
TYPE Original Research
PUBLISHED 26 February 2024
DOI 10.3389/frobt.2023.1249241

OPEN ACCESS

EDITED BY

Daniel Tozadore,
Swiss Federal Institute of Technology
Lausanne, Switzerland

REVIEWED BY

Giovanni De Gasperis,
University of L’Aquila, Italy
Katharina J. Rohlfing,
University of Paderborn, Germany

*CORRESPONDENCE

Nicole Salomons,
n.salomons@imperial.ac.uk

RECEIVED 28 June 2023
ACCEPTED 12 December 2023
PUBLISHED 26 February 2024

CITATION

Salomons N and Scassellati B (2024),
Time-dependant Bayesian knowledge
tracing—Robots that model user skills over
time.
Front. Robot. AI 10:1249241.
doi: 10.3389/frobt.2023.1249241

COPYRIGHT

© 2024 Salomons and Scassellati. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Time-dependant Bayesian
knowledge tracing—Robots that
model user skills over time

Nicole Salomons1,2* and Brian Scassellati1

1Department of Computer Science, Yale University, New Haven, CT, United States, 2I-X and the
Department of Computing, Imperial College London, London, United Kingdom

Creating an accurate model of a user’s skills is an essential task for Intelligent
Tutoring Systems (ITS) and robotic tutoring systems. This allows the system to
provide personalized help based on the user’s knowledge state. Most user skill
modeling systems have focused on simpler tasks such as arithmetic or multiple-
choice questions, where the user’s model is only updated upon task completion.
These tasks have a single correct answer and they generate an unambiguous
observation of the user’s answer. This is not the case for more complex tasks
such as programming or engineering tasks, where the user completing the task
creates a succession of noisy user observations as they work on different parts
of the task. We create an algorithm called Time-Dependant Bayesian Knowledge
Tracing (TD-BKT) that tracks users’ skills throughout these more complex tasks.
We show in simulation that it has a more accurate model of the user’s skills and,
therefore, can select better teaching actions than previous algorithms. Lastly,
we show that a robot can use TD-BKT to model a user and teach electronic
circuit tasks to participants during a user study. Our results show that participants
significantly improved their skills when modeled using TD-BKT.

KEYWORDS

user modeling, tutoring, human-robot interaction, Bayesian knowledge tracing,
robotics

1 Introduction

Intelligent Tutoring Systems (ITS) provide one-to-one instruction to a user to increase
their knowledge in a particular domain. They can be just as effective as a human tutor
VanLehn (2011) under the right circumstances. A robot can enhance an ITS by providing a
social presence during the interaction. Compared to a screen system only, embodied robot
tutors have been shown to cause greater compliance Bainbridge et al. (2011), higher learning
gains Leyzberg et al. (2012), more engagement Wainer et al. (2007), and fewer mistakes
Salomons et al. (2022b). A robot can also interact with the user as a peer or tutee rather than
as the traditional teacher Salomons et al., 2022a; Chen et al., 2020. Furthermore, a robot has
the ability to directly collaborate with the user, and provide demonstrations of the correct
answer during more physical tasks (Salomons et al., 2021; Salomons et al., 2022a).

A critical aspect of these systems is to create an accurate model of the user’s skills
that estimates which skills the user has mastered and which ones they have not. A skill
denotes an ability or a knowledge component in a particular domain. Therefore, different
domains will require different skills of the user. When an ITS has an accurate model of a
user’s capabilities, it can provide personalized help, focusing on skills that the user has not

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2023.1249241
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2023.1249241&domain=pdf&date_stamp=2024-02-22
mailto:n.salomons@imperial.ac.uk
mailto:n.salomons@imperial.ac.uk
https://doi.org/10.3389/frobt.2023.1249241
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2023.1249241/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1249241/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1249241/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Salomons and Scassellati 10.3389/frobt.2023.1249241

yet mastered. Systems that provide personalized learning can
significantly boost learning in the student VanLehn (2011).

Prior intelligent and robotic tutoring systems have primarily
focused on simple tasks such as arithmetic or multiple-choice
questions. In these domains, there is a single correct answer. The
answer is given either through a tablet or web interface, therefore
generating unambiguous observations about the user’s answer. The
systemuses these end-of-task observations and updates the user skill
model depending on whether the answer was correct or incorrect
for each skill. For example, if the task tests a division skill by asking:
“what is 14/2?” the user will answer 7, a different number, or leave
it empty. If the answer was 7, the system increases its estimate about
the user’s division skills; otherwise, it decreases it.

Consider a more complex task, such as electronic circuit
building or computer programming. These tasks generate
opportunities for the system to intervene with help by tracking
user skills before the user provides a final answer. Several difficulties
arise from modeling throughout task completion. There are often
multiple possible ways to complete each task correctly. Frequently
these tasks test more than one skill, some of which are expected to
be completed earlier than others. Each observation does not tell a
complete story about the user’s skills as they apply different skills
over time. Lastly, observations can be noisy as sensing systems like
computer vision or interpreters are necessary. These are exemplified
in a programming task: there are multiple possible solutions; the
user needs time to apply each skill, with some skills like creating
a loop likely taking longer than others such as creating variables;
users will likely break and rebuild pieces of code during the task; the
observations are noisy as a language interpreter is necessary.

Previous skill estimation algorithms were not designed tomodel
these more complex tasks. Therefore, this chapter proposes Time-
Dependent Bayesian Knowledge Tracing (TD-BKT), which can
model a user during more complex domains. There are two main
novelties in our proposed solution: an “attempted” parameter that
captures the expected amount of time before the user applies each
skill. Second, we average the estimates over multiple time-steps. A
time-step is the time it takes to get a new observation of the user’s
answers. The length of the time-step is determined by the system
designer who defines how frequently observations are collected
and therefore can vary between different systems or domains. The
attempted parameter captures the expected amount of time until the
user would have shown their skill if they hadmastered it.Thismeans
that the systemdoes not immediately assume the user does not know
a skill if they do not demonstrate it within the first time-step. The
parameter can either be learned through user data, or estimated by
an expert in the field. Averaging estimates mean that sensor errors
have less of an effect on the estimate. Therefore, the user needs to
demonstrate the correct application of a skill multiple times in a row
to make decisive conclusions about the user’s skills.

To validate TD-BKT, we compare it against three variations of
Bayesian Knowledge Tracing Anderson et al. (1985) (a commonly
used method in ITS): the standard BKT model as originally
proposed where it is only updated at the end of the task, one
where the user model is updated at each time-step based on the
model value of the previous time-step, and one where the model
is updated from the initial belief at every time-step. We perform
three sets of experiments. The first two were done in simulation,
where we randomly generated tasks, skills, and users. The first

experiment shows that TD-BKT has a more accurate model of
the user’s skills throughout the interaction. The second simulation
experiment shows that TD-BKT chooses significantly better skills
to teach the simulated user than the other algorithms. In our third
experiment, we have a robot create a user skill model of participants
using TD-BKT and provides tutoring in the domain of electronic
circuit skills1

2 Background

In this sectionwewill provide an overviewof themain intelligent
tutoring domains in both ITSs and robotics. In sequence we
review research in user skill modelling. Lastly we present how ITSs
and robots use the user’s skill model to personalize their actions
towards the user.

2.1 Domains

Thedomain of an ITS represents the tasks (or problems) that will
be given to the user, the skills that compose each task, and each task’s
solution. Although some systems can automatically generate tasks
and scenarios Niehaus et al. (2011), usually, the domain knowledge
is designed by a human expert. The expert designs the skills present
in each task and how the system can detect when a skill was
demonstrated correctly. Additionally, the domain can include a
cognitive model of how to solve each problem and how students
proceed with solving it.

Although ITSs have covered a range of domains, they mainly
have focused on mathematical domains such as algebra, geometry,
and fractions Anderson et al., 1995; Pavlik Jr et al., 2009, or in
domains where it is possible to give multiple choice answers
Butz et al., 2006; Schodde et al., 2017. These domains are easy to
represent in a model as they are composed of factual knowledge.
Additionally, there is a single correct answer in these domains,
making it straightforward for the user modeling component to
model the user’s skills.

