-zero electrical resistance between the
power source and the active components of the system. As current I
is drawn from the battery to power one of these components, it must
pass through some resistance R on its way. Ohm’s Law tells us that
this produces a voltage difference V across that resistance, hence a
voltage drop will be observed—the local voltage at the component
will be V lower than the source. The magnitude of this voltage drop
is the product of the current draw I of that component, and the
total resistance R through which that current must flow to reach it.
These are key terms which will be used throughout the following
explanation, with reference to Figure 8.

Figure 8 illustrates how this phenomenon manifests in a
robot with a chain of two joint organs as shown in Figure 9,
whereby different voltage drops appear at each node of the circuit.
These effects are highly interdependent, with all system elements
contributing to a voltage drop at the battery, and each successive
organ in a daisy-chain having a cumulative, non-linear impact on
the voltage drops across each connecting cable.

This voltage variation is also highly dynamic.When actuators are
under load, their continuous current draw increases in proportion
to the torque they are exerting, and this increase may be 5–10 times
greater than their no-load current. Imagine the forces in each joint of
a limbed robot as it crawls around, or the motors of a wheeled robot
colliding with obstacles, and this can give some idea of how much
this load will fluctuate in operation. Furthermore, when an actuator
accelerates, particularly on startup or direction reversal, it draws a
transient spike of current well in excess of its normal maximum
continuous current draw. Considering this in the context of the
load-dependent voltage drop effects just described, it is clear that
the voltages throughout the system will be subject to considerable
fluctuations during operation, and this will depend on both the
structure and behaviour of each evolved robot.

Why are these voltage fluctuations important? One reason is that
the behaviour of motors, and certain sensors, depends directly on
their supply voltage, so load-dependent variations in their behaviour
will occur if this is not controlled, leading to divergence from the
behaviour expected when evolving in simulation. Although not the
focus of this discussion, it is worth noting that this is a complex
reality gap issue that would be difficult to accurately model in
simulation.

The second, and far more critical reason, is that digital
electronics such as microcontrollers require a minimum supply
voltage to operate, below which they will stop functioning. This
condition is known as brownout, and if the load-dependent
fluctuations are too great, the voltage will drop below this brownout
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FIGURE 7
Components of the electronic hardware. The battery (A) is connected to a motherboard that is connected to the Raspberry PI (B). To the motherboard
is also connected a pair of daughter boards, each of which has four TRRS sockets for organ connections (C). An example of daisy-chain topology with
two joint organs can be seen across (C–E), whereby a cable from the distal joint in (E) is plugged into a second socket on the proximal joint in (D),
which in turn is plugged into one of the organ sockets on the daughter board in (C).

FIGURE 8
An illustration of how load-induced voltage drops manifest at different points within the power distribution network, using the example of a daisy chain
comprising two organs. The total combined current draw of all components ITOTAL induces a drop T in the battery output voltage due to its internal
resistance RBAT. The current drawn by each organ then induces additional voltage drops A and B across the resistance of the cables, such that the
supply voltage at the organ inputs is further reduced. Note that the current to Organ B must travel through both the first and second cables, so its
effect is multiplied by its daisy chain position. In real operation the blocks in the diagram would dynamically expand and contract as the load varies, but
when power budgeting we must allow for the worst case at peak current. If the sum of these drops at any point in the system brings the voltage below
the brownout threshold, the robot will malfunction, so avoiding this is a necessary condition for reliability.

threshold.Microcontrollers are functionally essential to a robot, and
even a momentary brownout will cause them to reset, leading to
malfunction or failure of the robot during operation.Thismeans that
the prevention of brownouts is an essential condition for reliability.

In a platform for implementing evolved robots, where the
load conditions can vary arbitrarily between different evolved
phenotypes, the point at which brownout occurs represents a
limiting factor on how the robots can be configured, and phenotypes

that exceed this limit must be excluded from the viable phenotype
space. In other words, the range of feasible robot body plans available
to evolution has a direct dependence on the ability of the power
system to handle these load-dependent effects and guarantee a
sufficient supply voltage to all the digital electronics on the robot.

To summarise, reliable and consistent power delivery is
fundamental to a hardware platform for evolving robots, and
achieving this requires a number of load-dependent factors to be
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FIGURE 9
The physical equivalent of the example in Figure 8 with two joint
organs in a daisy chain and other organs omitted for clarity. Current
for the first joint flows from the green battery at the bottom of the
head organ, up via the motherboard and daughter board and along
the first organ cable. The current for the second joint follows the same
path before continuing along the second organ cable, so its current
must flow through both the first and second organ cables, increasing
the impact of the second joint on the power budget.

considered, as summarised in Table 1. Excessive current may lead
to damage or thermal cutout of electronic components, but a more
complex challenge is presented by the dynamic voltage fluctuations
produced as current is drawn through the resistances along the
power distribution path to each organ. These can not only change
the behaviour of the sensors and actuators on the robot, but will lead
to malfunction if the supply voltage to any of the microcontrollers
drops below its brownout threshold. Since the load conditions of the
system depend on the specific configuration of each evolved body
plan, it is not possible to design a system which can accommodate
all possibilities—the scope of the exploration space is limited directly
by the capabilities of the power system.

