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Introduction: As a result of Industry 5.0’s technological advancements,
collaborative robots (cobots) have emerged as pivotal enablers for refining
manufacturing processes while re-focusing on humans. However, the successful
integration of these cutting-edge tools hinges on a better understanding
of human factors when interacting with such new technologies, eventually
fostering workers’ trust and acceptance and promoting low-fatigue work. This
study thus delves into the intricate dynamics of human-cobot interactions by
adopting a human-centric view.

Methods: With this intent, we targeted senior workers, who often contend
with diminishing work capabilities, and we explored the nexus between various
human factors and task outcomes during a joint assembly operation with a
cobot on an ergonomic workstation. Exploiting a dual-task manipulation to
increase the task demand, we measured performance, subjective perceptions,
eye-tracking indices and cardiac activity during the task. Firstly, we provided
an overview of the senior workers’ perceptions regarding their shared work
with the cobot, by measuring technology acceptance, perceived wellbeing,
work experience, and the estimated social impact of this technology in the
industrial sector. Secondly, we asked whether the considered human factors
varied significantly under dual-tasking, thus responding to a higher mental load
while working alongside the cobot. Finally, we explored the predictive power of
the collected measurements over the number of errors committed at the work
task and the participants’ perceived workload.

Results: The present findings demonstrated how senior workers exhibited strong
acceptance and positive experiences with our advanced workstation and the
cobot, even under higher mental strain. Besides, their task performance suffered
increased errors and duration during dual-tasking, while the eye behavior
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partially reflected the increased mental demand. Some interesting outcomes
were also gained about the predictive power of some of the collected indices
over the number of errors committed at the assembly task, even though the same
did not apply to predicting perceived workload levels.

Discussion: Overall, the paper discusses possible applications of these results in
the 5.0 manufacturing sector, emphasizing the importance of adopting a holistic
human-centered approach to understand the human-cobot complex better.

KEYWORDS

human factors, ergonomic workstations, collaborative robots, mental workload,
psychophysiology

1 Introduction

The rapid evolution of technology has had a profound impact on
the manufacturing industry. Specifically, collaborative robotics (or
cobotics) has gained attention for increasing accuracy and efficiency
in manufacturing activities (Liu et al., 2022; Lorenzini et al., 2023).
In this framework, innovations such as the Internet of Things (IoT)
and the Industrial Internet of Things (IIoT) have enabled data-
sharing between tools, sensors, and actuators, optimizing working
activities and predicting maintenance needs (Wollschlaeger et al.,
2017; Khan and Javaid, 2022). Artificial Intelligence (AI) is also
being leveraged to enhance processes and ensure quality control
(Jan et al., 2022; Morandini et al., 2023), while Big Data analytics is
being used to identify trends and support supply chainmanagement
(Bag et al., 2020; Koot et al., 2021). Despite these technologies have
a clear relevance for the manufacturing sector, their introduction
into the industrial routines needs to be carefully implemented to
avoid a low level of workers’ acceptance (Lu et al., 2022) and trust
(Charalambous et al., 2016) towards such working technologies,
that would otherwise result in a reduced use. Eventually, operators
need to understand that these recent and advanced tools have
not been considered as a replacement but instead as a support in
carrying out the daily working activities.

The shift in the conceptualization from Industry 4.0–5.0 has in
fact brought to light the centrality of human beings, their individual
characteristics and needs (e.g., ageing and consequent physical or
cognitive decline). In this view, besides the strong interest in the
digital transition, the introduction of cutting-edge hardware and
software solutions and AI-driven technologies must be carefully
considered, on the one hand, to support efficient and flexible
industrial productivity, and on the other hand, to back individuals
and society. To pursue the latter point, technologies must adapt to
the needs and individual features of industrial workers (Lu et al.,
2021; Lu et al., 2022), while adhering to the principles of social
fairness and sustainability inherent in Industry 5.0 (Xu et al., 2021;
Huang et al., 2022; Ivanov, 2023). This human-centric approach is
also endorsed by the European Commission (Breque et al., 2021)
and is essential for creating accessible, inclusive, and safe working
environments that enhance physical and mental health, wellbeing,
and the quality of working life.

In the manufacturing sector specifically, advanced ergonomic
workstations and collaborative robots play a pivotal role in this
shift toward a human-centric focus. These enabling technologies are
designed to work alongside human operators, providing ergonomic

features and promoting user-centered design (Panchetti et al., 2023).
In cobotics, operators and cobots share time andworkspace, directly
interacting to perform tasks (Hopko et al., 2022). The introduction
of these technologies typically increases acceptance, intention of
usage, and actual usage among end users (Weiss and Huber, 2016;
Meissner et al., 2020).

These advanced workstations offer various ergonomic features,
such as adjustable height, smart lighting, pick-to-light systems, and
torque reaction arms to improve the operator’ comfort, safety and
acceptability. Furthermore, there are relevant differences between
traditional robots and cobots. For instance, traditional industrial
robots do not allow the human-robot direct physical interaction,
and therefore do not need any safety features to ensure the
physical integrity of the worker. Differently, cobots allow a shared
workspace and close actions of humans and cobots. To ensure
workers’ safety when closely interacting with these technologies,
cobots are equipped with several sensors (e.g., proximity, smart
cameras) and safety features (i.e., force and speed limiting and
collision avoidance systems; Sherwani et al., 2020). This heightened
level of safety measures enables cobots to interact securely with
human workers in close proximity. They effectively bridge the
divide between the physical limitations that traditional industrial
robots entail. By assuming responsibility for physically demanding
and repetitive tasks while concurrently minimizing the risks of
errors, waste, injuries, and accidents, cobots reveal their substantial
advantages for human workers, with particular significance for
senior workers.