Similarly, robotic systems have focused primarily on domains
that are easy to represent andmodel, including geography Jones et al.
(2018), nutrition Short et al. (2014), diabetes management
Henkemans et al. (2013), and memory skills Szafir and Mutlu
(2012). A significant number of studies have also focused on
different mathematics subjects including geometry Girotto et al.
(2016), arithmetic Janssen et al. (2011), and multiplication
Ramachandran et al. (2018). Therefore, there is also a need for us to
enable robots to teach a larger variety of domains. Most robots to
date are designed with a particular (and usually) singular purpose
Vollmer et al. (2016), whereas we need robots that can capture the
variety of domains present in the world.

More research should tackle tutoring complex domains, also
called ill-defined domains. Fournier-Viger et al. define ill-defined
domains as those where traditional tutoring algorithms do not
work well Fournier-Viger et al. (2010). They are harder to model
because they require more complex representations of skills and

1 The code and the data can be found at https://github.com/ScazLab/C-BKT.

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2023.1249241
https://github.com/ScazLab/C-BKT
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Salomons and Scassellati 10.3389/frobt.2023.1249241

correct answers. Domains such as assembling furniture, building an
electronic circuit, or creating a computer program can fall under ill-
defined domains as modeling algorithms do not capture the user’s
skills well in these domains. There are several reasons why these
domains can be more challenging to model. Including that they
can be order-independent (no clear ordering between skills), they
can have multiple solutions, and the tasks are completed over more
extended periods.

In recent years, some ITSs and robotic studies have tackled ill-
defined domains. Several studies focused on the area of linguistic
tutors (Mayo et al., 2000; Weisler et al., 2001), a domain which does
not necessarily have one single correct answer and therefore needs a
more complex representation. For example, Gordon et al. modeled
a child’s reading skills and updated their skill model so a robot could
personalize its behaviors Gordon and Breazeal (2015). Some studies
focused on teaching programming skills by providing feedback on
the user’s code (Abu-Naser 2008; Al-Bastami and Naser 2017). Butz
et al. created a tutoring system that taught programming concepts
and tested them on multiple-choice questions Butz et al. (2006).
Another domain that requires more extended task completion and
has order-independent skills is electronic circuits. Graesser et al.
studied teaching electronic circuit skills by asking users multiple
choice questions in the domain Graesser et al. (2018). Studies used
natural language to teach circuits skills Dzikovska et al. (2014) and
physics skills Graesser et al. (2001), but these did not estimate the
user’s skills.

Despite the growing number of studies done in ill-defined
domains, the majority focused on very specific subskills in the
domain. Additionally, they frequently limited the user’s responses by
askingmultiple choice questions or by constraining the environment
the user was operating in. Most of these studies did not create a
model of the user’s skills during task completion and only observed
whether the answer was correct or not. This paper presents an
algorithm that canmodel a user’s skills during an ill-defined domain:
electronic circuit building.

2.2 User skill modelling

One important aspect of intelligent tutoring systems is assessing
which skills the user has mastered and which they have not. With
an accurate model of the user’s skills, the system can focus on
giving problems and help actions to the user to teach them the
skills they have not yet mastered. A system models a user’s skills by
observing them respond to various problems. For each problem, it
observes whether the user answered correctly. The more problems
the student answers correctly, the higher the likelihood that they
have mastered that skill. There are several comprehensive reviews of
user skill modeling, including (Desmarais and Baker 2012; Pelánek
2017; Liu et al., 2021).

One of the most common methods for determining which skills
a user has mastered is Bayesian Knowledge Tracing Corbett and
Anderson (1994) (BKT). BKT is a probability-based model in which
each skill present in the domain is represented by a probability
of mastery. To model the user’s skills, BKT observes whether the
student answered correctly and updates the probability of mastery
for each skill present in that task. BKT accounts for a student
guessing an answer correctly and for a student slipping during a

problem (knowing the answer but accidently answering incorrectly)
by accounting for probabilities of guessing and slipping. BKT
has been extended to account for individual learning differences,
including parameterizing each student’s speed of learning to increase
the accuracy of the model Yudelson et al. (2013). More details and
the equations of BKT are presented in Section 3.1.

An alternative to BKT is Learning Factors Analysis (LFA)
Cen et al. (2006), which learns a cognitive model of how users
solve problems. It learns each skill’s difficulty and learning rate
using user data. However, LFA does not create individualized
models for each user and, therefore, cannot track mastery during
task completion. Performance Factors Analysis (PFA) Pavlik Jr et al.
(2009) addresses LFA’s limitations by both estimating individual
user’s skills and creating a more complex model of skills. In recent
years, methods based on deep learning have also become prevalent
Conati et al. (2002). These generate complex representations of
student knowledge. However, this method requires an extensive
amount of prior data in the domain Piech et al. (2015).

Although most user skill modeling systems assume a single skill
is present in each problem, several models have extended BKT, LFA,
and PFA to allow multiple interdependent skills in each problem
(Xu and Mostow 2011; González-Brenes et al., 2014; Pardos et al.,
2008). However, many multi-skill models assume that all skills must
be applied correctly to achieve the correct answer in a problem
(Cen et al., 2008; Gong et al., 2010). This is a significant limitation
as we do not want the model to assume a user has no mastery
over all skills when they might have only failed one. Furthermore,
manymulti-skill tasks have either order dependencies or knowledge
dependencies between skills that need to be accounted for.

BKT, PFA, and deep knowledge tracing are designed to update
the model once they have received an unambiguous final answer for
the current task. However, this is not the case in more complex tasks
where there is noise in the observation, and it takes time for the user
to demonstrate each skill in the task. Our proposed solution extends
BKT to account for these complexities.

2.3 Action selection during tutoring

Once a tutoring systems has an accurate model of a user’s
skills, it can use the model to personalize its actions towards
the user. The most common way to take advantage of the user
model is to determine what task to give a user. For example,
Schodde et al. (2017) decides which skill to teach next based on the
users’ demonstrated skill. Schadenberg et al., 2017 personalize the
difficulty of the content to match the student’s skill (Milliken and
Hollinger 2017) chooses the level of autonomy a robot should have
depending on the user skills Milliken and Hollinger (2017). Other
methods use a modified Partially Observable Markov Decision
Process to select which gap (skill) to train the user Folsom-
Kovarik et al. (2013), to sequence problems depending on skill
difficulty David et al. (2016), and to select tasks that maximizes
knowledge of the user’s skill model Salomons et al. (2021).

The system can also personalize its model by providing help to
the user during task completion. The system can give many types
of help actions, including giving hints, giving an example, a walk-
through of the problem, and directly providing the solution to the
current problem. Several pieces of work have shown the advantages

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2023.1249241
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Salomons and Scassellati 10.3389/frobt.2023.1249241

of choosing personalized help actions (Murray and VanLehn 2006;
Rafferty et al., 2016; Clement et al., 2013; Lan and Baraniuk 2016;
Yudelson et al., 2013). For example, Ramachandran et al. (2019)
decided what type of help to give the user depending on motivation
and knowledge.

In these studies, the actions are selected in between tasks or
once the user asks for help. However, in complex tasks, there are
many opportunities for the system to provide help before the user
gives their final answer. Once the system has correctly detected
that the user can not complete a skill, it can step in and provide
personalized tutoring.

3 Time-dependant Bayesian
knowledge tracing

In this section we first present the traditional Bayesian
Knowledge Tracing (BKT) framework. In sequence, we will review
some of the disadvantages that the conventional methods present.
Lastly, we present our model called Time-Dependant Bayesian
Knowledge Tracing, which solves several of the problems that more
complex tasks produce.

3.1 Bayesian knowledge tracing

Bayesian Knowledge Tracing (BKT) learns whether a user has
mastery of a specific skill by observing the user completing tasks
Corbett andAnderson (1994).The estimate of the user’s skill at time t
is represented by p (Lt) and is initialized by p (L0) (Eq. 1). Each skill
has a probability of being guessed correctly p(G) and a probability
of the user slipping p(S) (making a mistake despite the skill being
known). Additionally, the model has a probability of transitioning
(p(T)) from a non-mastered state to a mastered state whenever the
user has an opportunity to try it.

