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This survey reviews advances in 3D object detection approaches for
autonomous driving. A brief introduction to 2D object detection is first discussed
and drawbacks of the existing methodologies are identified for highly dynamic
environments. Subsequently, this paper reviews the state-of-the-art 3D object
detection techniques that utilizes monocular and stereo vision for reliable
detection in urban settings. Based on depth inference basis, learning schemes,
and internal representation, this work presents a method taxonomy of three
classes: model-based and geometrically constrained approaches, end-to-end
learning methodologies, and hybrid methods. There is highlighted segment
for current trend of multi-view detectors as end-to-end methods due to
their boosted robustness. Detectors from the last two kinds were specially
selected to exploit the autonomous driving context in terms of geometry,
scene content and instances distribution. To prove the effectiveness of each
method, 3D object detection datasets for autonomous vehicles are described
with their unique features, e. g., varying weather conditions, multi-modality,
multi camera perspective and their respective metrics associated to different
difficulty categories. In addition, we included multi-modal visual datasets, i. e.,
V2X that may tackle the problems of single-view occlusion. Finally, the current
research trends in object detection are summarized, followed by a discussion
on possible scope for future research in this domain.
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1 Introduction

Automated Driving Systems (ADS) and Advanced Driver-Assistance Systems
(ADAS) with robust controls are primarily deployed with the intention to reduce
human errors in perception and decision-making while enhancing traffic flow and
transportation safety in emergency cases and hand-over scenarios (Bengler et al.,
2014; Wang et al., 2017; Schwarting et al., 2018; Chen et al., 2019). To this end,
ADS represents a significant enhancement in life quality by reducing pollution
emissions due to efficiency in construction and driving, travel conformity, and
increased productivity that relies on mobility and, consequently, powers regional
economies (Greenblatt and Shaheen, 2015; Williams et al., 2020; Silva et al.,
2022). On the contrary, it also raised substantial social concerns about policy-
making, industry standards, equality of accessibility to unrepresented social
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groups (i.e., third-world countries, gender or income), insurance
costs, and labor-hand reduction with biased accessibility for
education to adapt to newer positions (Bissell et al., 2018;
Shahedi et al., 2023). Still, the social studies in this matter only
covered a narrow spike of the whole problem; researchers claimed a
need for a more holistic view due to evidence of only attention in the
first two topics (Bissell et al., 2018). Besides, information on light
and noise contamination of ADS is sparse and current emissions
reports may changed under denser traffic flow after the including of
AVs (Silva et al., 2022). We encourage a more profound analysis of
the implications of broadly adopting AVs as the primary transport
means or inside a hybrid scheme with non-autonomous vehicles.
One of the most significant worries about this technology is its
security and reliability (Othman, 2021).

ADS can only function safely and effectively if they have
access to reliable perception and increased environmental awareness
(Hu et al., 2019; Zhang et al., 2022a; Hashemi et al., 2022). In this
regard, ADS and their control systems utilize multi-modal sensory
data (from stereo ormonocular cameras, light detection and ranging
(LiDAR), radars, and global navigation satellite systems, GNSS)
to 1) achieve semantic information about their surroundings for
motion planning 2) identify various static and dynamic objects on
the road, pedestrians, etc., 3) estimate their states (e.g., position,
heading, and velocity) and 4) to predict trajectories of these
objects for safety-critical scenarios (Ji et al., 2018; Marzbani et al.,
2019; Mohammadbagher et al., 2020; Bhatt et al., 2022; Bhatt et al.,
2023). An unreliable identification of street objects and road signs
may lead to catastrophic outcomes and thus, the object detection
task is of fundamental importance for safe operation, decision
making and controls in autonomous driving (Chen et al., 2021;
Gupta et al., 2021). One of the primary reasons behind the failure of
object detection in perceptually degraded conditions (i.e., extreme
lighting and weather conditions such as snow, hail, ice storms) and
adversarial ones is the limitation of sensory data which necessitates
multi-modal data fusion (Michaelis et al., 2019; Hnewa and Radha,
2021) Moreover, inconsistency in layout of motorways presents
additional complexity for reliable identification of spatial constraints
for motion planning in highly dynamic environments; for instance,
vehicles in urban areas parked in an arbitrary orientation hinder
vehicles from following well-defined driving lanes. Lastly, there
always remains a high possibility of occlusion where objects block
each other’s view resulting in either partial or complete concealment
of the objects. Despite these challenges due to perceptually-
degraded conditions and highly dynamic environments, there
has been substantial progress in camera-based object detection
and state estimation approaches to enhance perception and
situational awareness in autonomous driving (Ranft and Stiller,
2016; Arnold et al., 2019; Cui et al., 2019; Gupta et al., 2021) In
this regard, visual-based 2D or 3D object detection methodologies
in the literature falls into 3 main categories of learning-based,
geometrical or model-based, and hybrid approaches. Geometrically
constrained model broadly exploit common scenery in AV, e. g.,
scale inference from road distance to the camera or triangulation
between multiple vehicle detections. The hybrid methods aim to
fuse the progress made by end-to-end detectors, which are not
necessarily designed for AD applications, with the unique features
from the first one. Significant research works have been conducted
with focus on visual-based 2D object detection (Geiger et al.,

2013; Mukhtar et al., 2015; Pendleton et al., 2017; Ku et al., 2018)
for autonomous navigation. For object detection in the case of
AVs, a conventional pipeline consists of segmentation (such as via
voxel clustering (Azim and Aycard, 2014) and graph-segmentation
methods (Wang et al., 2012)), feature extraction using probabilistic
feature-based voxels and classification based on various state-of-
the-art classifiers, such as YOLOv7 (Wang et al., 2022), EfficientDet
(Tan et al., 2020) and Swin ViT. Traditional approaches have
optimized each of these stages individually (Mousavian et al., 2017;
Gählert et al., 2020), while recent end-to-end learning frameworks,
which derive a region of interest (ROI) for feature extraction,
tend to optimize the whole pipeline (Li et al., 2019; Liu et al.,
2019;Liu et al., 2020).