The human-cobot framework is thus characterized by a
symbiotic relationship that combines human expertise, creativity,
and the ability to handle unforeseen situations, in conjunction with
the precision and unwavering performance of robots. According to
Kopp et al. (2021), the effectiveness of a human-cobot dyad can be
influenced by three elements: worker’s skills, cobot performance,
and their mutual interaction. Remarkably, there is recent literature
that highlights how, by bringing the focus on humans within
the human-cobot interplay, the study and assessment of human
factors become essential. For instance, Paliga and Pollak (2021)
and Paliga (2022), proposed the concept of fluency in human-robot
collaboration, which seeks to replicate the seamless interactions
observed in human teams. Furthermore, physical ergonomics, trust,
acceptance, user experience and usability of these working tools, and
the level of operators’ mental workload are crucial aspects that must
be measured in order to introduce cutting-edge workstations and
collaborative robotics in the workplace effectively (for a review, see

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2023.1275572
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Pluchino et al. 10.3389/frobt.2023.1275572

Faccio et al., 2023). All these factors, along with the aging factor
that is central in our investigation, are detailed in the following
paragraphs.

Concerning physical ergonomics, researchers such as
Gualtieri et al. (2021) and Gaultieri et al. (2020a) have explored the
assessment of anthropometric data, focusing on workbench heights
and the positions of tools, including dispensers. To accomplish this,
both virtual and real prototypes have been employed to determine
the correct positioning of workers’ arms, shoulders, and backs,
often using wearable devices. The objective was to mitigate the
risk of musculoskeletal problems (Colim et al., 2021a). In certain
scenarios, these ergonomic risks can be alleviated by delegating
specific assembly phases to robotic counterparts, thereby reducing
the strain on operators’ hands and wrists (Colim et al., 2021b). This
approach not only lessens physical fatigue but also optimizes overall
body posture (Lorenzini et al., 2019). Further research underscored
the significance of task allocation and increased collaboration with
cobots in comparison to entirely manual work processes (Liau and
Ryu, 2020). Ultimately, reducing physical risks for workers can
be achieved by entrusting manual handling of heavy components
and repetitive tasks to collaborative robots (Gualtieri et al., 2020b;
Cardoso et al., 2021).

Other fundamental factors to account for are trust and
acceptance of cobots (Rossato et al., 2021a; Panchetti et al., 2023).
In fact, these working tools can be seen as a threat or an opportunity.
The former can lead, for example, to a reduction in work motivation
related to the fear of employment loss, while the latter can be
characterized, for instance, by a decrement of physical and mental
strain (Meissner et al., 2020). Furthermore, research suggests that
cobots must be related to a positive working experience and
characterized by high levels of usability to influence the perceptions
of workers favorably (Hopko et al., 2022; Faccio et al., 2023), for
example, by permitting the workers to customize the cobot behavior
(e.g., speed, type of interaction; Fraboni et al., 2022) or choosing the
interaction modality (i.e., direct physical interaction or mediated
by a control interface; Rossato et al., 2021a). Nonetheless, so far,
there are more studies focusing on the acceptance of healthcare and
assistive robots but yet not enough research in the industrial domain
(Savela et al., 2018).

Concerning the human mental/cognitive workload
(Van Acker et al., 2018), previous studies have quantified this
factor by processing various psychophysiological indices that can
affect human-cobot interactions or by collecting and analyzing
self-reports. For instance, some researchers have considered
indices related to eye behavior, such as fixation duration/number
(Matthews et al., 2015; Wu et al., 2020) or blink rate/duration
(Nenna et al., 2023). Others have analyzed cardiac activity, for
example, heart rate or heart rate variability (Charles and Nixon,
2019; Lagomarsino et al., 2022; Lin and Lukodono, 2022), which can
reflect fluctuations in the level of mental workload while performing
working tasks. To explore the mental workload in experimental
settings, the scientific literature has outlined how the manipulation
of experimental tasks (e.g., dual task, time pressure, etc.) can induce
elevated levels of mental load and negatively influence participants’
performance and subjective experiences (Galy and Mélan, 2015;
Shaw et al., 2018; Vasquez et al., 2019). Similarly, the subjective
perception of participants’ cognitive workload (i.e., NASA-TLX;
Chacón et al., 2021; Rossato et al., 2021a) or the decrement in

work performance are also typically used for measuring the human
mental/cognitive load. For instance, longer time on task or higher
error rate are indicative of increased mental demand (Rossato et al.,
2021a; De Simone et al., 2022; Fraboni et al., 2022; Panchetti et al.,
2023).

Finally, considering the extension of working life, the age of
operators (i.e., >50–55 years) is a human factor that is recently
gaining increasing importance. This element can significantly
influence operators’ perception and interaction with cutting-edge
working tools such as cobots. Several studies have investigated
the senior workers-cobot interaction and overall experience
(Bogataj et al., 2019; Rossato et al., 2021a). Bogataj et al. (2019)
outlined the need to invest in workplace ergonomics and cobots
to reduce the fatigue and mental stress of old operators, which
can mitigate the decrement in their working abilities (e.g., speed,
physical strength). A recent literature review (Calzavara et al., 2020)
described several benefits related to the introduction of cobots
considering the management of ageing workforce. Specifically, they
mentioned how simplifying tasks, assigning to cobots the non-
ergonomic activities, and enhancing the quality of work output
(i.e., human-cobot co-monitoring) are the most beneficial aspects.
Rossato et al. (2021a) showed that senior workers perceived the
cobot as more supportive than a sample of adult workers. These last
reported high levels of satisfaction, cobot’s perceived ease of use,
and besides high pleasantness when they had the opportunity of
interacting physically with it. Recent studies (Rossato et al., 2021a;
Rossato et al., 2021b), reported various primary elements that can
affect the aged operators’ acceptance of advanced workstations
equipped with cobots, such as perceived utility, sense of safety,
and the need for proper training to use these technologies. Indeed,
operators’ ageing can make it difficult to ensure high knowledge and
skills to deal with advanced technologies.