3.1.1 Mastery probability initialization
Theprobability ofmastery of the user is set to its prior at the start

of the interaction (Eq. 1).

p (L1) = p(L0) (1)

3.1.2 Mastery probability update
Themodel observes whether the user got the correct or incorrect

answer after completing the task and uses it to update the probability
of mastery. To update the mastery when the observation is incorrect
(Eq. 4), the new estimate is the prior times the probability that
they slipped, divided by the total probability of an incorrect answer
(Eq. 2). When the observation is correct (Eq. 5), the updated
probability of mastery is the prior probability of mastery times the
probability that they did not slip, divided by the total probability of
a correct answer (Eq. 3).

p(ot = 0) = p(Lt) ⋅ p (S) + (1− p(Lt)) ⋅ (1− p (G)) (2)

p(ot = 1) = p(Lt) ⋅ (1− p (S)) + (1− p(Lt)) ⋅ p (G) (3)

p(Lt|ot = 0) =
p(Lt−1) ⋅ p (S)
p(ot = 0)

(4)

p(Lt|ot = 1) =
p(Lt−1) ⋅ (1− p (S))

p(ot = 1)
(5)

3.1.3 Transition probability
The probability of the user going from an non-mastered state to

a mastered state is calculated from the probability of them already
having mastered the skill plus the probability of them not having
mastered the skill times the probability of them transitioning (Eq. 6).

p(Lt+1) = p(Lt|ot) + (1− p(Lt|ot)) ⋅ p (T) (6)

3.2 Bayesian knowledge tracing limitations

The BKT model was designed for tasks where unambiguous
observations of the user are given at the end of each task. It would be
advantageous for the system to create an accuratemodel and provide
help throughout the task. With some simple modifications, the BKT
expression could be adapted to allow for continuous modeling. One
option would be to use the BKT update equations after every time-
step.However, this quickly brings the estimate to one of the extremes
(p (Lt) = 0 or p (Lt) = 1), especially if many same observations are
seen in a row.Another option is to update it every time-step using the
initial mastery estimate (L0). When doing this, the mastery jumps
between high and low mastery every time the observations change.
Furthermore, neither of these two proposed solutions considers
whether the user is currently at the start or end of the task. Towards
the end of the task, the user has had more time to demonstrate their
skill mastery.

3.3 TD-BKT

We propose an extension of BKT that continuously updates its
estimate of the user’s skills during task completion. We call it Time-
Dependant Bayesian knowledge Tracing (TD-BKT). In addition to
the BKT parameters, we introduce a new variable called attempted.
The attempted parameter (E [k]) is the expected number of time-
steps it would take for the user to have had time to attempt the skill
k. It can be estimated from prior data or by an expert in the field.
For example, in the programming domain, we would not expect
the user to have completed a FOR loop after the first second of the
task. Rather, it would likely take several minutes to attempt it. On
the other hand, creating a new variable would likely be attempted
in the first minute. Therefore, the attempted parameter accounts for
these differences in time needed, and updates the model relatively
for each parameter.

An additional modification to BKT is that we average the n
previous time-steps to determine the current estimate of the user’s
skills. There are two main advantages to averaging the skills. The
first is that “breaking” part of the task during completion has a
smaller effect on the model. For example, when programming,

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2023.1249241
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Salomons and Scassellati 10.3389/frobt.2023.1249241

you might need to move code into a new function, temporarily
creating non-functioning code. The second advantage is that noise
has a much smaller effect on the model. When using computer
vision systems or natural language processing, it is common to have
occasional observation errors. But these errors are mostly nullified
when averaging with the correct observations.

3.3.1 Probability of an observation
We separate the observations into two cases: when the user

has already attempted the skill, and when they have not. When
the user has attempted the current task, the probabilities of the
correct and incorrect observation are identical to BKT (Eqs 7, 8).
When they have not attempted it, the probability of an incorrect
observation is guaranteed, whereas the probability of a correct
observation is zero (Eqs 9, 10).

p(ot = 0|A = 1) = p (L) ⋅ p (S) + (1− p (L)) ⋅ (1− p (G)) (7)

p(ot = 1|A = 1) = p (L) ⋅ (1− p (S)) + (1− p (L)) ⋅ p (G) (8)

p(ot = 0|A = 0) = 1 (9)

p(ot = 1|A = 0) = 0 (10)

3.3.2 Attempted probability
The probability of a skill k having been attempted is the current

time-step divided by the number of expected time-steps to complete
it. If the number of time-steps passed has exceeded the attempted
parameter, it is assumed that the user would have attempted it if they
had mastered that skill (Eq. 11).

P (A|t) =
{{
{{
{

t
E [k]
, if t ≤ E [k]

1, if t > E [k]
(11)

3.3.3 Mastery probability initialization
Similar to BKT, the probability of mastery is equal to the prior

estimate (Eq. 12). However, contrary to BKT, it will not change
over time. p(L) will be used to update the current temporary
mastery over time P(Ht).

p (L) = p(L0) (12)

3.3.4 Mastery probability update
As seen in Eq. 13, instead of looking at each time-step

individually, the algorithm updates its current estimate (p (Ht))
by averaging the previous n time-steps. At each time-step. if the
observation is that the user applied the skill correctly, then the
task must have been attempted, and the traditional BKT equation
is used (Eq. 14). When the observation is incorrect, there are two
possibilities: either the task has been attempted, but the person
did not demonstrate the skill, or the task has not been attempted
yet. Eq. 15 measures the probability of mastery considering both

scenarios and divides it by the total probability of an incorrect
observation. Here we denote t as the current time-step, and i as the
variable iterating through the previous n time-steps.

p(Ht) =
t

∑
i=t−n

p(Hi|L,oi, i) (13)

p(Hi|L,oi = 1, i) =
p (L) ⋅ (1− p (S))
p(oi = 1|A = 1)

(14)

p(Hi|L,oi = 0, i) =
p (L) ⋅ [p (A|i) ⋅ p (S) + (1− p (A|i))]

p (A|i) ⋅ p(oi = 0|A = 1) + (1− p (A|i))
(15)

3.3.5 Derivations
Belowwe provide the derivations of how themastery probability

is updated given the observation at time-step i and considering the
probability that the task has been attempted. First, we consider the
case when we see that the user demonstrates the skill (oi = 1).

p(H|L,oi = 1) =
p (L)p(oi = 1|L)

p(oi = 1)

p(H|L,oi = 1)

=
p (L)*[p(oi = 1|L,A = 1)p (A = 1) + p(oi = 1|L,A = 0)p (A = 0)]

p(oi = 1|A = 1)p (A = 1) + p(oi = 1|A = 0)p (A = 0)

p(H|L,oi = 1) =
p (L)* (1− p (S))p (A = 1) + 0*p (A = 0)]
p(oi = 1|A = 1)p (A = 1) + 0*p (A = 0)

p(H|L,oi = 1) =
p (L)* (1− p (S))p (A = 1)
p(oi = 1|A = 1)p (A = 1)

p(H|L,oi = 1) =
p (L) (1− p (S))
p(oi = 1|A = 1)

Here we consider the case when we see the user did not
demonstrate the skill (o = 0).

p(H|L,oi = 0) =
p (L)p(oi = 0|L)

p(oi = 0)

p(H|L,oi = 0)

=
p (L)*[p(oi = 0|L,A = 1)p (A = 1) + p(oi = 0|L,A = 0)p (A = 0)]

p(oi = 0|A = 1)p (A = 1) + p(oi = 0|A = 0)p (A = 0)

p(H|L,oi = 0) =
p (L)* [p (S)p (A = 1) + 1*p (A = 0)]

p(oi = 0|A = 1)p (A = 1) + 1*p (A = 0)

p(H|L,oi = 0) =
p (L) [p (A)p (S) + (1− p (A))]

p (A)p(oi = 0|A = 1) − (1− p (A))

4 Comparison to traditional methods

In this section we will provide an intuitive toy example of how
different algorithms update the model of a user’s skill. We compare
TD-BKT to several variations of traditional Bayesian Knowledge
Tracing models given a specific observation. We will compare the
following models:

• Traditional BKT (T-BKT)—The user’s skill estimate is only
updated at the end of the task, using the final observation.

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2023.1249241
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Salomons and Scassellati 10.3389/frobt.2023.1249241

• Initial BKT (I-BKT)—Modification of the BKT model, where it
updates its current estimate using the initial belief value during
each time-step.
• Every time-step BKT (E-BKT)—Modification of the BKT

model, where it uses the user’s skill estimate from the
previous time-step to update the value of the current
time-step.
• Time-Dependant BKT Only Attempted (TD-BKT-AT)—The

TD-BKT model with only the attempted parameter (presented
in Eq. 11. This does not include TD-BKT’s averaging of
beliefs.
• Time-Dependant BKT Only Average (TD-BKT-AV)—The

TD-BKT model, but only averaging the beliefs over time
(Eqs 13–15). In this case it averages the previous 10 time-
steps. This model does not include TD-BKT’s attempted
parameter.
• TD-BKT—Our proposed algorithm using both the attempted

and the averaging parameters.