To this end, this work presents an overview of visual-
based object detection methods in the context of autonomous
driving (AD). The performance of state-of-the-art detection models
proposed in the literature is evaluated using popular datasets and
well established metrics. This is followed by a thorough review
of monocular and stereo camera-based object detection methods.
Finally, research gaps and possible directions for future research
are identified. The rest of the paper is organized as follows: In
Section 2, 2D object detection and challenges are elaborated on;
this is followed by a detailed discussion on the recent progress
on 3D object detection in Section 4. Finally the future trends and
the concluding remarks are summarized in Section 5 and Section 4
respectively.

2 Two-dimensional object detection

Object detection initially started as a classification and instance
localization problem in 2D images for automated driving systems
which are equipped with multi-modal sensory measurement units
(as shown in Figure 1). Detection models employed handcrafted
features by Histogram of gradients (HOG), Scale-invariant feature
transformation (SIFT), or Oriented fast and rotated BRIEF (ORB)
and passed them through a linear classifier, i.e., Support vector
machines (SVM). However, with the advent of deep learning
methodologies, better solutions which exploited spatial and
semantic information under several variances, including scale,
translation, and rotation were explored. These algorithms fall into
2 main categories: two-stage detectors and one-stage detectors.
For a broader explanation in several deep learning concepts
used in the detection context, be referred to (Jiao et al., 2019;
Zhao et al., 2019).

Two-stage detectors: Two stage detectors are composed of a
Region Proposal Network (RPN) and a Region of Interest Pooling
(RoI-Pool) (Du et al., 2020) and have demonstrated high accuracy
values in well-known datasets, such as MS COCO (Lin et al.,
2014) and PASCAL VOC (Hoiem et al., 2009). These detectors
are also capable of performing enhanced detail extraction even
in small-size regions (Jana and Mohanta, 2022). The two-stage
detectors work by first sending the images to a Convolutional
Neural Network (CNN) backbone that extracts a feature map,
similar to how human vision focuses on local salient details of
images, and then, the RPN slides a window over the map to
obtain fixed feature regions. Finally, the RoI-Pool layer samples
the regions and reduces their dimensionality without a considerable
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FIGURE 1
A hybrid electric vehicle at the NODE lab equipped with multi-modal
sensors and data fusion systems for perception, motion planning,
autonomous navigation, and controls in perceptually-degraded
conditions.

loss of features and sends them t a SVM for classification and to a
regressor for bounding box coordinate prediction (Li et al., 2017;
Xie et al., 2021). The pioneering work of this approach, R-CNN
(Girshick et al., 2014) employed a selective search algorithm for
RPN, but it extracts the features from proposed image regions
and not from proposed feature maps. Its enhanced version, fast
R-CNN (Girshick, 2015), followed the aforementioned order since
applying the RPN on the feature maps and later classifying them
is faster thanks to compression. Later models, such as faster R-
CNN (Ren et al., 2016) or mask R-CNN (He et al., 2017), aimed to
improve the feature extraction section or the classification head,
in terms of accuracy, context generalization, and timing. More
recent methods had extended the original R-CNN framework to
include components from Visual Transformers (ViT) as they have a
current trend to held top positions in MS-COCO classification task.
For instance, (Liang et al., 2022a), proposed an improved sparse
R-CNN that exploit the sparsity in the region proposal and feed
that information to attention units to focus on relevant global
visual details rather than local ones such as with convolutional
layers as they process the whole image at once. They proved the
benefits of the method by testing for traffic sign detection. On the
different manner, (Li et al., 2022), replace the ResNet50 backbone
with a transformer version of EfficientNet known as EfficientFormer
that could account for +3.9 AP score while alleviates intensive
hardware usage. Some applications for object detection that look
to accomplish robust prediction in real traffic scenarios took
another path rather than extending backbones or adding slight
changes to R-CNN. (Du et al., 2022). introduced an unknown-
aware hierarchical object detection which incorporates a priori
knowledge to distinguish between known classes and unknown
classes that could be possible part of a higher taxonomy such as
bicycles is a two-wheeled vehicle and vehicle itself is a class. Lastly,
a hybrid detector was presented by (Khan et al., 2023) where the
YOLO detection head was plugged with the results to RoI pooling
stage from a faster R-CNN, thus eliminating the ROI proposals
and reducing the computation overhead considerably while
improving faster R-CNN results.