Taking all this, the main objectives of the present study are
to: a) evaluate the subjective perceptions of senior workers in
terms of technology acceptance (before and after both post-tests),
perceived wellbeing and working experience with an advanced
workstation and a cobot and the estimated social impact of this
integrated working technology in the industrial sector; b) assess
whether the human factors considered in the present research (i.e.,
task performance, subjective perceptions, eye tracking indices and
cardiac activity) variate significantly under dual-tasking (i.e., under
higher mental load); c) explore the predictive power of the collected
measurements over the number of errors committed at thework task
and over the perceivedmental demand. For clarity, we have provided
a table (i.e., Table 1) collecting all the acronyms used along the paper.

2 Materials and methods

The study was carried out with ethical committee approval by
the Ethics Committee of the Human Inspired Technology Research
Centre (HIT) (Protocol number: n.2019_58).

2.1 Participants

Fifteen workers (Mage = 55.21, SDage = 3.65, F = 4) were
recruited for the experiment. The inclusion criteria were that the
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TABLE 1 Acronyms used along the paper.

Full term Acronym

Collaborative robots cobots

Internet of Things IoT

Industrial Internet of Things IIoT

Collaborative robotics Cobotics

Artificial Intelligence AI

Assistive Assembly System AAS

Smart Manufacturing Manager SMM

Hardware HW

Software SW

Heart Rate HR

age was equal to or higher than 50 years old, normal or corrected-
to-normal vision, and no heart diseases, and that participants
were active workers in the industrial domain. Participants received
compensation for partaking in the trial (i.e., 25 euros). Eleven
participants (Mage = 54.72, SDage = 4.05, F = 4) were considered
in the statistical analyses. Indeed, four participants were excluded
for low accuracy of the eye-tracking and/or cardiac activity data.
Participants were recruited by an agency, that was a sub-contractor
of the Co-Adapt H2020 EU project, with experience in recruiting
senior workers within the industrial/artisanal sectors.

2.2 Experimental design

A within-participants design was adopted for the experiment.
All participants had to accomplish a single and a dual task (counter-
balanced order). Following a dual task paradigm, we manipulated
the task difficulty (i.e., independent variable) by adding a secondary
task (i.e., mathematical) to the main one (i.e., assembling task).

2.3 Tasks

In the single task condition, participants had to accomplish an
assembly task conceived in collaboration with BNP Srl company
to have an ecological working activity carried out in a laboratory
setting. Typically, an assembly task is amanufacturing or production
process that involves the assembly of various components, parts or
materials to create a finished products or subassembly. The same
assembly task was performed four consecutive times.

In the first step, following the instructions presented on the
monitor, participants had to choose a green plate (step 1; i.e., a green
metallic plate, “Retrieve a green plate”) and manually tighten the
screws (step 2; i.e., “Pick up and screw in six pillars and six screws onto
the green plate, taking them one at a time from the steel tray. Ensure
with your hands that all six pillars are tightened”). Next, they had to
place the plate inside a specific area delimited by pieces of plexiglass

tightened with screws on the workbench (step 3; i.e., “Position the
green plate between the stops on the right side of the table. Press the
“next” button at the top right of the workstation screen”; Figure 1).

Then participants had to choose a transparent plate (step 4; i.e.,
“Take a transparent plate”) and place it in the cobot’s area (step
5; “Place it below the cobot on the supports”) on two supports.
Following, they had to pick up a black plastic plate (step 6; i.e.,
“Retrieve a black plastic mold with the same letter as the green plate”)
and a set of colored plastic pieces (step 7) to form a puzzle (step 8; i.e.,
“Complete the puzzle using the components in the blue boxes following
the pattern in the illustration” Figure 2), while the cobot pretended
to glue the transparent plate.

When the cobot finished its task, it passed the transparent plate
to the participants (step 9; i.e., “Take the transparent cover that the
robot brought to you. Press the “next” button at the top right of the
workstation screen”). They placed it on the semi-assembled block of
components (step 10). Finally, senior workers picked a red metallic
plate (step 11; i.e., “Retrieve a red plate with the corresponding letter
and position it above the semi-assembled block of components and
press the “next” button at the top right of the workstation screen”)
and used an electric screwdriver to tighten the screws following
a specific sequence detailed in the instructions presented on the
AssistiveAssembly System (AAS)monitor (step 12–13; i.e., “Retrieve
the screws one at a time from the steel tray and perform the screwing in
the indicated order and use the screwdriver located on the arm to your
right and press the finish buttonwhen you have completed the screwing
task”). The final assembled object is depicted in Figure 3 (step 13).

In the dual task condition, participants had to carry out a
mathematical task aloud simultaneously. They had to subtract seven
from 800 and again from the result until the main assembly task
was completed (4 times). We asked participants to be accurate and
fast as much as possible while performing both experimental tasks.
A familiarization phase (see Procedure Section 2.5 for details) was
considered for both types of tasks (i.e., assembly and mathematical).

2.4 Equipment and materials

An advanced workstation equipped with a collaborative robot
(Assistive Assembly System; AAS) was exploited in the experiment.
The integrated working tool is graphically depicted in Figure 4. The
collaborative robot is installed aside from the workbench.

The AAS comprises several hardware (HW) and software (SW)
components as follows:

HW:

• collaborative robot (Universal Robot UR10e) with its teach
pendant (control interface);

• adaptive workbench with adjustable height;
• smart lighting system;
• gesture detection and safety smart camera;
• LCD touch screen (on which the task instructions were

displayed);
• force reaction system and a comfortable electric tightener;
• RGB Pick-to-Light smart system;
• Wearable eye-tracking glasses;
• Amplifier and non-invasive surface electrodes for monitoring

cardiac activity.
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FIGURE 1
Participants had to choose the metallic plate (1), tighten the screws (2), and place the first plate on the AAS workbench (3).