First, we give an intuitive demonstration via a toy example of
the pitfalls of traditional BKT when the interaction is multiple time-
steps long. We graphically show how TD-BKT mitigates some of
those problems. Let us consider a task where a person is building
an electronic circuit that requires a resistor and the user is given
60 time-steps to complete the task. The user adds the resistor at
time-step 22, removes it at time-step 30, and then returns it to the
same position at time-step 45 for the remainder of the time. The
observation is 0 (incorrect) when the resistor is not on the board and
is 1 (correct) when the resistor is on it. We set that the expectation
of how long it will take to add the resistor to the circuit is 60 time-
steps (E [k] = 60). We set the prior probability of the user having
mastered this skill to complete uncertainty (P (L0) = 0.5). Lastly, we
set the probability of guessing and the probability of slipping to 0.1
(P(G) = P(S) = 0.1).

In Figure 1, the TD-BKT and conventional BKT methods are
compared with respect to their belief of the resistor skill over
the task completion. T-BKT is shown to update only at the
end, which means it loses the opportunity to make informed
decisions throughout the task. I-BKT jumps between higher
and lower belief states with correct or incorrect observations,
since it uses the initial belief to update rather than using any
history. Lastly, because E-BKT is updated every time-step, when
several incorrect observations are made in a row at the start, it
quickly brings the belief to zero. It would need many correct
observations to recover.

We can observe the effect of the attempted parameter in the
trace for the TD-BKT-AT approach. The belief lowers very slowly
at the start (as the person has likely not had an opportunity
to demonstrate their skills yet) and then decreases faster when
more time-steps have passed. The TD-BKT-AV approach shows
the result of averaging the current belief of the previous ten
time-steps. Instead of jumping from high to low states, it takes
several rounds of the same observation to impact the belief
significantly. Finally, TD-BKT shows the result of the attempted
parameter and the average combined. The model creates a smoother
model of the user’s skills and considers how far along the user
is in the task.

FIGURE 1
A comparison of how different variations of traditional BKT update the
belief of a particular skill after specific observations at each time-step.
We also demonstrate the effect of the different elements of TD-BKT
and how the final TD-BKT updates its belief.

5 Simulation

We examine the presented algorithms under two experimental
conditions. The first focused on user modeling and the second
on the effects of using the skill model to choose teaching actions.
The performance of each algorithm is examined across 1000
rounds of simulated tasks, each initialized with randomized skills,
tasks and users.

Skills—During each round, different skills were created. Each
skill had associated with it a probability of guessing and a probability
of slipping, randomly chosen from a uniform distribution between
0.1 and 0.25. The amount of time the user needed to expect
to complete a skill was set to a random uniform distribution
between 40 and 150.

Tasks—During each round, a new task was created.The task was
assigned between five and ten skills. Each task was given 180 time-
steps for completion.

User—During each round, a simulated user was generated. For
each skill, they were randomly assigned asmastering that skill or not
with equal probability. We specify as Ti the true state of the user for
skill i. The belief state b of the user was set to 0.5 (the model had
complete uncertainty) for all skills at the start of the round.

Observations—During each time-step an observation is
generated for the user. The observation was generated via the
probability of a correct or incorrect observation (Eqs 7–10) given
their mastery in the skill, times the probability of the skill having
been attempted (Eq. 15).

Teaching—Every 20 time-steps, the user is taught one of the
skills. The chosen skill is the one with the lowest estimated mastery
state. The probability of learning a skill (when it was not previously
known) is randomly drawn from a uniform distribution between

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2023.1249241
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Salomons and Scassellati 10.3389/frobt.2023.1249241

FIGURE 2
In this graph we present the average Kullback-Leibler Divergence
distances of the 1000 rounds of simulation. We rpesent the KLD of the
user’s estimated skill state and their real skill state for our proposed
model and three variations of Bayesian Knowledge Tracing. As seen in
the graph, TD-BKT outperforms the other algorithms and more
quickly created an accurate model of the user’s skills.

0.15–0.35. If they have learned it, then their mastery of that
skill goes from 0 to 1.

5.1 Experiment 1: user skill modeling

In the first experiment, we compare the accuracy of TD-BKT’s
skill model with the estimates of T-BKT, I-BKT, and E-BKT. In
Experiment 1, we assume that no teaching has occurred and focused
on skill modeling accuracy. To measure how well each algorithm
performs, we calculate for each skill i how far the estimate from the
model (represented by belief b) is from the user’s true skill state Ti

is at every time-step. We measure the distance between the belief at
time-step t and the true state of the user (Eq. 16) using Kullback-
Leibler Divergence (KLD) Kullback and Leibler (1951). KLD is used
as it measures how different two probability distributions are from
each other.Therefore the smaller theKLD, themore similar the belief
is to the true skill state.

D (b,T) = ∑
i∈skills

bit ⋅ log
bit
Ti + (1− b

i
t) ⋅ log

1− bit
1−Ti (16)

Figure 2 shows the KLD of estimate b at each time-step for the
different BKT variations. T-BKT only updates its belief at the end,
and therefore remains constant throughout the interaction. At the
start, E-BKT performs the worst of all the algorithms but corrects
its mistakes at the end when observations are more reliable. Both
TD-BKT and I-BKT improve their estimates as time progresses.
However, I-BKT initially diverges from the true skill state by giving
a large amount of weight to initial observations despite them being
very unreliable as the user has not had time to demonstrate any
of the skills yet. On the other hand TD-BKT gives less weight
to initial observations and outperforms the other models during
most time-steps.

At four different time-steps (time-step 30, 80, 130, and
180), we measured the KLD skill accuracy. The means and
standard deviations for each of the algorithms are presented

TABLE 1 Means and standard deviations for KLD for each of the
algorithms at time-steps 30, 80, 130, and 180.

ts 30 ts 80 ts 130 ts 180

T-BKT
M: 1.33 M: 1.33 M: 1.33 M: 1.33

SD: 0.55 SD: 0.55 SD: 0.55 SD: 0.55

I-BKT
M: 1.94 M: 1.06 M: 0.77 M: 0.73

SD: 0.95 SD: 0.73 SD: 0.58 SD: 0.55

E-BKT
M: 3.50 M: 2.79 M: 1.55 M: 0.44

SD: 1.31 SD: 1.27 SD: 1.11 SD: 0.62

TD-BKT
M: 1.20 M: 0.85 M: 0.66 M: 0.63

SD: 0.52 SD: 0.42 SD: 0.34 SD: 0.33

in Table 1. We measured whether the KLD skill accuracy was
significantly different between the different models using an
ANOVA with a post hoc Tukey HSD test. At all different
time points, the different models were statistically significant
from each other (time-step 30: F (3,3996) = 1.03,p < 0.001;
time-step 80: F (3,3996) = 0.94,p < 0.001; time-step 130:
F (3,3996) = 0.53,p < 0.001; time-step 180: F (3, 3996) = 0.63,
p < 0.001). Table 2 shows the p-values for each pairwise comparison
and the effect-sizes (Cohen’s d values) for each pairwise comparison.
TD-BKT significantly outperforms T-BKT, I-BKT, and E-BKT after
30, 80, and 130 time-steps. However, after 180 time steps, I-BKT had
a better model of the user’s skills.

5.2 Experiment 2: skill modeling with
teaching

During Experiment 2, the simulated user was taught a skill every
20 time-steps. For each model, the chosen skill to teach was always
the one with the lowest estimated belief. To measure how much a
simulated user has learned, we measure the number of skills they
had mastered at the start of the interaction (time-step 0) compared
to the number of skills they had mastered at the end of the round
(time-step 180) using Eq. 17. We use the true skill state T for the
calculation. We also measure how many skills the user would have
learned if the system had a perfect model at each time-step of the
user’s skills. We call this the optimal model, as it can choose the best
skills to teach.