It is in this sense that power is everything for evolvable robot
design—the system as a whole can only ever be as capable as the
limits of its power system. The evolutionary process that generates
the robot body plans must operate within these limitations, and
they must therefore be mitigated as much as possible through
careful hardware design. Neither the evolutionary designer nor the
hardware designer can afford to ignore them.

It is of note that the power issues described above were not
well-understood at the start of the ARE hardware development,
which meant that key opportunities to mitigate them were missed

in early design decisions. This makes it a suboptimal example of
careful, well-informed design as advocated in this paper, but a
particularly interesting case study in coping with power constraints
in a hardware system for evolving robots, since the constraints were
more restrictive.

2.4.4 Power distribution infrastructure
The power source in the ARE head organ is a 5-cell, 2Ah nickel-

metal hydride (Ni-MH) battery, with a nominal output voltage
of 6 V. This was chosen over lithium-polymer (LiPo) technology
because the prevailing ambition at the time was a fully autonomous
system where robots could run completely unattended and perhaps
even be self-charging in the arena. The more complex charging
requirements and safety implications of LiPo batteries would have
made this prohibitively challenging, and a 6 V Ni-MH battery was
the best available alternative that would fit within the desired form
factor. This is a good example of how designing for ambitious
goals can end up being detrimental to achieving realistic ones,
because this battery choice was very limiting, as will be discussed
later.

One consequence of this choice is that the nominal voltage
of 6 V leaves little headroom above the 5 V operating voltage of
the circuitry, and Ni-MH technology has a relatively high internal
resistance. It was therefore a certainty that a robot under load would
induce some voltage drops of sufficient magnitude to cause central
brownout. To combat this, TPS63070 boost-buck voltage regulators
were used. These can either step-down the supply voltage when it is
over 5 V, or draw additional current to boost it to 5 V if the supply
voltage is too low, thereby providing a stabilised output.

The Raspberry Pi is powered by a dedicated boost-buck
regulator on the motherboard to protect it from fluctuations caused
by the organs, and each daughter board features two further
regulators, each powering two organ sockets. The daughter board
regulators are configured to boost the organ supply voltage to 7.2 V,
with each organ stepping this back down to 5 V with a smaller local
buck regulator. The aim of this is to better ensure a consistent supply
voltage, which would otherwise be subject to fluctuations due to the
cable resistance.

Transmitting power at a higher voltage also allows lower
transmission current, which reduces the impact of the cable
resistance—a similar principle to that used in high-voltage overhead
transmission lines. A higher boost ratio such as 12 or 24 V would
likely have been preferable, but this was not fully understood at the
time of selecting 7.2 V, and this choice was made somewhat naively
to allow what was believed to be adequate headroom without the
added complexity of a very high boost ratio, which would have

TABLE 1 The constraints imposed by the power system on the capabilities of the evolvable robot platform.

Constraint Cause Effect

Total current draw Battery voltage drop due to internal resistance Central brownout

Local current draw Component overheating Thermal cutout or damage

Organ-specific current draw Voltage drop due to cable resistance Peripheral brownout

Organ position in daisy chain Compound voltage drops due to multiple cables Peripheral brownout

“Central brownout” refers to a voltage drop at the battery output sufficient to brown-out the entire system, including the central microcontroller, causing complete robot failure. “Peripheral
brownout” refers to a voltage drop at an organ input sufficient to brown-out its local microcontroller, causing that organ to fail.
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required higher-rated components and made the regulators more
susceptible to overheating.

Having explored the power and communications infrastructure,
the final subsection describes some specific adaptations to the joint
organ electronics to make the most of the limited power budget
available.

2.4.5 Power budgeting with servos
The joint organs for the ARE project are actuated by servos,

which are of particular interest in an evolutionary robotics context
because they can be used to produce limbs and evolve novel
locomotion behaviours. Unfortunately, they are also particularly
demanding devices from an electronics perspective, as they draw
significant continuous current under load, and large peak transient
currents when they initiate movement. This is further complicated
by the need to daisy-chain multiple joints together to form limbs,
which causes compound increases in the voltage drops in the cables.
This means that servos represent by far the greatest challenge when
it comes to power budgeting, and provide an instructive example
of how hardware can be adapted to improve the scope of the viable
phenotype space.

Recall that the reliability requirements of avoiding brownout
impose a power budget in which both the current draw and daisy-
chain position of an organ determines how much space it must
be allocated in that budget. This restricts both the total number
of servos per robot and the length of individual limbs, reducing
the range of allowable body plans. In the case of our particularly
limited power system, it would have made most limb configurations
unworkable. How can we improve this situation and broaden the
exploration space for evolution?The solution is to control the impact
of servos on the power budget by limiting their current draw.

How much space does each servo really need in the budget?
Space must be allocated according to the worst-case scenario in
which all servos are drawing their maximum current, because
otherwise there is a risk of brownout occurring when they peak
simultaneously (such as at startup). However, this is wasteful,
because the peak transient current is significantly greater than the
actual continuous current requirement under load, so most of the
time this would leave unused capacity in the system.

Furthermore, not all joints require the full output power of the
servo—some may require maximum torque to lift the full weight
of the robot with a long moment arm, but others may only need
to exert smaller forces, for example, sweeping limbs forward and
back during locomotion. Imagine a humanwith a quadricepsmuscle
for every muscle in their body. This would be a highly inefficient
design, but in effect this is the only type of arrangement available to
evolution when all the servos are identical and unconstrained—all
the “muscles” have the same power, whether they need it or not.