FIGURE 2
Participants chose a transparent plate (4), placed the plate in the cobot area (5), picked up the plastic plate (6) and pieces (7), and formed a puzzle (8).

SW:

• Smart Manufacturing Manager (SMM), offering real-time
interactive multimedia instructions;

• Integration of the eye-tracking and physiological software
API/SDK for synchronizing the data acquisition.

We utilized a collaborative robot (UNIVERSAL ROBOT;
UR10e) which adheres to a stringent set of safety standards as
outlined in ISO/TS 15066:2016, making it suitable for operation in

close proximity to human workers. It boasts a considerable payload
capacity of 10 kg and exhibits remarkable versatility in reaching
diverse positions on the workbench. The robot system comprises a
robotic arm, complemented by a user-friendly interface installed in a
“teach pendant”, i.e., a tablet device.This interface empowers users to
establish virtual boundaries around the cobot, serving as a proactive
safety measure to prevent inadvertent collisions with other objects
or surfaces. Besides, the UR10e is equipped with an automatic safety
feature that halts itsmovement if any attempt ismade to breach these
pre-defined safety boundaries. In this particular setup, we employed
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FIGURE 3
Cobot passed the plate to the participants (9), they placed the plate on the semi-assembled piece (10), took a red metallic plate (11), and tightened the
screws (12–13).

FIGURE 4
The Assembly Workstation with cobot, eye tracker, and surface
electrodes on the workbench.

a gripper as the end effector, facilitating the robot’s capability to grasp
and release assembly components. The teach pendant permitted the
programming of all the cobot movements in the collaborative task.

Besides, participants wore a pair of eye-tracking glasses (i.e.,
Pupil Labs; maximum sampling frequency of 120 Hz, accuracy of
0.5 visual angle degrees) during the whole experimental session.
This tool allowed the collection of fixations and blinks data (i.e.,
duration and frequency) and pupil diameter. An MSI laptop (Intel
Core i7-6700HQ, screen resolution 1920 × 1080) was connected

using a USB cable to the eye-tracking glasses, permitted to perform
the calibration phases and store the eye-tracking data.

A portable amplifier (ProComp5 Infiniti; © 2022 Thought
Technology Ltd.) and its software (i.e., BioGraph Infiniti; © 2022
Thought Technology Ltd.) installed on a second MSI laptop (Intel
Core i7-6700HQ, screen resolution 1920 × 1080) were utilized to
gather physiological data related to the cardiac activity.The amplifier
comprises five channels (i.e., it can record up to 2,048 Hz). For the
present purpose surface electrodes were used, and the sampling rate
was set at 256 Hz.

Two 4K cameras (Value HD Corporation©) were positioned
in the laboratory to allow the video recordings (acquired with the
software WMIX HD Edition) of all the experimental sessions.

Recording user interactions with technology in complex
settings, such as workplaces, has been widely embraced (Heath
and Luff, 2018; Blackler et al., 2018). Researchers can scrutinize
the recorded behaviors pertinent to their investigations, employing
lucid, observable criteria to ensure impartiality and mitigate bias
(Bakeman and Quera, 2012; Guo et al., 2015).

The WMIX HD Edition software was employed to process
and synchronize footage captured by each camera resulting
in a unified video. Subsequently, these videos were imported
into BORIS software, and a coding scheme was independently
devised by two researchers based on the observed behavioral
patterns. Discrepancies were addressed through discussion, thereby
diminishing subjectivity. Subsequent analysis, executed with the
concurred-upon coding framework, revealed that certain manual
errors (e.g., errors in selecting the correct plates; screw tightening
sequence) were infrequently committed by participants. For this
reason, the errorswere included in a single final category.The refined
coding scheme is presented in Table 2.
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TABLE 2 Coding scheme.

Coded event Description

Time on task The time spent in completing each task (i.e., single
task, dual task)

Error in the assembly
process

These errors occurred each time the participant
failed in some operations of the assembly process

Error in the math task These errors occurred each time the participant
failed in the -7 task

The following self-reported tools were administered:

• Demographic questionnaire (PRE), this tool aimed at collecting
background information (e.g., gender, age, experience with
collaborative robots, etc.).

• NASA-TLX (POST), the NASA-Task Load Index (Hart and
Staveland, 1988; Hart, 2006) was used for assessing the task
load in the different experimental sessions. This tool comprises
the following six sub-scales: mental, physical, and temporal
demands, perceived performance, effort, and frustration. Each
sub-scale presents a response based on a 20-step bipolar
scale (i.e., range: 5–100). It is possible to evaluate each scale
(Galy et al., 2018) independently or consider an overall score by
merging the scores of the individual scales.

• TAM 3 (PRE-POST). We adapted the TAM3 questionnaire
(Venkatesh and Bala, 2008) considering 16 items and the
following constructs: Perceived Usefulness (PU; 4 items),
Perceived Ease of Use (PEOU; 4 items), Perception of External
Control (PEC; 3 items), Perceived Enjoyment (PE; 3 items), and
Behavioral Intention (BI; 2 items). All itemsweremeasured on a
7-point Likert scale (i.e., from 1, strongly disagree, to 7, strongly
agree).

• Ad hoc wellbeing and working experience questionnaire
(PRE-POST). This instrument comprises a total of 14 items
considering the following dimensions: work satisfaction (4
items), motivation (3 items), engagement (3 items), and overall
working experience (4 items). A 5-point scale was used to
respond (i.e., from 1, not at all, to 5, extremely).