D(Tstart,Tend) = ∑
s∈skills

Tend
s −Tstart

s (17)

Figure 3 shows the number of skills the user has learned
on average for TD-BKT and the different BKT variations. On
average, the simulated user’s in T-BKT learned 0.42 (SD = 0.49)
new skills; users in I-BKT learned 0.91 (SD = 0.57) new skills; users
in E-BKT learned 1.00 (SD = 1.15) new skills; users in TD-BKT
learned 1.44 (SD = 0.82) new skills; and users with the Optimal
model learned 1.89 (SD = 1.15) new skills. The models differed

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2023.1249241
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Salomons and Scassellati 10.3389/frobt.2023.1249241

TABLE 2 The table includes the p-values for each pairwise comparison using an ANOVA with Tukey HSD Corrections, at time-steps 30, 80, 130, and 180.
It also includes the pairwise effect sizes for each comparison.

ts 30 I-BKT E-BKT TD-BKT ts 80 I-BKT E-BKT TD-BKT

T-BKT
p < 0.001 p < 0.001 p = 0.004

T-BKT
p < 0.001 p < 0.001 p < 0.001

d = 0.79 d = 2.16 d = 0.24 d = 0.42 d = 1.49 d = 0.98

I-BKT
p < 0.001 p < 0.001

I-BKT
p < 0.001 p < 0.001

d = 1.36 d = 0.97 d = 1.67 d = 0.35

E-BKT
p < 0.001

E-BKT
p < 0.001

d = 2.31 d = 2.05

ts 130 I-BKT E-BKT TD-BKT ts 180 I-BKT E-BKT TD-BKT

T-BKT
p < 0.001 p < 0.001 p < 0.001

T-BKT
p < 0.001 p < 0.001 p < 0.001

d = 0.42 d = 1.49 d = 0.98 d = 1.09 d = 1.52 d = 1.54

I-BKT
p < 0.001 p = 0.005

I-BKT
p < 0.001 p < 0.001

d = 1.67 d = 0.23 d = 0.50 d = 0.22

E-BKT
p < 0.001

E-BKT
p < 0.001

d = 1.08 d = 0.38

FIGURE 3
In this graph we present TD-BKT and the BKT variations with respect
to the average number of skills learned over 1000 time-steps.
Simulated users improved their skills significantly more using TD-BKT’s
skill model than when the other BKT variations were used. However
the Optimal model (where perfect knowledge of the user’s skills is
known beforehand) performs the best.

statistically significantly using an ANOVA with post hoc Tukey HSD
Test F (4,4995) = 0.65,p < 0.001. All two-pair comparisons were
statistically significant (p < 0.001), other than between the I-BKT
and the E-BKT models (p = 0.155). All p-values and effect sizes
(Cohen’s d) are shown in Table 3. TD-BKT outperforms all the BKT
variations, and is only behind the optimal model.

TABLE 3 The table includes the p-values for each pairwise comparison
using an ANOVA with Tukey HSD Corrections, for the number of skills
learned. It also includes the pairwise effect sizes for each comparison.

Skills learned I-BKT E-BKT TD-BKT Optimal

T-BKT
p < 0.001 p < 0.001 p < 0.001 p < 0.001

d = 0.92 d = 1.15 d = 1.44 d = 1.64

I-BKT
p = 0.155 p < 0.001 p < 0.001

d = 0.14 d = 0.72 d = 1.04

E-BKT
p < 0.001 p < 0.001

d = 0.65 d = 0.98

TD-BKT
p < 0.001

d = 0.43

6 User study

In this section we have a user study where a robot uses TD-
BKT on a real task with human participants. The main goals of this
section are to demonstrate how to apply TD-BKT to a real task, by
designing appropriate skills and tasks. We demonstrate how TD-
BKT can properly model a variety of different users through a task
where observations are noisy. We also show that TD-BKT selects
relevant help actions and show that participants increase their skills

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.1249241
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Salomons and Scassellati 10.3389/frobt.2023.1249241

FIGURE 4
An example of a completed circuit. This circuit plays music and blinks
a light in the rhythm of the music, when the switch is turned on.

throughout the session. More details on the user study can be found
in Salomons et al. (2022a).

The chosen task for our user study was electronic circuit. We
use snap circuits Elenco (2021), where the pieces can be snapped
together on a board to form circuits. An example of a built snap
circuit board can be seen in Figure 4. Electronic circuits encapsulate
well how to model skills during more complex tasks, as there are
multiple correct ways to create a circuit. Users will be adding,
moving, and removing pieces on the board during the interaction.
Moreover, the observations are noisy since a computer vision system
detects what pieces are added to a circuit board. Lastly, it often takes
many minutes for a participant to complete a singular circuit.

Skills—There were eight different pieces that a person could add
to a board: a switch, a button, a resistor, an LED, a music circuit,
a speaker, a motor, and wires. Knowing when to add each of these
different pieces to the board was considered a skill. Additional skills
included knowing how to create a closed loop circuit, knowing the
directionality of an LED, how to create AND and OR gates, how
to connect the different ports of a music circuit piece, and so on.
We tested a total of 17 different skills. The parameters for each skill
(slipping and guessing probability, and the attempted parameter)
were determined by consulting an electronic engineering major.

Tasks—We created different tasks to test different combinations
of snap circuit skills. Participants were given an empty board with
only a battery on it and given 3 minutes for each task unless they
correctly completed it before the time. Some examples of tasks were:
“Build a circuit that plays music when a switch is turned on” and
“Build a circuit that spins a motor when a switch is turned on or a
button is pressed”. Each task had a degree of difficulty associatedwith
it, and the next task was chosen according to the user’s skill. There
were 32 variations of tasks, of which each user completed 10. Our
algorithm chose the next task to present the user depending on the
model that TD-BKT has built. The tasks were chosen so that they
were not too difficult and not too easy. Participants were told which
task to complete next via an application on a tablet. More details on
how the robot chose which task to give is presented in section ??

Users—There were 37 participants in the experiment (18 male,
18 female, 1 non-binary).The study was approved by the university’s
Institutional Review Board, and participants signed a consent form.

They were not provided with any information on how electronic
circuits worked, other than the piece’s name and the ports on the
pieces. Participants completed a pre-test and a post-test to determine
their knowledge of circuits before and after the interaction.

Observations—An overhead camera observed the user as they
completed each task. A vector of observations was generated at each
time-step for the task. If the user demonstrated the correct skill, the
observation for that skill would be 1; if they did not demonstrate
the skill, it would be 0; and if a skill was not tested during
that task, it would be a 2.

Teaching—Every 30 s, a robot provided help. The help action
varied between pointing out wrong pieces on the board, suggesting
pieces to add, explaining how to connect pieces, and affirming that
a skill they had demonstrated was correct. The user had the option
to press a “finished” button on a tablet. Upon indicating they had
finished, the robot would provide further help if one of the skills was
incorrect. If the task was correct, it would move on to the next task.
More details on how the robot chose which skill to teach is presented
in Section 6.2.

6.1 Robot system

Participants interacted with the robot on a large table. Figure 5
shows an illustration of the experimental setup. Participants were
given each task via a tablet, and on the tablet, they could indicate
that they had finished the current task and start the next task. The
tablet provided no help with the task. Participants used wires and
electronic circuit pieces to build their circuits on a board in the
middle of the table. An overhead Kinect Azure camera detected
what pieces were on the board and how they were connected. A
green hand strip at the bottom of the board was used to detect when
the participants’ hands were on top of the board, and therefore the
camera’s observations would be inaccurate.

A UR5e robot from Universal Robots was used in this study. It is
a lightweight industrial robotic armwith 6-DOF. It could pick up the
snap circuit pieces with its gripper and hand them to the participant.
The robot was able to communicate to the participant via a text-
to-speech voice. Additionally, the robot displayed idling behavior
with random movements every few seconds, occasionally looking
at the circuit board, pieces, or the participant, by pointing the
gripper at it. The robot acted completely autonomously throughout
the study.

6.2 Task selection

Prior work shows that selecting tasks with appropriate difficulty
leads to higher learning gains David et al., 2016; Salomons et al.,
2021. Therefore tasks were chosen for each participant according to
their demonstrated capabilities. To rate the difficulty of each task,
each of the 17 skills was given a difficulty rating from a scale of
1.0–5.0, with 5.0 being the most difficult. These were determined
by consulting an electronic engineering major. The ratings were
stored in a difficulty vector d. For example, the skill for whether a
participant knew when to use an LED was given a difficulty rating
of 1, while the skill for whether the participant knew how to create

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2023.1249241
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Salomons and Scassellati 10.3389/frobt.2023.1249241

FIGURE 5
The experimental setup. Participants were given tasks via a tablet
application. In the middle of the table, they built circuits using wires
and circuit pieces. They were provided basic instructions with the
piece names. An overhead camera focused on the circuit and modeled
which skills were correctly applied. A UR5e robot provided them with
help every 30 s based on what was needed for the current task.

an OR gate was given a 4.5. The current belief estimate bwas used to
select the next task.