One-stage detectors: Two stage detectors give enhanced object
detection, however, it slows down the overall detection process
considerably (Carranza-García et al., 2020). Thus, an alternative
approach, which achieves reasonably good detection with enhanced
computational efficiency for real-timeapplicationsandsafety-critical
motion planning and decision making tasks, needed to be explored
specifically for autonomous driving. As a viable alternative, one-
stage detectors have emerged which work by introducing a single
end-to-end (all layers are trained together) CNN to predict the
bounding box class and coordinates. One of the pioneers of this
strategy was You Only Look Once (YOLO) (Redmon et al., 2016)
which divides the image into a grid and obtains the bounding box
from each cell through regression. At the initial phase, the bounding
boxes are anchor boxes with predefined sizes and they are used to
tile the whole image. Depending on the results of class probability
and Intersection-of-Union (IOU) scores, with respect to the ground
truth annotation, the regressor refines the anchor boxes through
manipulation of their center offsets. Although YOLO paved the
pathway for numerous novel approaches in the domain of one-
stage detectors, its major shortcoming is that it suffers localization
accuracy for small objects, in comparison to two-stage detectors.
ThusYOLOwas furthermodified to reduce theaccuracygapbetween
the two-stage and one-stage methods. The latest version, YOLOv8
(Jocher et al., 2023), has a pyramidal feature backbone for multi-
scale detection and does not use anchor boxes but directly predicts
the center of the bounding box. The method then applies mosaic
augmentationtoimprovethetrainingperformance.Someoftheother
relevant one stage detectorswhich have been used in practce include,
DCNv2 (Wang et al., 2020), which uses deformable CNN (DCN) to
adapt to different geometric variations not contemplated by the fixed
square kernel common in convolutions, and RetinaNet (Wang et al.,
2020),whichproposedarobust lossfunctiontoaddressfalsenegatives
due to the imbalance in the dataset between background and labeled
classes. (Lyu et al., 2022). introducedRTMDet as a revision of YOLO
detector with extensive modifications in taxonomy to account for
real time inference, i. e., replacing convolutions with large-kernel
depth-wise convolutions followed by point wise.Themodel achieves
both increase in speed and mAP score. The ViT detectors have also
took notoriety for one-stage detectors specially as these networks
usually do not include RoI proposals to rather just have an accurate
end-to-end prediction, though they tend to be slower than one-
stage convolutional approaches. (Liu et al., 2021a). is capable of
extracting features at various scales due to a shifted window scheme
that simultaneously limits the self-attention computation which
grows exponentially when the network gets deeper. (Ding et al.,
2022). enhances SwinViT by introducing dual attention units that
process spatial and channel tokens for a better understanding of
global and local context respectively. Regarding autonomous driving
applications, (Liang et al., 2022b), proposed incorporating attention
units in a new lightweight backbone calledGhostNet to considerable
reduce mode size and increase inference speed. They tested the
method along several augmentation techniques aim to have a more
robust traffic sign detection under light condition changes. In a
similar manner, DetecFormer (Liang et al., 2022c) was introduced
by fusing local and global information in a global context encoder
with the same purpose of traffic scene detection.
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3 Datasets and evaluation metrics

With the advent of autonomous navigation in highly dynamic
urban environments and under various weather conditions for ADS
and connected autonomous driving, the intelligent transportation
and machine vision research communities have continuously
cultivated large datasets in the context of object detection for
autonomous vehicles. The rapid takeoff of these datasets has been
a major factor for the emergence of deep learning methods. This
section summarizes 8 publicly accessible datasets for 3D object
detection: KITTI (Geiger et al., 2013), nuScenes (Caesar et al.,
2020), Waymo Open (Sun et al., 2020), Canadian Adverse Driving
Conditions (CADC) (Pitropov et al., 2020), Boreas (Burnett et al.,
2023), DAIR-V2X (Yu et al., 2022), A9 (Zimmer et al., 2023), ROPE
3D (Ye et al., 2022) datasets.

Scene coverage: The KITTI dataset provides 50 scenes
captured in Karlsruhe, Germany across 8 classes in which vehicles,
pedestrians, and cyclists are taken into account for online evaluation
out of the 8 classes. The height of the 2D bounding boxes, the
level of occlusion, and the degree of truncation are factors that
are taken into account in determining the 3 difficulty categories,
namely, easy, moderate, and hard. While, nuScenes captures 1k
sequences from Boston and Singapore across 23 classes, only 10
classes are considered for evaluation. In addition, Waymo Open
contains 1,150 sequences with 4 classes captured in Phoenix and
San Francisco and similar to KITTI, there are 3 testing categories.
As a pioneer, KITTI has had a significant impact establishing the
standard for data collecting, protocol, and benchmark.ThenuScenes
and Waymo Open datasets both collect data throughout the day in
a variety of weather and illumination conditions. Frequently, class
imbalance is a problem that affects real data collection. As reported
in (Qian et al., 2022), for the nuScenes and KITTI datasets, 50% of
the categories account for 6.9% of the annotations indicating a long
tail distribution.

Both CADC and Boreas are highly focused on adverse driving
conditions and cover a wider spectrum of harsh weather conditions
in comparison to the aforementioned datasets. The CADC dataset
tracks 12.94 km of driving along 75 driving scenarios over 3 days
in the Canadian Waterloo region during March 2018 and February
2019. A key difference in the CADC dataset is that their images
were captured in numerous winter weather conditions and specific
perceptually-degraded circumstances. Each sequence were given
under different snowfall levels (e.g., light, medium, and extreme).
The driving sequences were recorded with 8 cameras, 4 facing
forward and 4 backward. The Boreas dataset involves 350 km of
driving over 44 sequences in Toronto, Canada between 2020 and
2021 recorded in 2 repeated routes. The weather conditions change
from day to night, snow to rain, and cloudy scenes. The dataset
has a diversity of seasonal-variations over an extended period of
time to further generalize the learning process. Thus, it seeks to
provide opportunities for robust 3D detection under long-term
weather changes for the same scenarios in highly dynamic urban
driving conditions. We make a special distinction for V2X (Vehicle
to everything) or V2I (Vehicle to infrastructure) datasets which
provide multiple road views, i. e., front car and an elevated view due
to the fact that visual multi-modality tackle occlusion and enhance
detection robustness. One of the pioneers on this kind is DAIR-V2X
which covers 10 kmof city roads, 10 kmof highway, 28 intersections,

and 38 km2 of driving regions with diverse weather and lighting
variations from the camera view and a pole elevated view. Each
scene was recorded for 20 s to capture dense traffic flow and the
driving of the experiment car on a unique intersection. In contrast,
A9 provides higher scenery complexity as it contemplates various
driving maneuvers, such as left and right turns, overtaking, and
U-turns in different road locations throughout Munich, Germany;
though only from infrastructure view. ROPE3D went even further
achieving a broader generalization by collecting data in different
weather conditions, illuminations and traffic density. In addition,
authors took consideration on having spread distribution over
annotations and depth of coarse-categories.