• Social impact (PRE-POST). This dimension was assessed
utilizing a single item (Gervasi et al., 2020). We asked, “which
will be the introduction of our workstation in the industrial
sector?”. The response options were: it will cause the dismissal
of workers; it will positively affect the working activities but it
will not cause the dismissal of workers; and it will not produce
any effect on the working activities.

2.5 Procedure

The experimental sessions were carried out in a quiet
and isolated laboratory. Upon participants’ arrival they were
administered with the informed consent and an informative note.
They had to fill out a battery of pre-test questionnaires (i.e.,
demographic, TAM 3, Social impact, and Wellbeing and working
experience).

According to Rossato et al. (2021a), the height of the workbench,
where participants were asked to accomplish the various tasks,

was meticulously adjusted to conform with precise ergonomic
standards, such as ensuring that the workbench’s height corresponds
to the height of the bent elbow aligned parallel to the ground,
minus 150 mm. Afterward, participants were asked if they found
comfortable the workbench height to reach various locations shown
by the experimenter, that were linked to the actual assembly activity
and to use the tools of the workstation (e.g., electric tightener).
Thus, in case of an affirmative response the first set of pre-recorded
instructions was presented. This information was provided prior
to each experimental condition. Nevertheless, researchers were
available to clarify any doubt to participants.

A familiarization phase (10–15 min) allowed participants to
learn how to perform the assembly task utilizing the cobot,
the Smart Manufacturing Manager (SMM) control interface, and
the electric tightener. Following this, the experimenter helped
participants wearing eye-tracking glasses, and three non-invasive
surface electrodes were placed on their chests. The eye tracker was
calibrated following a standard procedure using external markers.
Afterward, participants were still maintaining their gaze on a cross
made of two tapes that were located on a wall at a specific distance
from the chair (2.5 m). This phase was carried out to acquire the
baseline of their gaze behavior and cardiac activity in a resting
condition. The baseline permitted in the pre-processing phase to set
the threshold for considering an eye closure as a blink and to avoid
artifacts in the data (e.g., not a real blink but a moment in which the
eye was ajar).

After the baseline, participants began the experimental tasks.
The first condition (e.g., single task) was equal for all participants.
They had to perform an assembly activity utilizing the AAS
equal to the task of the familiarization phase four consecutive
times. In the second condition (e.g., dual task), participants
had to simultaneously perform a secondary task: mathematical
counting. Participants while performing the assembly task, had
to simultaneously subtract seven from 800 and again from the
obtained result up to when they accomplished 4 times the assembly
task. At the end of each condition, a set of questionnaires was
administered. Participants had to complete the NASA-TLX, TAM3,
and the Social Impact questionnaire. Single and dual task were
counterbalanced across participants (i.e., a sub-group of participants
performed first the single task, and then the dual task the other
sub-sample first accomplished the dual task and then the single
task). Participants carried out the various assembly tasks without
speed pressure or a pre-specified time interval. Additionally, to
mitigate fatigue-related effects, scheduled intervals of rest were
incorporated between the completion of the questionnaires and the
beginning of the subsequent task, which were tailored to the needs
of each participant. The overall experiment lasted around 45 min. A
graphical depiction of the procedure is presented in Figure 5.

2.6 Measures

The following dependent variables were considered, related
respectively to performance, subjective perceptions, eye behavior,
and cardiac activity:

• Performance (i.e., nº of errors in the assembly and percentage
of accuracy in the mathematical task, time on task in sec);
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FIGURE 5
Experimental procedure.

• Pre- and Post-test questionnaires scores (e.g., NASA-TLX,
acceptance, wellbeing and working experience);

• Fixations duration (ms) and frequency (min);
• Blinks duration (ms) and frequency (min);
• Heart Rate (HR; bpm).

3 Results

For the sake of brevity, in the following sections, only the
analyses that showed significant differences among the experimental
conditions are reported. All analyses were conducted using the
software RStudio (R Core Team, 2022).

In the case of data normally distributed, ANOVA analyses
were performed. Differently, non-parametric (i.e., Wilcoxon tests)
analyses were considered, and the Benjamini and Hochberg (1995)
correction was applied to adjust p-values. Regarding the parameters
enclosed in parentheses, we provide the following explanations for
clarity: t/V = respectively the value of a t-test or Wilcoxon test; d =
Cohen’s d effect size value; r = effect size value for Wilcoxon tests
(Field et al., 2012; Page 665); and R2 = r-squared of the model.

3.1 Performance

3.1.1 Errors
A difference emerged (t = −2.87, df = 10, p < 0.05, d = 1.28).

Participants committed a higher number of errors in the dual task
(M = 5.64) compared to the single task (M = 0.81; Figure 6). On
average, participants performed well on the secondary task (M =
77.23%), reflecting the mental workload imposed by the dual task
condition.

FIGURE 6
Mean number of errors in the assembly task as a function of condition.
Note: DT, Dual Task; ST, Single Task.

3.1.2 Time on task
A difference emerged (V = 0, p < 0.001, r = 0.99). Participants

were faster in performing the single task (M = 806.82 s) compared
to the dual task (M = 966.84 s; Figure 7).

3.2 Subjective perceptions

3.2.1 NASA-TLX
Several Wilcoxon tests were carried out considering the NASA-

TLX sub-scales (20-step bipolar scale, range: 5–100). Regarding the
mental demand sub-scale, a difference was highlighted (V = 0, p <
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FIGURE 7
Mean Time on Task (seconds) in the assembly task as a function of
condition. Note: DT, Dual Task; ST, Single Task.

0.05, r = 0.87). Participants reported a higher level of mental load
in the dual task (Mdn = 100) compared to the single task (Mdn =
45). Besides, considering the effort sub-scale, a differencewas shown
(V = 0, p < 0.05, r = 0.79). Senior workers reported a higher effort in
the dual task (Mdn = 95) compared to the single task (Mdn = 60).