In order to determine which task to give next to a participant,
all remaining tasks are assigned a difficulty rating R based on the
skills Sk that a task t incorporated. The rating was calculated based
on the difficulty of each skill and the participant’s current belief
value b. Participants with higher belief values would likely find the
task easier. Therefore, we used 1− b(i) to measure how difficult the
task would be for the participant. As we are summing over the
difficulty of each skill for a task, the more skills a task tests, the more
difficult it will likely be. The difficulty rating R for a specific task is
calculated as follows:

Rt = ∑
i∈Sk
(1− b (i)) * d (i) (18)

There is also a fixed ideal rating valueV that was set equal to five
after initial trial and error. The V is intended to help ensure that an
appropriate task is selected next for the respective participant so that
the task is not too easy nor too overwhelming Metcalfe and Kornell
(2005). The task whose r value is closest to V is selected as the next
task and removed from the possible remaining tasks for the next
iteration.

NextTask =min
t∈T
(|Rt −V|) (19)

In the case where several tasks are equally close toV, one of these
potential tasks is selected at random.Theprocess is repeated until the
interaction with the participant ends.

6.3 Finished signal

One simple addition to TD-BKT was that the user could signal
via a tablet when they were finished with the task. We interpret the

user pressing the button, as signalling that they have attempted all
the skills. Therefore, when the participant pressed the button, we
update the prior p(L) with Eq. 20.

p (L) = P(Ht|ot) (20)

6.4 Pre-test and post-test

The pre-test and post-test were composed of six very similar
questions. The first two questions on both tests were the same.
They asked participants to build from scratch a circuit that
shines a constant light and a circuit that plays music, respectively.
Participants were given 5 minutes to do both tasks. The third and
fourth tasks on both tests required participants to add pieces to the
board to complete the circuits. These tasks were identical between
pre-test and post-test, other than the circuit boards being rotated
180° to the participant in the post-test. For the fifth and sixth tasks,
we presented pictures of pre-built circuits and asked participants to
write down what the circuits did. These were similar between pre-
test and post-test, but the pieces were arranged differently on the
board. Participants were given 5 minutes to complete tasks three
through six.

6.5 Results

Participants demonstrated wide variability in their skills on
electronic circuits, varying from only demonstrating 6% of skills on
the pre-test to showing 71% of skills. Likewise there was a large
variation on the post-test with participants varying between 6%
and 94%. We compare how many skills the participant correctly
demonstrates from the pre-test to the post-test, that is, how much
they improved as a result of the robot’s interaction. On average the
participant demonstrates correctly 5.83 (SD = 3.24) skills on the pre-
test, and 9.67 (SD = 4.49) skills on the post-test. A t-test shows that
participants knew significantly more skills during the post-test than
during the pre-test (t (18) = 8.64,p = .006). These results are shown
in Figure 6A. Figure 6B shows the improvement of each participant
between the pre-test and post-test. 83% of participants improved
their skills after the interaction, 6% did not learn any additional
skills, and 11% showed fewer skills on the post-test compared to
the pre-test. These results show that TD-BKT was able to correctly
create a model of the user’s skills and choose appropriate actions to
teach each person.

In Figure 7, we give an example of how TD-BKT tracked one
participant’s LED skill’s estimate. In the observation graphwe can see
that the person added and removed the LED multiple times during
the interaction. This was likely because they were moving the piece
around as theywere adding new pieces to the circuit.This can also be
because the observations were noisy, due to occlusion of the board
(The computer vision detected that the user had their hand on top
of the board 32% of the time), or due to incorrect observations. The
skill estimate graph shows how TD-BKT models the user given the
observations. The dashed lines in the figure are the moments the
participant pressed the finished button (signalling they believed they
had the correct answer or that they were stuck).

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2023.1249241
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Salomons and Scassellati 10.3389/frobt.2023.1249241

FIGURE 6
(A) Participants demonstrated a significantly higher number of skills in the post-test compared to the pre-test. (B) The pre-test and post-test scores for
each of the participants.

FIGURE 7
An example of the observation and TD-BKT’s resulting skill estimate of a participant LED’s skill during a task.

We can see that in the figure, the user did not add the LED
until around time-step 30, causing many observations with value
0 (skill not demonstrated). Despite these observations, the skill
estimate only slowly decreased, and as soon as the user added the
LED, the value quickly increased. The user added and removed
the LED several times, but nonetheless, TD-BKT kept a high
estimate of the user’s skill. At the end of the interaction TD-BKT
assumed the user knew the skill, which matched what the user
demonstrated.

7 Discussion

In this section, we first discuss our proposed solution and its
results. In sequence, we present a discussion on the attempted

parameter and how it can be used and extended for different
use cases. Then, we will discuss several of the limitations of
our algorithm. Lastly, we present different scenarios TD-BKT
can be applied.

7.1 Time-dependant—Bayesian knowledge
tracing

In this paper, we have shown that TD-BKT can model a user’s
skills during complex tasks. Experiment 1 shows that TD-BKT
models a user’s skill more accurately than traditional Bayesian
Knowledge Tracing systems. This is because the conventional BKT
approach was designed to only model a user’s skills at the end of
the task when it has received an unambiguous answer from the

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2023.1249241
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Salomons and Scassellati 10.3389/frobt.2023.1249241

user.Whereas TD-BKT considers how long applying each individual
skill is expected to take, and therefore can model skills throughout
the task. In Experiment 2, it is shown that accurately modeling a
user’s skill during the task allows the system to choose good skills
to teach a user. Users learn significantly more novel skills with TD-
BKT compared to traditional BKT variations.This is essential, as the
main goal of tutoring systems is to improve the student’s skills in a
particular domain.

Lastly, we validated TD-BKT on a user study with participants
building electronic circuit tasks. This demonstrated the applicability
of the algorithm to real-world tasks where participant data must be
recovered using a sensing system. Bymodeling users using TD-BKT,
the system taught users skills relating to electronic circuit design.
Furthermore we have demonstrated that TD-BKT significantly
increased participant knowledge on circuits from pre-test to post-
test, demonstrating that user’s learned several new skills during the
interaction.

7.2 Attempted parameter

The attempted parameter captures the expected amount of time
before the user would have tried out a skill. This allows TD-BKT to
modify the weight of user observations at the start of the interaction
and therefore make fewer mistakes. In our algorithm, we assume the
attempted parameter is a fixed value throughout the task. However,
for future systems, a more advanced computer vision system may
be able to provide greater activity resolution by detecting what
the user is doing at every time-step. This would provide a more
accurate probability that they have attempted each of the skills
of the current task. A second addition that we leave as future
research is to enhance the attempted parameter by defining order
dependencies between the skills. Often the ability of the user to
attempt one skill is dependant on another skill being demonstrated
first. For example, it is not possible to correctly have an LED on
a board in the correct direction before the LED is added. These
order dependencies would make the attempted parameter more
accurate.

7.3 Limitations

Our presented algorithm has several limitations. The first is
that we do not consider the order dependencies between different
skills, whereas there often is a hierarchical dependency between
demonstrating one skill and having knowledge of another. For
example, we do not check whether the user has added a music
circuit before checking whether they know how to connect the
music circuit to a speaker. Future work should investigate how to
incorporate hierarchical skill dependencies while the user completes
tasks over time.

The second limitation of TD-BKT is that it assumes that each
time step is equally important, whereas that might not always
be the case during a tutoring scenario. A student might spend
some of their time thinking of how they are going to piece their
solution together, and then have a burst of action where they
demonstrate or attempt all of the skills needed in the task in a
short period of time. Future work should analyze how to change

the weights of each time step depending on the user’s current
actions.

Lastly, we leave as future work applying TD-BKT to a larger
variety of domains and learning tasks. Different domains such
as learning a new language or learning how to cook, might
need the consideration of new parameters to fully represent the
data and domain.