Dataset size: The KITTI dataset is one of the most popular
datasets for use in autonomous driving and navigation. It contains
200k boxes which are manually annotated in 15k frames. Among
this, it has 7,481 samples for training and 7,518 for testing,
respectively. The training data has been further split into 3,712
samples for training and 3,769 for validation. In addition, the 1.4M
labelled boxes in the nuScenes dataset are from 40k frames with
28,130, 6,019, and 6,008 frames used for training, validation, and
testing respectively. Moreover, 112M boxes are annotated in Waymo
Open dataset from 200k frames with 122,200, 30,407, and 40,077 for
training, validation, and testing respectively.These datasets does not
include annotations for testing and are rather internally evaluated.
The CADC dataset consists of 7,000 instances expanded to 56,000
images from 8 cameras. Its 308,079 labels have been divided in 10
classes, including cars (281,941 labels), trucks (20,411 labels), buses
(4,867 labels), bicycles (785 labels) and horses and buggies (75 label).
Each class has a set of attributes which gives further semantic details,
for instance transit bus for class of bus. The Boreas dataset consists
of 37 training scenes and 16 test scenes that in conjunction contain
326,180 3D box annotations. The dataset contains vehicles, cyclists,
pedestrians and miscellaneous (transit buses, trucks, streetcars, and
trains). DAIR-V2X contains 71,254 camera frames with 40% and
60% from infrastructure and vehicle respectively and covers 10
classes including pedestrians, cars, buses and cyclists. A9 dataset
collected 4.8 k images with 57.4 k manually labeled 3D boxes purely
from infrastructure view. As other datasets, it covers 10 classes for
classification task. At last, ROPE 3D holds 50 k images with the huge
increment of 1.5 M 3D annotations over the last two datasets. It
also has a slight increase in classification difficult as it includes 13
classes with labels such as unknown-unmovable, unknown-movable
or traffic cone.

Evaluation metrics: Similar to 2D object detection, 3D object
detection methods employ Average Precision AP as standard
benchmark. The standard AP metric is first established, followed
by the AP variants that have adopted considerations for a series
of predictions {y1,…,yn} that are listed in decreasing order of
confidence score si. A prediction yi (bounding box and class) is
regarded as a true positive if the ratio of the intersection of the
are covered by the prediction bounding box B and its ground
truth correspondence, known as the Intersection over Union (IoU),
exceeds a predetermined threshold; otherwise, it is regarded as a
false positive. The AP score is defined as the area of the region
beneath the precision-recall curve, which graphically resembles a
zigzag pattern. Since it is challenging to determine the area under the
curve numerically, Interpolated AP|RN

was introduced by PASCAL
VOC (Everingham et al., 2010) as a numerical approximation. It is
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formulated as themean precision calculated forN levels from a recall
subset R, given as

AP|RN
= 1
N
∑
r∈R

Pinterpolate (r) (1)

where r takes values from a evenly-spaced set of N numbers
[0,0.1,0.2,…1] which follows a decreasing trend in P-R curve.
Consider that the interpolated function of P(r) must be evaluated
such as the precision for recall r is the maximum value for all
recall values r′ greater than the reference r recall. It should be
mentioned that theCADCdataset has not published its 3Ddetection
benchmark yet.

3.1 KITTI benchmark

The metric used for detection benchmarking in KITTI is the
interpolated AP11 metric. The considered scores in leaderboard
ranking are test AP from bird eye view (BEV) detection and 3D
detection. The evaluation for car, pedestrian, and cyclist accounts
for different IoU thresholds in AP calculation.The passenger vehicle
class uses 0.7 and the others 0.5 because of the occlusion frequency of
each class. Changes were applied to the amount of recall levels, from
11 levels [0,1/10,2/10,…,1] to 40 levels [1/40,2/40,3/40,…,1]with
recall level 0 being removed as proposed by (Simonelli et al., 2019b).

3.2 nuScenes benchmark

The official evaluation statistic for nuScenes is the nuScenes
Detection Score (NDS), which is a set of mean average errors in
translation, size, orientation, attribute, and velocity given by:

NDS = 1
10
[5mAP+ ∑

mTP∈TP
(1−min (1,mTP))] , (2)

where, mAP indicates mean Average Precision and TP is the set
of the 5 mean true positive metrics calculated for each class. The
mAP is calculated over C classes andD distance thresholds of values
[0.5,1,2,4] meters. While obtaining the AP and before computing
means, any operational point with precision or recall less than 10%
is discarded.

3.3 Boreas benchmark

This dataset follows the KITTI dataset scheme. For a passenger
vehicle, a 70% overlap threshold in mAP calculation count is
considered as true positive and 50% for pedestrians.

3.4 Waymo benchmark

The Waymo Open dataset proposes a heading version of AP
called APH which incorporates a heading function with respect to
the recall similar to the calculation of area under the curve of the
Precision/Recall (PR) plot. Each true positive is weighted by heading
accuracy defined between min (|θ− θ∗ | ,2π− |θ− θ∗ |) /π. Here, θ
and θ∗ indicate the predicted azimuth angle and the corresponding

ground truth, within [−π,π]. Similar to AP, APH is normalized
in range of [0,1]. To obtain the recall gap, Hungarian matching
is performed for the prediction above a specified threshold. A
threshold of 0.7 for vehicles and 0.5 for pedestrians is used. This
matching is used for calculation of precision and recall. If in theAPH
calculation, the recall gap is above the default value of 0.05, more
operation points are added to avoid over-estimation.