These two observations indicate that we could increase the range
of possible configurations by selectively limiting the current drawn
by each servo, thereby reducing their power budget allocation to
only the amount that is needed. The same principle can also be
applied to other actuators, such as theDCmotors found in the wheel
organs. To achieve this, a programmable current limiting circuit was
implemented.

The circuit uses a MAX17613AATP+ current limiting chip,
whose current limit can be set with a resistor. By using a
programmable resistor combined with an appropriate series resistor,

we can make the current limit programmable within a defined
range. In the case of the joint organ, an AD5246BKSZ10-RL7 digital
potentiometer in series with a 3.6 K resistor allows the current limit
to be programmed over I2C between about 330 and 1250 mA. The
current limiter works by dynamically reducing the voltage supplied
to the servo when the measured current draw reaches the limit,
thereby preventing the current from increasing any further.

At the upper limits, this can be used just to control the large
peak transients without any loss of holding torque, but the current
limit can be further reduced to restrict the maximum torque
available to the servo in exchange for more space in the power
budget—effectively we can trade off having some weaker “muscles”
in order to have more “muscles” in total.

The only requirement for this is that the actuator is able to
tolerate these variations in supply voltage. For a normal DC motor,
as in the wheel organ, this is no problem at all—themotor simply has
a reduced maximum torque and accelerates more slowly. Servos, by
contrast, have a threshold below which they stop behaving correctly,
due to their internal electronics.

Hobbyist-type servos come in two variants, analogue and digital,
and this current limiting technique was first tested with the popular
Towerpro MG996R, which is a digital servo. However, even very
modest current limiting caused it to lock up in a kind of twitching
paralysis. This is because it contains digital electronics that brown-
out when the current limiter drops the supply voltage, and this
happens repeatedly due to the high startup transient of the servo,
inducing a reset loop.Analogue servos, by contrast, do not use digital
control circuitry and are muchmore tolerant of undervoltage, so the
FEETECH FS5115M-FB servos selected for the joint organs enable
the “muscle strength” (maximum torque) to be controlled by the
current limiter as desired. At the lowest current limits, these servos
do exhibit a “struggling” behaviour if the load is too great, in which
they repeatedly attempt the samemovement rather than just holding
a reduced torque, but this is a more graceful and organic behaviour
than total paralysis.

To summarise this section, the use of programmable current
limiters in combination with analogue servos (or DC motors)
enables actuators to be implemented in which their occupancy of
the power budget can be selectively reduced to only the amount that
is needed, from simply controlling excess transients to limiting their
“muscle power” This thereby expands the range of available robot
configurations in the viable phenotype space, without any increase in
the power supply.

This concludes the description of the hardware design, and
Section 3 will now explore the interaction of this hardware with the
evolutionary process.

3 Results

3.1 Overview

The most striking finding of the ARE project hardware design
was the profound impact of hardware design decisions on the
regions of the evolutionary space that could be reached, revealing
the necessity of integrating an in-depth understanding of evolution
into the hardware design, and an equally thorough understanding of
the hardware into the evolutionary design.
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Both the mechanical and the electronic hardware imposed
constraints on the space of feasible phenotypes, and these constraints
will be examined in Section 3.2, before exploring in Section 3.3 the
impact of those constraints on the evolutionary process.

3.2 Hardware constraints on evolution

3.2.1 Manufacturable morphologies
Recall that the ARE system produces robots by 3D printing an

evolved skeleton, which integrates a standard base into which the
head organ is inserted. This then forms a central grasping point for
the remaining assembly, whereby organ modules are clipped onto
printed mating points on the skeleton, and their connecting cables
are plugged into the sockets at the top of the head organ. In principle,
this seems like it should provide for a very rich morphological space
of robot body plans that can be evolved. In reality, however, it was
more limited than first envisaged, and this is because of decisions
made when choosing how the robots would be manufactured. Any
productionmethod will create constraints in the evolutionary space,
and the choices made in this area will directly determine both the
placement of those constraints and themagnitude of their influence.

The first constraint is simply, scale. Although the 3D printers
have a relatively large build plate for printers of their class
(280 mm × 280 mm), a substantial portion of this is taken up by
the standard head organ base, measuring approximately 130 mm
square. This leaves a relatively small workspace for evolution to
develop interesting morphological structures—a margin around
75 mm wide. This is compounded by the large feature size imposed
by the oversize extrusion nozzle and the bulky organs, which must
be large enough to accommodate circuit boards, cable storage and
mechanical clips in addition to the sensors and actuators themselves.
Each mounting point printed onto the skeleton occupies 20 mm ×
38 mm in the build plate area, and the skeleton generation algorithm
is based around an 18 mmvoxel size, so it is clear that there is limited
room for structural variation within that 75 mm margin.

There is more space in the vertical direction within the 250 mm
high build volume, but the need for the robots to be physically
assembled creates no-go areas within this space too. The organ clips
slide onto their mounting points from above, so each mounting
point requires an area of free space above it. Similarly, the area above
the head organ must be clear of other structures to allow space for
the robot arm to insert it into the skeleton, and then insert the cables
into it from above.