7.4 Applications

The TD-BKT model is helpful in many different scenarios. The
main one (and the one that has been the focus of this paper) is
intelligent tutoring systems (ITS). Having an accurate model of a
user is essential to tutoring. As ITSs become more predominant
and are used for a broader range of tasks and ages, it is vital that
not only simple tasks be considered (such as math or multiple
choice), but alsomore intricate taskwhere feedbackmay be required.
Especially in light of the COVID-19 pandemic, ITSs can remove
some of the strain on teachers and parents by providing personalized
help to a student.

With the spread of collaborative robots in industry, many
opportunities arise for these robots to model users and teach
while collaborating. Some examples of collaborative tasks include:
assembling cars or furniture, building circuits, and doing chemical
processing. There are many advantages of creating a model of
a human operator in manufacturing. Once the system has an
accurate model of each employees skill it can teach additional
skills that they might need at work. It can increase workplace
safety by taking on dangerous tasks that the user has not yet
mastered. And it can do task assignment according to each
team members strengths and weaknesses when several people are
collaborating.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be foundbelow: https://github.com/ScazLab/C-BKT.

Author contributions

NS and BS contributed to the conception of the algorithm.
NS programmed the user study and the robotic environment. NS
created the simulations and ran the user study. NS wrote the
paper. BS provided formal supervision, project administration and
funding. All authors contributed to the article and approved the
submitted version.

Funding

Thisworkwas funded by theNational Science Foundation (NSF)
under grants No. 1955653, 1928448, 2106690, and 1813651.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2023.1249241
https://github.com/ScazLab/C-BKT
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Salomons and Scassellati 10.3389/frobt.2023.1249241

Acknowledgments

We acknowledge Kaitlynn Pineda and Aderonke
Adejare for their help in collecting data for the user
study.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships

that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Abu-Naser, S. S. (2008). “Developing an intelligent tutoring system for students
learning to program in c++,” in Information Technology Journal (Scialert).

Al-Bastami, B. G., and Naser, S. S. A. (2017).Design and development of an intelligent
tutoring system for c# language. European academic research 4.

Anderson, J. R., Boyle, C. F., and Reiser, B. J. (1985). Intelligent tutoring systems.
Science 228, 456–462. doi:10.1126/science.228.4698.456

Anderson, J. R., Corbett, A. T., Koedinger, K. R., and Pelletier, R. (1995). Cognitive
tutors: lessons learned. J. Learn. Sci. 4, 167–207. doi:10.1207/s15327809jls0402_2

Bainbridge, W. A., Hart, J. W., Kim, E. S., and Scassellati, B. (2011). The benefits
of interactions with physically present robots over video-displayed agents. Int. J. Soc.
Robotics 3, 41–52. doi:10.1007/s12369-010-0082-7

Butz, C. J., Hua, S., and Maguire, R. B. (2006). A web-based bayesian intelligent
tutoring system for computer programming. Web Intell. Agent Syst. Int. J. 4, 77–97.

Cen, H., Koedinger, K., and Junker, B. (2006). “Learning factors analysis–a general
method for cognitive model evaluation and improvement,” in International conference
on intelligent tutoring systems (Springer), 164–175.

Cen, H., Koedinger, K., and Junker, B. (2008). “Comparing two irt models for
conjunctive skills,” in International conference on intelligent tutoring systems (Springer),
796–798.

Chen, H., Park, H. W., and Breazeal, C. (2020). Teaching and learning with
children: impact of reciprocal peer learning with a social robot on children’s learning
and emotive engagement. Comput. Educ. 150, 103836. doi:10.1016/j.compedu.2020.
103836

Clement, B., Roy, D., Oudeyer, P.-Y., and Lopes, M. (2013). Multi-armed bandits for
intelligent tutoring systems. arXiv preprint arXiv:1310.3174.

Conati, C., Gertner, A., and Vanlehn, K. (2002). Using bayesian networks to manage
uncertainty in student modeling. User Model. user-adapted Interact. 12, 371–417.
doi:10.1023/a:1021258506583

Corbett, A. T., and Anderson, J. R. (1994). Knowledge tracing: modeling the
acquisition of procedural knowledge. User Model. user-adapted Interact. 4, 253–278.
doi:10.1007/bf01099821

David, Y. B., Segal, A., and Gal, Y. K. (2016). “Sequencing educational content in
classrooms using bayesian knowledge tracing,” in Proceedings of the sixth international
conference on learning analytics & knowledge (ACM), 354–363.

Desmarais, M. C., and Baker, R. S. (2012). A review of recent advances in learner and
skill modeling in intelligent learning environments. User Model. User-Adapted Interact.
22, 9–38. doi:10.1007/s11257-011-9106-8

Dzikovska, M., Steinhauser, N., Farrow, E., Moore, J., and Campbell, G. (2014).
Beetle ii: deep natural language understanding and automatic feedback generation for
intelligent tutoring in basic electricity and electronics. Int. J. Artif. Intell. Educ. 24,
284–332. doi:10.1007/s40593-014-0017-9

Elenco (2021). Snap circuits. Available at: https://www.elenco.com/brand/snap-
circuits/ (Accessed September 10, 2019).

Folsom-Kovarik, J. T., Sukthankar, G., and Schatz, S. (2013). Tractable pomdp
representations for intelligent tutoring systems. ACM Trans. Intelligent Syst. Technol.
(TIST) 4, 1–22. doi:10.1145/2438653.2438664

Fournier-Viger, P., Nkambou, R., and Nguifo, E. M. (2010). “Building intelligent
tutoring systems for ill-defined domains,” in Advances in intelligent tutoring systems
(Springer).

Girotto, V., Lozano, C., Muldner, K., Burleson, W., and Walker, E. (2016). “Lessons
learned from in-school use of rtag: a robo-tangible learning environment,” in
Proceedings of the 2016 CHI conference on human factors in computing systems,
919–930.

Gong, Y., Beck, J. E., and Heffernan, N. T. (2010). “Comparing knowledge tracing
and performance factor analysis by using multiple model fitting procedures,” in
International conference on intelligent tutoring systems (Springer), 35–44.

González-Brenes, J., Huang, Y., and Brusilovsky, P. (2014). “General features in
knowledge tracing to model multiple subskills, temporal item response theory, and
expert knowledge,” in The 7th international conference on educational data mining
(University of Pittsburgh), 84–91.

Gordon, G., and Breazeal, C. (2015). “Bayesian active learning-based robot tutor
for children’s word-reading skills,” in Proceedings of the AAAI conference on artificial
intelligence, 29.

Graesser, A. C., Hu, X., Nye, B. D., VanLehn, K., Kumar, R., Heffernan,
C., et al. (2018). Electronixtutor: an intelligent tutoring system with multiple
learning resources for electronics. Int. J. STEM Educ. 5, 15–21. doi:10.1186/s40594-
018-0110-y

Graesser, A. C., VanLehn, K., Rosé, C. P., Jordan, P. W., and Harter, D. (2001).
Intelligent tutoring systems with conversational dialogue. AI Mag. 22, 39.

Henkemans, O. A. B., Bierman, B. P., Janssen, J., Neerincx, M. A., Looije, R.,
van der Bosch, H., et al. (2013). Using a robot to personalise health education
for children with diabetes type 1: a pilot study. Patient Educ. Couns. 92, 174–181.
doi:10.1016/j.pec.2013.04.012

Janssen, J. B.,Wal, C. C., Neerincx, M. A., and Looije, R. (2011). “Motivating children
to learn arithmetic with an adaptive robot game,” in International conference on social
robotics (Springer), 153–162.

Jones, A., Bull, S., and Castellano, G. (2018). “i know that now, i’m going to learn
this next” promoting self-regulated learning with a robotic tutor. Int. J. Soc. Robotics 10,
439–454. doi:10.1007/s12369-017-0430-y

Kullback, S., and Leibler, R. A. (1951). On information and sufficiency. Ann. Math.
statistics 22, 79–86. doi:10.1214/aoms/1177729694

Lan, A. S., and Baraniuk, R. G. (2016). A contextual bandits framework for
personalized learning action selection. EDM, 424–429.

Leyzberg, D., Spaulding, S., Toneva, M., and Scassellati, B. (2012). The physical
presence of a robot tutor increases cognitive learning gains. Proc. Annu. Meet. cognitive
Sci. Soc. 34.

Liu, Q., Shen, S., Huang, Z., Chen, E., and Zheng, Y. (2021). A survey of knowledge
tracing. arXiv preprint arXiv:2105.15106.