3.5 DAIR-V2X benchmark

It employs the same AP score as (Everingham et al., 2010) and
introduces the transmission cost as the average send bytes between
infrastructure and vehicle. In V2X detection it is common to have
two separate detectors that interact which each other at different
stages, may be early or late fusion. Since there is physical separation
between the two data stations, it is highly relevant to minimize
the data transmission between the stations. Nonetheless, there is a
trade-off between efficient transmission and lost information so it is
valuable to compare AP score and transmission cost together across
different detectors.

3.6 A9 benchmark

It does not provide an official metric for 3D detection task.

3.7 ROPE 3D benchmark

It not only adopts the AP40 variant from (Simonelli et al.,
2019c), but also computes similarity scores for ground center (ACS),
orientation (AOS), ground occupancy area (AAS), four ground
point distance (AGS) and fuses them. Assume S = (ACS + AOS +
AAS + AGS)/4, their fuse score known as ROPEscore is equal to:

ROPEscore =
ω1AP+ω2S
ω1 +ω2

where the weights ω1 = 8 and ω2 = 2, thus giving a higher
importance to AP detection metric.

Please, refer to (Ye et al., 2022) for greater detail on those.

4 Three-dimensional object detection

The 3D object detection problem has an added level of
complexity as compared to 2Ddetection, since it localizes the objects
with respect to the camera and identifies the orientation/heading
through fitting of 3D bounding boxes. The detector input can be
monocular or stereo data, where each kind of detector leverages
its input in different ways. An overview of 3D object detection
methodologies is shown in Figure 2 where the classification is
in three main categories: model based methods (which leverage
geometrical constraints applicable in autonomous driving context),
end-to-end learning, and hybrid methods.

Additionally, two classification diagrams are provided in
Figures 3, 4 for monocular and stereo visions, respectively.
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FIGURE 2
The structure of existing 3D object detection methodologies (having the same input of monocular or stereo images and output of the 3D detection
header): (A) Methods using geometrical constraints use ROI features from backbone output or combine them with 2D bounding boxes to fit
constraints on loss function or space projection. (B) End-to-end learning methods update all layer parameters using backpropagation. This method is
categorized depending on utilization of an ROI or feature pyramid network regression with an optimal 2D detection. (C) Hybrid methods combine
depth estimation from a standalone pretrained network and a change of representation to leverage detailed features for 3D detection. The 3D
backbone can be from existing methods for LiDAR, BEV or Voxel points.

4.1 Model based approaches

This subsection discussesmodel based approacheswhichmainly
usemonocular 3Ddetectors and geometric constraints in street view
to make accurate depth estimation or directly utilize box regression.
Stereo detectors mostly relay information through end-to-end
learning depth networks or more complex 3D representations
instead of leveraging geometric information. The constraints are
formulated explicitly in a custom layer or loss function, i.e., epipolar
or projection model constraints. Also, they can be integrated in
the form of geometric projections or transformations. To feed
the geometric formulation stage, the detector backbone passes its
features from a set of ROIs or fuse those with 2D object detection
predictions, as shown in the first block of Figure 2. Its output
is delivered to a detection header for the 3D box prediction.
The numerical results regarding computational speed and AP for
different classes and categories are reported in Table 1 for a detailed
comparison. In (Roddick et al., 2018), the authors proposed OFT-
Net (Orthographic feature transformation), which is a network
that projects multi-scale features from a ResNet-18 backbone into
a 3D orthographic space using the camera’s intrinsic parameters.
The new projection gives a better representation of the 3D space
than the pinhole projection since it is robust to appearance and
scale distortions due to poor depth inference. Besides, the rest of

the pipeline follows the standard classification task by bounding
box regression and NMS. The authors of (Naiden et al., 2019)
extended the Faster R-CNN head to predict 3D bounding box
dimensions and angles apart from the 2D detection task. A least-
square problem is formulated by 3D geometric constraints. The
system of equations considers projection matrix constraints and
enforces the 3D box edges to fit inside 2D box sides. A closed-form
solution to this problem is given in (Naiden et al., 2019) where
the box translation vectors are determined. The 3D parameters
and 2D initial estimation are then passed to a ShifNet network
for refinement through a newly proposed Volume Displacement
Loss (VDL) that aims to find the translation which optimizes
IoU between two 3D predicted boxes while fixing depth and
angle.A 3D anchor preprocessing scheme and a custom layer
called Ground-Aware Convolution (GAC) module is proposed
in (Liu et al., 2021b) that infers depth via perspective projection
from the camera to the ground since ground-level is a metric
reference and is known a priori by car dimensions. Their basis is
that ground-awareness gives enough clues for depth estimation
and leverages it to do 3D detection. The preprocessing stage
backpropagates the anchors to 3D space and rejects those far
from ground-level. Afterward, the filtering results feed the GAC
module to estimate vertical offsets from the ground and then
compute depth priors with perspective geometry. Its output is a
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FIGURE 3
Taxonomy of monocular 3D object detection frameworks: i) Geometric methods consider spatial relationships between several objects and
perspective consistency; ii) The end-to-end learning framework is categorized based on their utilization of internal features; and iii) Hybrid methods
were classified by 3D representation and its augmentation with other techniques such as segmentation or 2D detection.

depth feature map included in a 3D regression head. In (Lian et al.,
2022a) the effect of 4 geometric manipulation augmentations
in 3D detection training has been explored. They studied the
inaccuracy of depth estimation under different object positions
and sizes. In order to make 3D detectors more robust to these
geometrical distortions, they proposed random cropping, random
scale, moving camera, and copy-paste augmentations. The first 2
methods are widely popular for 2D detection community. The third
technique utilizes depth to translate the instance pixels to the
augmented image. The copy-paste processing samples an object,
takes it out of its context and pastes it into another region. It ensures
geometrical consistency for the object in terms of position and angle
concerning the background scene. Including these augmentations
in the training stage, enhanced the accuracy of previous detectors.
Further, local perspective distortion on 3D objects to infer depth
and global yaw angle without using camera parameters has been
explored in (Zhu et al., 2023). They introduced the concept of
keyedges and keyedges-ratio to parameterize 3D bounding box
vertical edges locally. The keyedges-ratio is used directly in
regressing depth and yaw. From each box, they get 4 keyedges
and subsequently 4 depth predictions which they fuse using an
uncertainty-based operation. Subsequently, the local-perspective
results aremergedwith global perspective effects in othermonocular
3D detectors such as MonoFlex (Gu et al., 2022). Hence, both
image perspectives enrich the extracted visual content for
detection.