Visualising the remaining space in which structures can be built,
this leaves a tall square torus-shaped volume with voids wherever
there is an organ clip, a much more limited space for morphological
variation than one might think when imagining the possibilities of
3D printed robots.

The limitations of FDM printing itself impose more complex
constraints. Overhanging structures forming an angle shallower
than 45° to the horizontal require additional support scaffolds to be
printed underneath them, and this extra material must be manually
removed later. The fully automated manufacture in ARE could not
handle this kind of post-production work, so overhangs had to
be either avoided entirely or algorithmically modified to integrate
sloping structures underneath—a major restriction on the shapes
that could be built.

More significant, and perhaps less obvious, is the building-up of
the model from a flat build plate. This means that one side of the
robot must always be completely flat, and since in this case the head
organ is inserted from the top in a vertical orientation, this flat side
must be the underside of the robot. There can be no organ clips on
the underside, no printed structures may extend below the bottom
edges of the robot, and the underside will be completely smooth
without morphological features.

Considering how a ground-based robot interacts with its
environment, the structure of its underside is of particular
importance, because it determines the ground clearance of the body
and how any wheels and limbs will engage with the terrain. The
evolutionary process could also generate morphological structures
in the skeleton to assist in overcoming obstacles or uneven surfaces
if it were free to operate on the underside. In this way, the
imposition of a flat planar boundary here is more restrictive
than a simple limit on the morphological space—it prevents the
evolutionary process from accessing one of the most useful areas of
variation.

One approach to address this might have been to print the
skeleton in a sideways or inverted orientation, and rotate it at
assembly time, but the head organ attachment method prevents
this, as it relies on a vertical cavity that is open at the top. This
dependency in turn arises from the requirements of the robot arm
assembly system, the design of the organ interconnections, and the
need to avoid printed support material, such that implementing this
change would require major overhaul of multiple system elements.
This illustrates once again the deeply interlinked nature of hardware
constraints.

An important conclusion of these observations is that the
morphological space is drastically altered by the requirements of
manufacturability. Every decision made about how the robots will
be constructed has an influence on how this space is constrained.
These constraints can be made more favourable by careful choice of
implementation details, but they cannot be avoided, and this means
that practical robot evolution is inherently dependent on the realities
of the chosen production method.

3.2.2 The Tyranny of power
Although trivially easy to ignore in simulation, electrical power

is one of themost fundamental limiting factors in an evolvable robot
system. All active components of a robot require power to operate,
and if the power supply cannot meet the demand, parts of the robot
will malfunction or stop working altogether. This defines a “power
budget” within which evolution must operate when adding active
components to a robot body plan.

As outlined in Section 2.4.3, the power budget is not so much
a fixed figure as a set of rules that constrain the total number of
organs, where they can be placed, and howmuch power each one can
consume. Table 1 summarised these principles and how they relate
to three failure modes in the power system: 1) central brownout,
2) thermal cutout and 3) peripheral brownout. The specific power
budget imposed by the ARE hardware may be illustrated in terms of
how the system must be constrained to avoid each of these failure
modes.

Central brownout is battery-dependent and defines the total
allowable system current. Figure 10 indicates that the battery output
drops below the operating voltage of 5 V for loads exceeding
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FIGURE 10
The output voltage measured across the terminals of the 5-cell Ni-MH battery at different load currents. The gradient of the current-voltage line
indicates the internal resistance of the battery, approximately 0.3 Ω.

around 3.5 A. For context, this would accommodate only two
joint servos at their maximum 1.25 A current limit, if allowing
1 A for the microcontroller and internal components. Robots with
sensors and current-limited wheel organs could be built, but
current limiting would be essential, and most limbs would be
unachievable.

By powering the centralmicrocontroller froma dedicated boost-
buck regulator, the limiting factor for central brownout becomes the
point at which the regulator overheats and cuts out. This is harder
to define precisely, but it can be inferred from Figure 11 that this
occurs somewhere around 3 V, granting an extra 2 V of headroom.
Returning to Figure 10, this new 3 V threshold allows for a total
load up to around 10 A, and a significantly broader range of robot
configurations.

Thermal cutout determines the limit on the local current draw
from the organ sockets. Each pair of sockets is powered by a
regulator with a nominal max output of 2 A, so this limit must
be divided between each pair. A single organ chain may draw up
to 2 A, but the load on the neighbouring organ socket must be
reduced accordingly. Due to the size and weight of the robots,
a sufficiently powerful two-jointed limb for load-bearing requires
more than 1 A, so although there are eight sockets, in practical
terms the system can support a maximum of four limbs for
locomotion.

Peripheral brownout is the most complex effect to calculate, and
limits the allowable limb configurations. The TRRS cables have an
unusually high resistance of around 1 Ω, meaning that for every 1 A
of current, they induce a voltage drop of 1 V per cable. The daughter
board regulators use a transmission voltage of 7.2 V, which allows
2 V of headroom. Table 2 shows some examples of allowable two-
joint configurations using the available range of current limiting.
Notice the effect of daisy-chain position on Joint 2; additional power
here has a greater cost. It can never use the full limit of 1.25 A, unlike
Joint 1, and the power available to the limb as a whole is reduced as
the limit for Joint 2 increases.