3.2.2 TAM
Nodifferences emerged considering all the TAMdimensions (all

ps > 0.05). Nevertheless, Table 3 shows that all the mean and median
(in parentheses) scores were above the scale median (i.e., 4; 7-point
Likert Scale, strongly disagree-strongly agree).

3.2.3 Ad hoc wellbeing and working experience
No differences emerged considering all the dimensions (all ps

> 0.05). Mean and median (in parentheses) scores are reported
in Table 4. Wellbeing and working experience questionnaire (scale
median = 3; 5-point scale, not at all-extremely).

3.2.4 Social impact
Overall, participants reported a positive perception regarding

the potential effect of introducing an AAS equipped with a cobot
in an Industrial context. Indeed, more than 90% of the participants
at pre-test and both post-tests choose “it will positively affect the
working activities, but it will not cause the dismissal of workers.”
Only 10% of participants in both post-tests selected “it will not
produce effects on working activities” (Figure 8).

3.3 Eye tracking

3.3.1 Fixation duration
Considering fixations duration, three t-tests were performed.

No difference emerged between single and dual task conditions
(p > 0.05; respectively, single task: M = 142.15 ms; dual task M =
139.47 ms). Differently, both experimental conditions (resting vs.
single task: t = 5.43, df = 10, p < 0.001, d = 2.47; resting vs. dual task:
t = 5.96, df = 10, p < 0.001, d = 2.58) showed a significant

reduction in the average duration of fixations compared to the
resting condition (M = 325.50 ms).

3.3.2 Fixation frequency
Pertaining to the frequency of fixations, a series of t-tests

did not highlight any difference between single and dual tasks.
The mean fixation frequency per minute was similar among
the resting phase and the experimental conditions (resting:
M = 140.49; single task: M = 146.00; dual task: M = 147.21).

3.3.3 Blink duration
Regarding the blink duration, t-tests were carried out. No

differencewas shownbetween the experimental conditions (p>0.05;
respectively, single task: M = 379.78 ms; dual task: M = 424.69 ms).
Nonetheless, in both experimental conditions (resting vs. single
task: t = −3.06, df = 10, p < 0.05, d = 1.79; resting vs. dual task:
t = −2.39, df = 10, p < 0.05, d = 0.97), the duration of blink was
longer than in the resting condition (M = 239.65 ms).

3.3.4 Blink frequency
Concerning the blink frequency, a differencewas underlined (t =

−5.03, df = 10, p < 0.01, d = 0.70) between experimental conditions.
Participants blinked more frequently in the dual task (M =
23.30 blink/min) compared to the single task (M = 14.87 blink/min;
see Figure 9). Besides, only the dual task condition differed from the
resting conditions (resting:M = 9.12 blink/min; resting vs. dual task:
t = −4.84, df = 10, p < 0.01, d = 1.37).

3.4 Cardiac activity

No difference in heart rate was shown between single and dual
task conditions (p > 0.05). The average heart rate was similar in the
experimental sessions (single task: M = 101.25 bpm; dual task: M =
100.05 bpm), while, both conditions differed from the resting phase
(resting: M = 78.05; resting vs. single task: t = −5.50, df = 10, p <
0.001, d = 1.78; resting vs. dual task: t = −3.01, df = 10, p < 0.05; d =
1.31).

3.5 Multiple linear regressions

A first multiple linear regression analysis was carried out to
assess if the implicit measures (i.e., time on task, fixation duration,
fixation frequency, blink duration, blink frequency, and heart rate)
could predict task accuracy in the assembly task (explicit measure)
including in the model also all the interactions between the implicit
measures and the condition. This model (m1) was overall not
significant [F (13, 8) = 2.41, p = 0.11, R2 = 0.47], although some
of the predictors and interactions were significant. For this reason,
we refined the model (m2) by removing the variables (i.e., time
on task, heart rate) and the corresponding interactions that were
not contributing to the predictive power of the model (James et al.,
2013). The second model was significant (F (9, 12) = 4.68, p < 0.01,
R2 = 0.61). Besides, the reduction in the residual standard error from
m1 tom2 (respectively from 3.24 to 2.76) suggested that m2 is better
fitting the data. We further analyzed the individual predictors. The
fixation duration (B = 0.33, t = 3.78, p < 0.01), fixation frequency
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TABLE 3 TAM questionnaire dimensions and scores.

TAM dimensions Pre-test Post ST Post DT

Mean (Median) Mean (Median) Mean (Median)

Perceived Enjoyment 4.27 (4) 5.45 (6) 4.64 (5)

Perceived Usefulness 5.68 (5.5) 6.41 (6.5) 5.50 (6)

Perceived Ease of Use 4.73 (4.5) 5.95 (6) 4.59 (4.5)

Behavioral Intention 5.82 (6) 6.32 (6.5) 5.64 (6)

Perceived External Control 5.36 (6) 6.00 (6) 5.55 (5)

Note. ST, Single Task and DT, dual task.

TABLE 4 Wellbeing and working experience questionnaire dimensions and scores.

WB Dimensions Pre-test Post ST Post DT

Mean (Median) Mean (Median) Mean (Median)

Motivation 3.14 (3.5) 3.82 (4) 3.50 (3.5)

Engagement 3.18 (3) 3.64 (4) 4.05 (4)

Satisfaction 2.91 (3) 3.91 (4) 3.03 (3)

Work/Task Experience 2.86 (3) 3.59 (3.5) 3.12 (3)

Note. ST, Single Task and DT, dual task.

FIGURE 8
Mean responses (%) concerning the perceived social impact of the
AAS as a function of the experimental phase. Note: PRE, Pre-test; ST,
Single Task; DT, Dual task.