4.2 End-to-end learning based methods

End-to-end learning refers to the capability of updating all
the parameters in a network with a single loss function such that
backpropagation takes place from the head up to the network
backbone. In consequence, the learned representations of depth,
geometry, or 3D space overall gets embedded in all network
layers and this results in minimization of time and enhanced
prediction accuracy. A comparison between the state-of-the-art
end-to-end learning methods is presented in Table 2. The work
in (Bao et al., 2020) falls under a category where an end-to-end
trainable monocular detector is designed to work effectively even
without learning dense depth maps. The working principle behind
this method involves projecting the grid coordinates from the
2D box to 3D space followed by developing an object-aware
voting model. Such voting models use appearance attention and
distribution of geometric projection to find proposals for the 3D
centroid, thereby, facilitating object localization. Another end-to-
end approach in (Liu et al., 2020), predicts the 3D bounding boxes
by combining single key-point estimates and regressed 3D variables.
The advantage of this method is that it also works on a multi-
step disentangling approach resulting in improved convergence
of training and detection accuracy. In (Zhou et al., 2021), the
camera pose is captured to propose a detector free from extrinsic
perturbation. This framework is capable of predicting the extrinsic
parameters of the camera through effective detection of change in
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FIGURE 4
Taxonomy of stereo 3D object detection approaches. None-geometrical methods are widely utilized for stereo vision based 3D object detection since
previously trained depth estimators or end-to-end depth cost volume achieve better results compared with geometric methods (utilizing in stereo
camera). For the remaining categories, the inner classification remains the same as monocular 3D object detection frameworks.

TABLE 1 Geometrical constrained model based methods comparison table. Best results are highlighted in bold font. The AP scores for car category
were calculated considering IOU (Intersection of Union) of 70%, as required for submission to KITTI oficial evaluation.

Method Source FPS Camera input KITTI dataset validation set (AP3D/APBEV)

Cars

Easy Moderate Hard

OFT-Net Roddick et al. (2018) - Mono 4.07/11.06 3.27/8.79 3.29/8.91

GS3D Li et al. (2019b) 0.23 Mono 13.46/- 10.97/- 10.38/-

MonoPair Chen et al. (2020a) 17.54 Mono 16.28/24.12 12.30/18.17 10.42/15.76

ShiftNet Naiden et al. (2019) 3.86 Mono 13.84/18.61 11.29/14.71 11.08/13.57

VisualDet3D Liu et al. (2021b) 20 Mono 23.63/- 16.16/- 12.06/-

MonoFlex Gu et al. (2022) 33.33 Mono 21.75/29.60 14.94/20.68 13.07/17.81

CenterNet + GeoAug Lian et al. (2022a) 33.3 Mono 24.53/- 17.23/- 14.32/-

MoNet3D Zhou et al. (2020) 27.85 Mono 22.73/27.48 16.73/21.80 15.55/17.86

MonoGround Qin and Li (2022) 33.3 Mono 25.24/32.68 18.69/24.79 15.58/20.56

MonoEdge Zhu et al. (2023a) - Mono 25.66/33.71 18.89/25.35 16.10/22.18
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the horizon as well as through the use of vanishing point. Further, a
converter is designed to enable the 3D detector to work independent
of any extrinsic parameter variations.

For a well-known end-to-end framework called MonoRUn, an
uncertainty-aware reconstruction network is designed in order to
regress the pixel-related 3D object coordinates, and for the training,
the predicted 3D coordinates are projected back on to an image
plane in (Chen et al., 2021). An approach that uses a disentangling
transformation for losses in detection, along with generating a
confidence score based on self-supervised learning is proposed
in (Simonelli et al., 2019) which do not need class labels. While
(Zhang et al., 2023) introduces a framework that transforms into a
depth-aware detection process and represents 3D object candidates
through set queries. Then, an attention encoder based on depth is
utilized to produce a non-local depth embedding from the image
which was provided as input. Further, a depth-guided decoder is
then used for inter-query and query-scene depth feature interactions
leading to adaptive estimates of each object query. Leveraging
the geometric relationship between the 2D and 3D outlook while
enabling 3D boxes to use convolutional features produced in image-
space; an object detection algorithm is proposed in (Brazil and Liu,
2019). Depth-aware convolutional layers are also designed in this
work which enables location-specific feature development, in turn
improving the understanding of 3D scenes.

An end-to-end depth-aware transformer network for 3D
object identification in monocular vision consisting of feature
enhancement and transformer model is proposed in (Huang et al.,
2022).While the authors of (Luo et al., 2021), introduce an approach
where first a shape alignment is carried out followed by the
center alignment. This combined with an attention block to
extract depth features improves the overall performance of the
proposed algorithm. Learned auxiliary monocular contexts are
utilized in (Liu et al., 2022), which uses 3 components, namely, a
feature backbone based on Deep Neural Network (DNN), learning
parameters using regression head branches, and learning auxiliary
contexts using regression head branches. A single-stage detector
that benefits from pre-training of depth, and with efficient transfer
of information between the estimated depth and detection, while
allowing scaling of the unlabeled pre-training data is proposed
in (Park et al., 2021). Regressing the dimensions along with the
orientation through the use of an anchor-based approach, such that
a 3D proposal can be constructed is introduced in (Liu et al., 2019).