Mayo, M., Mitrovic, A., and McKenzie, J. (2000). “Capit: an intelligent tutoring
system for capitalisation and punctuation,” in Proceedings international workshop on
advanced learning technologies. IWALT 2000. Advanced learning Technology: design and
development issues (IEEE), 151–154.

Metcalfe, J., and Kornell, N. (2005). A region of proximal learning model of study
time allocation. J. Mem. Lang. 52, 463–477. doi:10.1016/j.jml.2004.12.001

Milliken, L., andHollinger, G. A. (2017). “Modeling user expertise for choosing levels
of shared autonomy,” in 2017 IEEE international conference on robotics and automation
(ICRA) (IEEE), 2285–2291.

Murray, R. C., and VanLehn, K. (2006). “A comparison of decision-theoretic, fixed-
policy and random tutorial action selection,” in International conference on intelligent
tutoring systems (Springer), 114–123.

Niehaus, J. M., Li, B., and Riedl, M. (2011). “Automated scenario adaptation
in support of intelligent tutoring systems,” in Twenty-fourth international FLAIRS
conference.

Pardos, Z., Heffernan, N., Ruiz, C., and Beck, J. (2008). “The composition effect:
conjuntive or compensatory? an analysis of multi-skill math questions in its,” in
Educational data mining 2008.

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2023.1249241
https://doi.org/10.1126/science.228.4698.456
https://doi.org/10.1207/s15327809jls0402_2
https://doi.org/10.1007/s12369-010-0082-7
https://doi.org/10.1016/j.compedu.2020.103836
https://doi.org/10.1016/j.compedu.2020.103836
https://doi.org/10.1023/a:1021258506583
https://doi.org/10.1007/bf01099821
https://doi.org/10.1007/s11257-011-9106-8
https://doi.org/10.1007/s40593-014-0017-9
https://www.elenco.com/brand/snap-circuits/
https://www.elenco.com/brand/snap-circuits/
https://doi.org/10.1145/2438653.2438664
https://doi.org/10.1186/s40594-018-0110-y
https://doi.org/10.1186/s40594-018-0110-y
https://doi.org/10.1016/j.pec.2013.04.012
https://doi.org/10.1007/s12369-017-0430-y
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1016/j.jml.2004.12.001
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Salomons and Scassellati 10.3389/frobt.2023.1249241

Pavlik, P. I., Jr, Cen, H., and Koedinger, K. R. (2009). Performance factors analysis–a
new alternative to knowledge tracing. Online Submission.

Pelánek, R. (2017). Bayesian knowledge tracing, logistic models, and beyond: an
overview of learner modeling techniques. User Model. User-Adapted Interact. 27,
313–350. doi:10.1007/s11257-017-9193-2

Piech, C., Spencer, J., Huang, J., Ganguli, S., Sahami,M., Guibas, L., et al. (2015).Deep
knowledge tracing. arXiv preprint arXiv:1506.05908.

Rafferty, A. N., Brunskill, E., Griffiths, T. L., and Shafto, P. (2016). Faster teaching via
pomdp planning. Cognitive Sci. 40, 1290–1332. doi:10.1111/cogs.12290

Ramachandran, A., Huang, C.-M., Gartland, E., and Scassellati, B. (2018). “Thinking
aloud with a tutoring robot to enhance learning,” in Proceedings of the 2018 ACM/IEEE
international conference on human-robot interaction, 59–68.

Ramachandran, A., Sebo, S. S., and Scassellati, B. (2019). Personalized robot
tutoring using the assistive tutor pomdp (at-pomdp). Proc. AAAI Conf. Artif. Intell. 33,
8050–8057. doi:10.1609/aaai.v33i01.33018050

Salomons, N., Akdere, E., and Scassellati, B. (2021). “Bkt-pomdp: fast action selection
for user skill modelling over tasks with multiple skills,” in International joint conference
on artificial intelligence.

Salomons, N., Pineda, K. T., Adéjàre, A., and Scassellati, B. (2022a). ““we make a
great team!”: adults with low prior domain knowledge learn more from a peer robot
than a tutor robot,” in 2022 17th ACM/IEEE international conference on human-robot
interaction (HRI) (IEEE), 176–184.

Salomons, N., Wallenstein, T., Ghose, D., and Scassellati, B. (2022b). “The impact
of an in-home co-located robotic coach in helping people make fewer exercise
mistakes,” in 2022 31st IEEE international conference on robot and human interactive
communication (RO-MAN) (IEEE), 149–154.

Schadenberg, B. R., Neerincx,M. A., Cnossen, F., and Looije, R. (2017). Personalising
game difficulty to keep children motivated to play with a social robot: a bayesian
approach. Cognitive Syst. Res. 43, 222–231. doi:10.1016/j.cogsys.2016.08.003

Schodde, T., Bergmann, K., and Kopp, S. (2017). “Adaptive robot language tutoring
based on bayesian knowledge tracing and predictive decision-making,” in Proceedings
of the 2017 ACM/IEEE international conference on human-robot interaction, 128–136.

Short, E., Swift-Spong, K., Greczek, J., Ramachandran, A., Litoiu, A., Grigore, E.
C., et al. (2014). “How to train your dragonbot: socially assistive robots for teaching
children about nutrition through play,” in The 23rd IEEE international symposium on
robot and human interactive communication (IEEE), 924–929.

Szafir, D., and Mutlu, B. (2012). “Pay attention! designing adaptive agents that
monitor and improve user engagement,” in Proceedings of the SIGCHI conference on
human factors in computing systems, 11–20.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent
tutoring systems, and other tutoring systems. Educ. Psychol. 46, 197–221.
doi:10.1080/00461520.2011.611369

Vollmer, A.-L., Wrede, B., Rohlfing, K. J., and Oudeyer, P.-Y. (2016).
Pragmatic frames for teaching and learning in human–robot interaction:
review and challenges. Front. neurorobotics 10, 10. doi:10.3389/fnbot.
2016.00010

Wainer, J., Feil-Seifer, D. J., Shell, D. A., and Mataric, M. J. (2007). “Embodiment
and human-robot interaction: a task-based perspective,” in RO-MAN 2007-the 16th
IEEE international symposium on robot and human interactive communication (IEEE),
872–877.

Weisler, S., Bellin, R., Spector, L., and Stillings, N. (2001). L’Aquila, Italy.An inquiry-
based approach to e-learning: the chat digital learning environment. In Proceedings of
SSGRR-2001. Scuola superiore G. Reiss romoli.

Xu, Y., and Mostow, J. (2011). “Using logistic regression to trace multiple sub-skills
in a dynamic bayes net,” in Edm (Citeseer), 241–246.

Yudelson,M. V., Koedinger, K. R., and Gordon, G. J. (2013). “Individualized bayesian
knowledge tracing models,” in International conference on artificial intelligence in
education (Springer), 171–180.

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2023.1249241
https://doi.org/10.1007/s11257-017-9193-2
https://doi.org/10.1111/cogs.12290
https://doi.org/10.1609/aaai.v33i01.33018050
https://doi.org/10.1016/j.cogsys.2016.08.003
https://doi.org/10.1080/00461520.2011.611369
https://doi.org/10.3389/fnbot.2016.00010
https://doi.org/10.3389/fnbot.2016.00010
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Background
	2.1 Domains
	2.2 User skill modelling
	2.3 Action selection during tutoring

	3 Time-dependant Bayesian knowledge tracing
	3.1 Bayesian knowledge tracing
	3.1.1 Mastery probability initialization
	3.1.2 Mastery probability update
	3.1.3 Transition probability

	3.2 Bayesian knowledge tracing limitations
	3.3 TD-BKT
	3.3.1 Probability of an observation
	3.3.2 Attempted probability
	3.3.3 Mastery probability initialization
	3.3.4 Mastery probability update
	3.3.5 Derivations

	4 Comparison to traditional methods
	5 Simulation
	5.1 Experiment 1: user skill modeling
	5.2 Experiment 2: skill modeling with teaching

	6 User study
	6.1 Robot system
	6.2 Task selection
	6.3 Finished signal
	6.4 Pre-test and post-test
	6.5 Results

	7 Discussion
	7.1 Time-dependant—Bayesian knowledge tracing
	7.2 Attempted parameter
	7.3 Limitations
	7.4 Applications

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