(B = −0.21, t = −4.40, p < 0.001), blink duration (B = 0.02, t = −3.98,
p < 0.01), and blink frequency (B = 0.23, t = 2.84, p < 0.05) were able
to predict the accuracy in the assembly task significantly. Besides,
three significant interactions emerged (Figure 10): fixation duration
X condition (B = −0.34, t = −3.75, p < 0.01), fixation frequency
X condition (B = 0.21, t = 3.72, p < 0.01), and blink duration X
condition (B = 0.02, t = 2.7, p < 0.05).

FIGURE 9
Mean blink frequency/min as a function of condition. Note: REST,
Baseline resting condition; ST, Single Task; DT, Dual Task.

We carried out a second a multiple linear regression analysis to
predict the task performance in terms of time on task on the basis
of the implicit metrics including in the model all the interactions
between the implicit measures and the condition. The first model
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FIGURE 10
Multiple linear regressions showing the predicting power of Fixation duration (A), Fixation Frequency (B), Blink duration (C) over the Number of errors in
the two experimental conditions. Note: DT, Dual task; ST, Single Task; Fix Dur, Fixation Duration; Fix Freq/min, Fixation Frequency; Blink Dur, Blink
Duration.

was overall not significant [F (13, 8) = 1.13, p = 0.44, R2 =
0.08], and all the predictors and interactions were not significant
(all ps > 0.30).

Besides, a series of multiple regressions was performed to
analyze if the implicit measures could predict the scores assigned
to the different NASA-TLX subscales. The outcomes of the
first regression model, which considered mental demand as the
dependent variable, did show a significant collective effect between
the considered predictors [F (15, 6) = 7.64, p < 0.01, R2 = 0.83].
Nonetheless, the predictors or their interactions with the condition
did not predict themental demand scores (all ps > 0.05). Considering
the other multiple linear regressions they did not show collective
effects [i.e., physical demand: F (15, 6) = 0.97, p > 0.05, R2

= −0.02; temporal demand: F (15, 6) = 1.87, p > 0.05, R2 =
0.38; performance: F (15, 6) = 1.72, p > 0.05, R2 = 0.34; effort:
F (15, 6) = 2.23, p > 0.05, R2 = 0.47; frustration: F (15, 6) = 3.41,
p > 0.05, R2 = 0.63].

4 Discussion

The present experiment aimed at a thorough analysis of a
series of human factors in a cutting-edge manufacturing setting,
which involved an advanced ergonomic workstation and a cobot.
By following the Industry 5.0 conceptualization, we proposed a
human-centered study. We specifically targeted senior workers, as
this population is particularly inclined to a decrement in their
working abilities and, therefore, would particularly benefit from
the introduction of supportive and collaborative systems such as
cobots in their daily work life (Bogataj et al., 2019). The main
objective of this study was thus to provide a broad assessment
of various human factors (e.g., senior workers’ mental workload
and task accuracy) during the execution of an assembly task
in collaboration with a cobot, installed on an assistive assembly
workstation. More specifically, the following human factors were
analyzed: task performance (i.e., number of errors and time on
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task), subjective perceptions (i.e., the perceived workload reported
at the NASA-TLX, the cobot acceptance assessed via TAM, the
level of wellbeing and work experience, the social impact of using
cobots), eye tracking indices (i.e., blink and fixation frequency and
duration), and the cardiac activity. A dual task paradigmwas used to
manipulate the task difficulty, and therefore, the participants’ mental
loads.

As a first objective, we wanted to provide a broad assessment
of human perceptions regarding the integration of a cobot within
a work environment, including technology acceptance, wellbeing,
and working experience as well as the broader social impact of
this integrated technology in the industrial sector. Our senior
participants’ scores were high (>4.3) above the scale median (4)
both after the single task and after the dual task condition,
demonstrating that they enjoyed working with the AAS, they found
it useful and easy to use, they expressed the intention to use
it if available, they perceived to have control over the system,
and they possess the necessary skills to utilize it. Furthermore,
at both post-tests, the wellbeing and work experience scores (>3)
showed high reported motivation, engagement, satisfaction, and
positive work/task experience. Finally, most participants reported
that the AAS would have a positive effect on the working activities
and would not cause the dismissal of workers if implemented
in a real-world scenario. It is important to highlight that these
findings were observed in older workers, who might have less
experience and skills with advanced technologies compared to
a younger population. This observation is in line with Rossato
et al. (2021a), who found that older workers viewed the cobot
as being more helpful than a group of younger adult workers
did.

As a second objective, we aimed at evaluating if the
human factors examined in this study (e.g., task performance,
subjective perceptions, eye tracking measures, and cardiac activity)
significantly changed during dual tasking with increased mental
load. On this regard, the level of AAS acceptance, wellbeing, and
work experience scores did not differ in the dual task compared
to the single task. These findings thus suggest that the cobot was
actually supportive and well-accepted even during dual tasking
when handling a new technology while under mental strain could
have introduced an additional challenge.

Concerning the performance measures, as predicted, both
performance indices were modulated. Indeed, the increment in
difficulty (dual task; i.e., assembly task + concurrent mathematical
task) resulted in a higher number of errors and a longer time on task
compared to the condition in which participants had to accomplish
the assembly task only. These results align with previous literature
using dual tasking to increase task difficulty (Galy and Mélan, 2015;
Shaw et al., 2018; Vasquez et al., 2019).