To conclude, the power system imposes complex,
interdependent constraints on allowable robot configurations.
Choosing higher-performance components can expand these
constraints, but other practical considerations may limit these
choices, and even a very powerful system cannot match the
unconstrained power assumed by simulation. Any system for
evolving real robots will have to account for a finite power budget in
its design.

3.3 Effects on evolution

The ultimate goal of the Autonomous Robot Evolution project is
to integrate two or more evolutionary processes, including a single
process in simulation and a single process in hardware to create
robots adapted for challenging environments. Specific details of the
ARE evolutionary processes are outside the scope of this paper,
so the following discussion is limited to qualitative observations.
However, further information may be found in (Hale et al., 2019;
Le Goff et al., 2022).

This section presents a reflection on the direct and indirect
influence of the hardware constraints on the generation of robot
body plans by the evolutionary process, before addressing the
specific challenge of avoiding unfeasible phenotypes.

3.3.1 Direct hardware influence—body plan
boundaries

The direct hardware influence refers to the effect of the fixed
constraints imposed by the hardware implementation which are
directly incorporated as limits in the evolutionary process.

The star topology described in Section 2.4.1 defines a maximum
number of 8 organs that can be connected directly to the head.
Although this limit is greater than other platforms in literature
(Jelisavcic et al., 2017; Auerbach et al., 2018; Miras et al., 2020), the
genome decoding has to accommodate this limit.
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FIGURE 11
The output voltage measured at the output of the boost-buck regulator circuit at different load currents and input voltages, showing that it can easily
step down from higher voltages, but the extra switch current required in boost mode limits how low the input voltage can go. Sudden drops indicate
thermal cutout of the regulator, showing the limits of its output capability.

TABLE 2 Some examples of allowable two-joint limb configurations within a 2 V voltage drop limit, using the available range of current limiting.

Joint 1 limit (A) Joint 2 limit (A) Cable 1 current (A) Cable 2 current (A) Total Vdrop (V)

1.25 0.37 1.62 0.37 1.99

1.0 0.5 1.5 0.5 2

0.5 0.75 1.25 0.75 2

0.33 0.83 1.16 0.83 1.99

Joint 2 is the second in the daisy chain, so its current must flow through both cables, producing a greater impact on the power budget. This means it has to use lower current limits than Joint 1
for equivalent pairings, as highlighted in blue.

The limitations of power budgeting described in Section 2.4.3
restrict the allowable number of joints and how they may be
configured. The daisy chain length limit of 2 joints is one example,
meaning that only simple limbs with 2 degrees of freedom can be
implemented with this system, and this limit has to be defined in
the decoding. Therefore, the decoding sets a limit on the number
of joints that can be daisy-chained together. It is not possible
to build robots that require a longer chain of interconnected
joints such as the snake-like morphologies evolved in (Miras et al.,
2020).

As described in Section 3.2.2, limbs are configured by allocating
an appropriate power limit to each joint, and this can be done in
a limited variety of ways. This is important as it could drive the
evolutionary process in different directions. For example, if high
power is allocated to proximal joints and low power is allocated
to distal joints, then crawling behaviours might be seen in the
robot. Robots with this approach might make more use of caster
balls to move. On the other hand, if low power is allocated
to proximal joints and high power is allocated to distal joints,
then more behaviours of the robot lifting itself may be seen. It
might be interesting to explore this domain further by allocating
different proportions of power and analysing the different behaviour
in the robots and their influence on the evolution of the body
plans.

3.3.2 Indirect hardware influence—the curse of
the ring-shaped robots

The indirect hardware influence refers to emergent effects
observed in the evolved body plans, which result from the hardware
design decisions. In this section, an example is presented, following
the process from genome decoding to the types of robots produced.

Each body-plan is encoded indirectly by a compositional
pattern-producing network (CPPN) (Stanley, 2007). When
decoding, the coordinates of a 3D matrix are used to query the
CPPN, which returns values indicating whether a voxel of skeleton
material should be placed at a location. After all positions are
queried, a repair function ensures that the skeleton is printable,
e.g., removing disconnected plastic and/or overhangs. Additional
outputs indicate whether (and where) organs are attached to the
skeleton.

One of the rules set in genome decoding is that, regardless of the
evolved morphology specified by the genome, every skeleton must
include a ring-shaped base around the head organ. This decision
was taken to ensure that the evolutionary process would always
have somewhere to place organs on the skeleton, since unviable
robots with no organs could otherwise be generated. However, this
rule when combined with the 3D printer build plate constraints
described in Section 3.2.1 created an undesired outcome in the
resulting process.
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FIGURE 12
Example of evolved robots. (A) This robot has 2 wheels on one side of the robot and 4 caster balls on the other side and this robot is capable of moving
in a straight line by the caster balls getting stuck between the gaps of the tiles. (B) This robot has two wheels, one on each side, and four sensors. This
robot has a tendency of leaning towards either side. The best behaviour can be seen if the robot leans towards the left side, however, if the robot is
leaning on the right side, the robot reverts to the left side by hitting the gaps between the tiles. (C) This robot uses the bulk plastic to nudge its way
around obstacles instead of avoiding them.