It is not only through the use of monocular cameras that end-
to-end approaches have been found to provide efficient 3D object
detection but with stereo cameras as well. In (Qin et al., 2019), 3D
anchors are employed to design correspondences at the object level,
in between stereo images. This enables DNNs to effectively learn
and in turn detect the object of interest in 3D space. Incorporating
inference structure as well as knowledge gathered in real-time, a 1-
stage detector is proposed with a stereo matching module which
is lightweight as discussed in (Liu et al., 2021c). A method, called
Stereo R-CNN (Li et al., 2019), is known to associate and detect
objects in either side of images simultaneously. Extra branches are
also added in order to predict the dimensions of objects and sparse
key-points. These are then combined with the 2D left-right boxes
for obtaining a coarse 3D object bounding box. Finally, the accurate
3D bounding box is recovered through a region-based photometric
alignment using left and right RoIs. In (Peng et al., 2020), only RGB
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images are taken and 3D bounding boxes are annotated as the
training data. As an all important factor, the depth estimations are
considered and an Instance-Depth Aware module is introduced to
predict the depth of the centre of the bounding box. A framework
which is based on the differentiable Change of Representation
modules and which trains the entire PL pipeline end-to-end is
proposed in (Qian et al., 2020). Based on how representations of
3D scenario prediction is to take place, a method called Deep
Stereo Geometry Network was proposed in (Chen et al., 2020b).
This approach detects 3D objects on a differentiable volumetric
representation thus encoding 3D geometric structure for 3D regular
space. Another methodology of object detection that works by
minimizing an energy function and encodes priors of object sizes,
defines object placement on the ground plane in addition to
several depth informed features while utilizing CNN is discussed
in (Chen et al., 2017). We make an special mention to the multi-
view end-to-end object detectors because they showed a significant
boost in robustness in terms of adversarial attacks and poor depth
representations (Xie et al., 2023; Zhu et al., 2023; Jiang et al., 2023)
states that the polar coordinates suits as a more natural 3D world
representation in bird’s eye view thus they proposed a cross attention
based Polar detection head where they re-parametrized projection
models and grid structure to use polar coordinates. As input, the
model uses 6 cameras views that sweep the car’s polar view. (Li et al.,
2023a). studied extensively the deficiencies inside depth modules in
current multi-view 3D object detector and introduced BEVDepth
which is trained with supervision module from LiDAR point cloud
to apply corrections in the predicted depth distribution of each
view. This accomplishes more accurate depth predictions, avoids
depth overfitting andhelps to obtain better BEV semantics inference.
In (Li et al., 2023b), the authors rejected ViT based detectors due
to their internal quadratic operations, i. e., cross attention. They
rather proposed a fully convolutional multi-view detector which
reports similar AP as (Li et al., 2023a) but with an increase of
3 times in inference speed. They managed to implemented pure
convolutional depth estimation, fusion module and BEV encoder
thus obtaining a linear computational cost. (Xiong et al., 2023).
explored prioritizing local feature in camera view rather than global
ones because using them for learning view transformation was
trickier due to inaccuracies in extrinsic parameters. Their network
called CAPE employed feature-guided key position embedding for
local features and a query position encoder for global ones to later
fuse both in a single encoder.

4.3 Hybrid approaches

Before end-to-end learning methods could reach performance
comparable to LiDAR detectors, exploiting new 3D representations
such as Pseudo-LiDAR or BEV were proposed in literature and
applied in practice to have finer feature extraction and reduce the
performance gap. Moreover, the detection head was also inspired
in LiDAR 3D detection or other frameworks and the list of these
methods are summarized in Table 3. In that sense, hybrid methods
aim to exploit previously proposed methods, from model-based
or end-to-end learning methods, as the depth estimators and
then introduce an internal change of representation to exploit 3D
detectors originally designed for other frameworks such as LiDAR

detection. As the depth network were already trained and achieved a
reasonable performance, researchers only need to focus in defining
the appropriate representation and its conversion for detection. One
such hybrid approach is proposed in (Wang et al., 2021) where the
authors have utilized a lightweight strategy for obtaining learned
coordinate representations. An approach by which the localization
can be enhanced and which introduces confidence-aware loss is
used for prediction. Such hybrid approaches have been found to
be up to the task of effectively and efficiently tackling the problem
of localization in literature and in practice. Using a similar hybrid
approach in (Reading et al., 2021), the predicted depth distribution
is used in order to project the feature information in 3D space.
Then through the use of bird’s-eye-view projection with a single-
stage detector, the output detection is obtained. In another approach
(Wang et al., 2020) the data distribution is analysed continued by a
scan of the interactions in the background and foreground, followed
by a separated depth estimation based on ForeSeE method for
estimating their respective depths. While in (Zhang et al., 2022b)
using DNNs a pair-wise distance is exploited for obtaining the
similarity of dimensions so that the proposed model has the option
of exploiting the inter-object information to learn further for more
effective dimension estimation.