Furthermore, as regards the perceived workload, participants
showed a higher level of perceived mental demand and effort
while accomplishing the dual task. This result confirms that our
manipulation successfully also increased the perceived level of
mental demand in the users, and it is in line with previous
research (Rubio et al., 2004; Mansikka et al., 2019; Mingardi et al.,
2020; Lowndes et al., 2020; Panchetti et al., 2023). Concerning the
physical demand, the absence of single vs. dual task difference
simply due to the nature of the secondary task being predominantly
cognitive (i.e., mathematical), did not affect participants’ perception

in terms of physical strain. Regarding the temporal demand, a
difference was not shown insofar as senior workers were expected
to execute the tasks in the various experimental condition with
both speed and accuracy, albeit without adhering to a predefined
time constraint. Participants reported a similar level of perceived
performance, suggesting that they may not have been aware of the
disparity in difficulty and, as a result, inadvertently committed more
errors in the dual task condition. Finally, the dual task condition
was not associated with a higher level of perceived frustration.
This finding also substantiates the lack of awareness regarding
their actual performance in the two conditions. In fact, being
conscious of committing more errors in the dual task would have
been expected to be related to a higher sense of frustration. In
the context of advanced workstations and collaborative robotics,
failing to recognize performance deterioration can result in
increased operational risks, higher error rates, compromised quality
control, and adverse effects on workers’ health and wellbeing.
Therefore, it is crucial to explore and study the implementation
of monitoring technologies that can quickly identify performance
decline, especially in individuals who may be more prone to it due
to factors like age. This area deserves further investigation in future
research.

Regarding the implicit measures, instead, we did highlight
a difference in one of the eye behavior metrics. Indeed, blink
frequency associated with the dual task condition was higher than
in the single task condition. It thus seems that, based on previous
literature (Faure et al., 2016; Tao et al., 2019; Mingardi et al., 2020),
participants experienced a higher level of mental load in the dual
task compared to the single task. Nonetheless, the fixation frequency
and duration, as well as the blink duration and also cardiac activity,
did not demonstrate to change significantly under dual tasking. On
this matter, it is possible that these indices were not sensitive to
the mental load fluctuations during our assembly task, while they
demonstrated to be sensitive to mental load fluctuations in different
work tasks (e.g., a manual screwing task, Mingardi et al., 2020).
This generates newquestions aboutwhether the psychophysiological
indices’ sensitivity to mental load in such ecological work contexts
is task-dependent, a question that is worth investigating in future
research.

Finally, we investigated the predictive capacity of the gathered
measurements on task-related errors and perceivedmental demand.
Our results from the first linear regression analyses demonstrated
how all the measured eye behavioral indices (i.e., fixation duration
and frequency, and blink duration and frequency) successfully
predicted the number of errors committed at the assembly task.
Interestingly, these indices had a stronger predictive power on the
committed errors in the dual task condition compared to the single
task one, suggesting that the higher the mental demand, the more
these indices differ with varying error rates at the task. This could
be related to the fact that eye blinks and fixations are known to
respond to different levels of task complexity and mental demand
(Matthews et al., 2015; Mingardi et al., 2020; Wu et al., 2020; Nenna
et al., 2023).Therefore, even thoughweonly found a significant effect
of dual tasking over blink frequency, the eye indices might show
significant modulations under higher mental strain particularly.
More specifically, we found that an increase in the number of errors
committed at the assembly task is related to an increase in the
fixation duration and the blink frequency, and with a decrease in
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the fixation frequency. Future works might extend research on the
predictive power of eye indices over work task accuracy, similarly
to what was done with workload estimation (e.g., Novak et al.,
2015), and consider the possibility of implementing eye measures
to actively predict the increase rate of task errors online, during the
interaction with cobots.

Otherwise, the second series of linear regression analyses
showed that task accuracy and the implicit measures were not
capable of predicting the scores of the NASA-TLX sub-scales. A
suitable explanation is that participants were not aware of their
actual performance. Indeed, differences in both task accuracy and
time on task (i.e., higher error rates and longer time in the dual
task condition) were not related to a discrepancy in the NASA-
TLX sub-scale of perceived performance. This outcome is very
relevant regarding work safety insofar as not being aware of a decline
in performance due to a more demanding working activity could
potentially be related to a diminution of overall attention and the
adoption of unsafe behaviors.

Some limitations of the study could be underlined. Firstly,
we considered a small sample size (N = 11), so we must
exercise caution when generalizing the findings of the current
study. Secondly, more ecological tasks must be considered,
especially in terms of duration that could be similar to a phase
of a real working shift to also have reliable data, for instance,
to assess work-related stress exploiting heart-rate variability
(HRV; Gervasi et al., 2020).

Overall, this paper contributes to the literature by proposing
a human-centric perspective and a thorough analysis of various
human factors to shed light on the feasibility of integrating
advanced ergonomic workstations and cobots within industrial
manufacturing contexts. While the benefits of these technologies
for industrial production are well-known, our study uniquely
examines their impact on human factors by adopting a multi-
method approach that includes various data sources (performance,
self-report, eye-tracking and heart rate data). In a future perspective,
the relationships between implicit measures acquired while
participants were performing the tasks (e.g., eye-tracking indices)
and the working performance could be exploited to inform
advanced workstations equipped with wearable sensors (e.g., eye
trackers, chest bands) that could adapt their functioning based
on the detection of variations in the level of mental load (i.e.,
overload), with the intention of assisting the workers when they
are dealing with more mentally demanding working activities.
For instance, future directions might involve adapting these
systems for the effective detection and mitigation of worker
overload states in diverse industrial environments. This may
encompass the development of tailored interventions and the
integration of adaptive technologies to enhance worker wellbeing
and productivity while maintaining safety standards. However,
to implement such a flexible system, it is first imperative to
understand human needs. In this respect, we here assessed
technology acceptance and perceived wellbeing among senior
workers, shedding light on their experiences with these integrated
technologies in industrial settings. This holistic approach advances
our understanding of the complex interplay between humans
and technology, paving the way for safer, more inclusive, and
efficient working environments in the evolving manufacturing
landscape.
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