The evolutionary process has a tendency to produce a high
number of planar, ring-shaped robots (Figures 12A, B), displaying
only limited variation around the base of the skeleton. Although it
has the option of generating structures higher up, the usefulness
of placing organs and skeleton features there is limited in a
ground-based arena, and the confined 3D printer build space
prevented the development of more elaborate features at floor level.
This is a clear example of how hardware constraints define the range
of robots that can be evolved.

It is important to highlight that the way the genome is decoded
by having the rule of the ring-shaped base contributed to the
abundance of these types of robots.The evolutionary process settings
could potentially be adjusted to ameliorate this constraint. One or
more of the following could be changed: 1) genome decoding, 2) task
and 3) fitness evaluation.

Despite this limitation, for some rare examples, the evolutionary
process was able to generate novel skeletons with a functional
benefit. For instance, the robot shown in Figure 12C has a wedge-
shaped structure that enables it to navigate around obstacle corners
without needing to sense or avoid them. This example hints at the
potential for morphological evolution to exploit this technology
to produce interesting adaptations, but the constraints on the
morphological space were such that it could only use a small fraction
of this potential.

To conclude, hardware constraints can drive the evolutionary
process to create robots with similar features, particularly when
the varying degrees of freedom permitted by the hardware
implementation are poorly matched to the types of variation most
useful for adapting to a particular task. This lack of diversity may
be addressed to some extent by optimising the hardware design,
but where this is impossible, the evolutionary process (task, fitness
function or genome decoding) needs to be adjusted to work around
these limitations. Therefore, it is highly important to consider
these factors during hardware design and when designing the
evolutionary process.

3.3.3 Enforcing feasibility
The hardware constraints mean that many of the robots that can

be defined by the genome representation are not practically feasible,
so it is desirable to find ways of making the evolutionary process

generate only robots that can be implemented. Two methods were
used to achieve this: phenotype filtering [also known as genotype
filtering in Eiben (2021)] or phenotype repair.

The phenotype filtering method consists of discarding all robots
that are not feasible from the population. This is achieved by
assigning them the lowest fitness score and removing the probability
of these robots being selected for the next-generation. However, as
shown in Hale et al. (2019), Buchanan et al. (2020a) (illustrated in
Figure 1), large proportions of evolved robots would get discarded
by this filtering step, reducing the diversity in the population. In
other words, genetic lineages keep getting cut off by unfeasible
robots along the way, making it difficult for evolution to traverse the
fitness landscape, which then allows a limited number of remaining
lineages to overtake the population. Kriegman et al. (2020a) applied
a similar phenotype filtering to evolved biological organisms but
with the main difference that the filter was applied to the final set
of organisms produced. A similar loss of diversity occurs with this
method.

The phenotype repair method consists of applying changes
directly to the decoded phenotype to make it feasible (Hale et al.,
2019; Buchanan et al., 2020b). The diversity of robots increases
and the landscape becomes easier to traverse as the lineages are
not getting cut off and the diversity of robots does not decrease
as much as with phenotype filtering. However, because the repair
modifies the phenotype after decoding, this method increases the
distance between the genotype and the phenotype, such that small
changes at the genotype level could produce either no change at
all or very big changes at the phenotype level. This is shown in
Le Goff et al. (2022) where many of the robots share similar features
to each other. This becomes a problem when a good robot (but
not optimal) is found and smaller changes are required to improve
it.

In addition to these two methods, numerous other constraint-
handling techniques exist in the evolutionary computation
literature, many of which are summarised in Coello (2022).
Although not specifically designed to cope with hardware
constraints, it may be that some of these approaches could be
applied to navigate the feasible regions of the phenotype space more
effectively. However, all such methods, regardless of effectiveness,
are limited to working with the viable phenotype space imposed by
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the implementation—they cannot change the space itself to make it
more favourable.

An alternative possibility could be to design the genome to
always decode into feasible robots without the need for methods
like phenotype filtering or phenotype repair. One example can
be found in chemistry, where Krenn et al. (2022) demonstrated
that by changing their representation, valid molecular graphs
could always be produced without any filtering. Brodbeck et al.
(2015) encoded the building sequence directly into the genome
to maximize the number of feasible robots, such that out of the
total of 500 robots, 96% were feasible. The authors also highlighted
the existing trade-off between robot complexity and feasibility,
where the challenge of creating feasible robots increases with their
complexity. For example, modular robot platforms like (Faina et al.,
2015) can be encoded to inherently manufacturable with a tree-like
representation, but the richness of themorphological space is greatly
reduced.

In conclusion, both phenotype filtering and phenotype repair
use a post-decoding step to restrict the evolutionary process
to generating feasible robots, but both introduce their own
disadvantages that make it harder for evolution to work effectively. It
may be that other constraint-handling methods from evolutionary
computation could improve upon this, but all such methods
are compromises, limited to attempting to compensate for the
challenges already imposed on the search space by the system
design. Designing for inherent manufacturability in the genome
is an alternative approach, but this restricts the richness of
the morphological space. It is therefore desirable to reduce
the need for such methods by considering the effects of the
hardware implementation in all aspects of the evolutionary system
design.

4 Discussion

In this paper, we have identified that the design of an evolvable
robot platform in hardware presents an unusual design paradigm,
in which a fixed functionality specification is not known ahead of
time, and instead the hardware design comes first and determines
the range of functionality available to evolution. Each decisionmade
about how to manufacture the evolved bodies and connect their
mechanical and electronic parts together influences the constraints
on the range of shapes that can be constructed, and the limitations
of the underlying electronics introduce further constraints on
allowable body plans.

When evolving in simulation, these constraints are easily
overlooked and rarely considered, but they are fundamental to
the goal of building evolved robots in hardware. By exploring
the example of the ARE framework, we have illustrated how
such constraints can manifest in an evolutionary system, and
how the design of both the hardware itself and the evolutionary
processes can determine the nature of those constraints, as well
as attempt to ameliorate their impact on the achievable diversity
and usefulness of the evolved robot population. In doing this,
we have highlighted the critical importance of this interplay
between evolution and hardware. These two sides can be brought
together and summarised using the concept of viable phenotype
space.

4.1 Viable phenotype space

What is the viable phenotype space? At the beginning of this
paper, we defined it as follows:

“The evolvable phenotype space is defined as the complete
set of possible phenotypes that could be generated by an
evolutionary process within a particular genetic representation”

“The viable phenotype space is defined as the subset of
evolvable phenotypes that can be implemented and reliably
evaluated in hardware, after manufacturing constraints and
hardware limitations are taken into account”

The relationship between these two spaces and the evolutionary
system design is illustrated in Figure 13, showing how both the
engineering and the evolutionary algorithm aspects come together
to define the viable phenotype space.

In the example of the ARE system, the evolvable phenotype
space comprises arbitrary combinations of skeleton voxels anywhere
within a matrix the size of the 3D printer build volume, any
combination of different organs can be connected at any positions
on the skeleton, and joints can be daisy-chained to build a limb of
any length.

The viable phenotype space, by contrast, is constrained to
structures within a narrow ring-shaped space around the head
organ, in which there may be no overhangs beyond 45°, and no
features below the flat plane of the underside, with the further
restriction of an empty area above each organ to enable assembly.
Electronic limitations confine the organs to a total of eight organ

FIGURE 13
This diagram brings together the hardware design paradigm described
in Figure 2 with the “design” space available to the evolutionary
process. The hardware constraints define which regions of the
complete evolvable space defined by the representation are practically
feasible, and the combined result of this is a more restricted viable
phenotype space.
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sockets drawing a maximum combined 8 A of current, with a
complex power budget governing whether a given organ can be
connected or daisy-chained at a particular position, depending on
its individual power requirements and those of other organs in
the system. This presents a much more convoluted and restrictive
landscape for evolution.

What is the effect of these restrictions? The objective of the
evolutionary process is to efficiently traverse the evolvable phenotype
space in search of the best robot design, and it does so by generating
variations in the genome and evaluating the effectiveness of the
resulting phenotypes. However, since many of these variations
will produce robots that cannot be implemented and evaluated in
hardware, navigating the viable phenotype space presents a different
challenge to that experienced in simulation—evolution is presented
with additional obstacles.Wemake the following observations about
these obstacles:

• Boundaries: Variation is only possible within a confined space.
Any evolved phenotype which exceeds the limits of this space
must be modified or discarded from the population, for
example, if a structural change produces a non-manufacturable
feature.

• Interdependence: These boundaries are not simple fixed limits,
because every part of a robot has an effect on the other parts—a
feature which is valid in one configuration may not be valid in
another.TheARE power system is a clear example of this, where
the effect of a particular actuator on the power budget depends
not only on its power requirements, but also on its position
within a daisy chain and the configuration of all the other organs
on the robot.

• Fragmentation: The remaining feasible regions of the
phenotype space are not contiguous, but spread out and
broken up by many unfeasible regions. For any given genetic
change, there is a chance it may result in a phenotype that
cannot be implemented, preventing it from forming part
of a developmental trajectory. This makes it more difficult
for an evolutionary process to explore and exploit the space
effectively.

It is clear from these observations that the task faced by the
evolutionary process is deeply interwoven with the constraints
introduced by the hardware implementation. Therefore, in the
design of any evolutionary system which is intended to produce real
robots, it is necessary to incorporate detailed consideration of this
viable phenotype space from the outset.

On the evolutionary side, it is critical to consider the constraints
of the hardware in order to navigate the exploration space effectively.
An approach that is highly successful at exploring the evolvable
phenotype space in a simulation environment may perform poorly
when required to work within the viable phenotype space and
generate robots that can be implemented in hardware. The real goal,
therefore, is to identify which regions of the phenotype space defined
by the genetic representation contain robots that can actually be
implemented, and find a way to restrict the evolutionary process to
operate effectively within those regions.

A possible approach to this is the application of post-decoding
methods such as phenotype filtering or repair, but we have seen
that this can have adverse effects on the evolutionary process,

making it harder to generate diverse populations or evolve
incremental refinements to individuals. An alternative approach
is to design a genetic representation which is more inherently
manufacturable, but this will have practical consequences for
the flexibility of the resulting system, as only certain types of
structures lend themselves to inherent manufacturability. Whatever
the approach, the objective must be to optimise the evolutionary
process to produce the best performance within the viable phenotype
space.

On the engineering side, the design decisions made in the
hardware implementation will to a large extent define the viable
phenotype space, so careful consideration of this will lead to
better choices about how the robots should be built. A completely
unconstrained system like that found in simulation is not achievable,
and the design of the ARE hardware has shown that “as flexible as
possible” is also too broad a design goal, because at somepointwe are
forced to choose which type of flexibility takes priority. Constraints
inevitably have to be balanced against each other, and these choices
should not be arbitrary if the system is to be truly effective. Instead,
the aim should be to consciously make these choices with reference
to the viable phenotype space, in order tomake it as useful as possible.
In practical terms, this means that the hardware design should aim
to maximise the degrees of freedom in the phenotype space which
are the most relevant to the problem at hand, and any obstacles
to smooth variation within these degrees of freedom should be
minimised.

4.2 Broader applicability

Having examined the specific example of the ARE system in
detail, it may seem that the issues of the viable phenotype space are
particular to this system, so let us consider these ideas in a broader
context.

An interesting mechanical parallel to the problem of peripheral
brownout may be found in the EMERGE system presented
by Moreno and Faiña (2021). In this system, the mechanical
connections are made magnetically, and these can become
disconnected under excessive force. This limits the allowable torque
that can be exerted by the actuators, and connections can become
detached during evaluation. This is an example of an intermittent,
load-dependent failure mode similar to brownout. Their work
treated this as a fitness limitation whereby the travelled distance was
reduced, but this arguably should be regarded as a binary reliability
issue. In a practical application, it would not be allowable for robots
to fail intermittently, and phenotypes with a high risk of violating
the torque limits of the connections would have to be excluded
from the population. Any practical system would be expected to
require some limits of this nature on allowable structural or electrical
load.

Brodbeck et al. (2015) examined the effect of manufacturing
constraints on robot evolution using cubic modules autonomously
glued together by a robot arm.They identified severalmanufacturing
constraints that limited the structures that could be produced, and
analysed their effect on diversity. They found that the diversity
of the population was strongly restricted by these limitations,
and removing one or more constraints led to an improvement in
diversity, showing that there is a strong relationship between how
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the robots are constructed and the resulting ability of evolution
to find novel solutions. Low diversity was also correlated with
converging to local maxima, with populations being taken over
by one type of morphology, highlighting why this issue is so
important.

Some evidence of the advantages offered by the principles
advocated in this paper can be found in the example of Faina et al.
(2015). They present a heterogeneous modular system in which the
viable phenotype space has been carefully considered in the hardware
design process, analysing the kinematics of a range of possible tasks
and using this as a basis for themotion primitives to be implemented
as modules. They describe this as designing “evolution friendly”
hardware, and are able to produce a range of functional robots as
a result of taking this approach, demonstrating high diversity.

All of the above examples benefit from a discretised modular
architecture, which lends itself well to inherent manufacturability,
as they can be assembled blockwise in the manner of Lego. Indeed,
all previous hardware work of this kind has used some form of
branching structure, which greatly simplifies the phenotype space.
The ARE framework, by contrast, uses a semi-modular system,
where a free-form structural body is combinedwithmodular organs.
This is more susceptible to generating non-viable phenotypes,
making the challenges of the viable phenotype space significantly
greater than in related work. However, the semi-modular approach
provides both a higher degree of flexibility and greater biological
plausibility. For example, the taxonomic class Mammalia includes
a vast range of body shapes and sizes, yet all mammals share the
same organ designs, including vascular systems, digestive systems,
etc., with remarkably little variation between species.

There is reason to believe, therefore, that as robot evolution
gets closer to practical or scientific applications, there will be a
greater need for the flexibility of a semi-modular approach. At the
same time, requirements for manufacturability and reliability will
necessarily become more stringent in order for such systems to be
ready for real-world deployment. We are therefore confident that
our observations regarding the viable phenotype space are likely to
become increasingly important in future work.

5 Conclusion

The ultimate objective of the evolutionary robotics field is to
evolve robots that are of practical use in real-world applications.
To achieve this, it is necessary to progress beyond simulation and
implement them in hardware, and address the challenges that this
entails. It is well-known that there exists a reality gap between
simulation and hardware, which leads to behavioural differences
between virtual robots and their real counterparts, but this is not
the only challenge. The realities of hardware implementation also
have a profound effect on the evolutionary landscape itself, and the
implications of this are far less explored.

In this paper, we have examined in detail the interplay between
an evolutionary robotics process and the hardware with which
the evolved robots are to be implemented. We have seen that the
evolutionary process is not separable from the hardware, because the
many constraints introduced by the hardware fundamentally define
the nature of the phenotype space that the evolutionary process is to
explore.

Because of this, the hardware is also not separable from the
evolutionary process, because a conventional design approach cannot
be applied to an undefined specification, and the objective instead
becomes placing the hardware constraints in a way that maximises
the useful design freedom available to evolution.

This work therefore identifies two key principles for future work
in evolutionary robotics. One is that a hardware designer creating
an evolvable robot platform must have an understanding of the
evolutionary process and consider the effect of their decisions on the
viable phenotype space. The other is that an evolutionary algorithm
designer must have an awareness of how the constraints imposed by
hardware change the nature of the exploration space for evolution,
and consider how the evolutionary process may be optimised to
exploit the feasible regions of that space more effectively.
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