To benefit from the advantages of DNNs as well as the
imposition of geometric constraints at the pixel level, the object
depth estimation problem is re-formulated as a refinement problem
in (Lian et al., 2022b). To reduce the feature degradation brought on
by depth estimation errors, virtual image features are created using
a disparity-wise dynamic convolution with dynamic kernels taken
from the disparity feature map in (Chen et al., 2022). A separate
module to convert the input data from a 2D plane to a 3D point
cloud space for a better input representation is explored in (Ma et al.,
2019). This is followed by the use of PointNet backbone net to
conduct 3D detection to determine the positions, dimensions, and
orientations of the objects in 3D space. A multi-modal feature
fusion module to include the complementary RGB cues into the
produced point cloud representation in order to improve the point
cloud’s capacity to discriminate is also investigated in (Ma et al.,
2019). Further, 2D object proposals are identified in the input image
by using a pipeline of two-stage 3D detection methods, and a
point cloud frustum from the pseudo-LiDAR for each proposal is
extracted. Then each frustum’s oriented 3D bounding box is found
andways throughwhich the noise in the pseudo-LiDAR can be dealt
with are also discussed in (Weng and Kitani, 2019). Utilizing current
networks that operate directly on 3D data to conduct 3D object
recognition and localization while also employing neural networks
to convert 2D images to 3D representations has been discussed in
(Srivastava et al., 2019).

The use of stereo cameras with learning based techniques
to obtain a hybrid approach has been discussed in detail in
literature. One such approach (Wang et al., 2019) converts the
image-based depth maps to pseudo-LiDAR representations, which
are fundamentally imitative of the LiDAR signal, taking into account
the inner workings of convolutional neural networks. Using this
representation, several LiDAR-based detection techniques that are
already available can be exploited. The stereo 3D detector is a
stereo-image based anchor-free 3D detection approach in which
the instance-level depth information is investigated in (Peng et al.,
2022) by creating the cost volume from ROIs of each item. Due to

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2024.1212070
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Cabrera et al. 10.3389/frobt.2024.1212070

T
A
B
LE

3
H
yb

ri
d
m
et
h
o
d
s
co

m
p
ar
is
o
n
ta
b
le
.B

es
t
re
su

lt
s
ar
e
h
ig
h
lig

h
te
d
in

b
o
ld

fo
n
t.
T
h
e
su

p
er
sc
ri
p
t
⋆
in

re
su

lt
s
co

rr
es
p
o
n
d
to

te
st

se
t
sc
o
re
s
(s
in
ce

o
n
ly

th
o
se

sc
o
re
s
w
er
e
av

ai
la
b
le
).
T
h
e
A
P
sc
o
re
s
fo
r
ca

r
ca

te
g
o
ry

w
er
e
ca

lc
u
la
te
d
co

n
si
d
er
in
g
Io
U
(I
n
te
rs
ec

ti
o
n
o
f
U
n
io
n
)o

f
70

%
w
h
ile

fo
r
p
ed

es
tr
ia
n
s
an

d
cy

cl
is
ts

ca
te
g
o
ri
es

w
as

5
0
%
,a

s
re
q
u
ir
ed

fo
r
su

b
m
is
si
o
n
to

K
IT
T
Io

fi
ci
al

ev
al
u
at
io
n
.

M
e
th
o
d

So
u
rc
e

FP
S

C
am

e
ra

in
p
u
t

K
IT
T
Id

at
as
e
t
va

lid
at
io
n
se
t
(A
P
3
D
/A

P
B
E
V
)

C
ar
s

P
e
d
e
st
ri
an

s
C
yc

lis
ts

E
as
y

M
o
d
e
ra
te

H
ar
d

E
as
y

M
o
d
e
ra
te

H
ar
d

E
as
y

M
o
d
e
ra
te

H
ar
d

PC
T

W
an

g 
et
 a
l.
(2

02
1a

)
22

M
on

oc
ul

ar
13

.3
7/

19
.0
3

21
.0
0/

29
.6
5

11
.3
1/

15
.9
2

-
-

-
-

-
-

C
aD

N
N

Re
ad

in
g 
et
 a
l.
(2

02
1)

-
M

on
oc

ul
ar

19
.1
7/

-⋆
13

.4
1/

-⋆
11

.4
6/

-⋆
12

.8
7/

-⋆
8.
14

/-
⋆

6.
76

/-
⋆

7/
-⋆

3.
41

/-
⋆

3.
3/

-⋆

Fo
re

Se
E-

PL
W

an
g 
et
 a
l.
(2

02
0b

)
-

M
on

oc
ul

ar
15

.0
/2

3.
4

12
.5
/1

7.
4

12
.0
/1

5.
9

-
-

-
-

-
-

G
U
PN

et
+

D
im

Em
b

Zh
an

g 
et
 a
l.
(2

02
2b

)
32

.1
5

M
on

oc
ul

ar
23

.6
2/

32
.8
2⋆

16
.1
0/

21
.9
8⋆

13
.4
1/

18
.7
0⋆

-
-

-
-

-
-

M
on

oJ
SG

Li
an

 e
t a

l.
(2

02
2b

)
23

.8
1

M
on

oc
ul

ar
24

.6
9/

32
.5
9⋆

16
.1
4/

21
.2
6⋆

13
.6
4/

18
.1
8⋆

11
.0
2/

-⋆
7.
49

/-
⋆

6.
41

/-
⋆

5.
45

/-
⋆

3.
21

/-
⋆

2.
57

/-
⋆

G
U
PN

et
Lu

 e
t a

l.
(2

02
1)

29
.4

M
on

oc
ul

ar
22

.7
6/

31
.0
7

16
.6
4/

22
.9
4

13
.7
2/

19
.7
5

-
-

-
-

-
-

SG
M

3D
Zh

ou
 e
t a

l.
(2

02
2)

33
St

er
eo

/M
on

oc
ul

ar
25

.9
6/

34
.1
0

17
.8
1/

23
.6
2

15
.1
1/

20
.4
9

-
-

-
-

-
-

FG
M

F-
A
C

Li
u 
et
 a
l.
(2

02
2b

)
6.
25

M
on

oc
ul

ar
29

.6
7/

37
.7
0

22
.9
6/

26
.9
9

18
.9
7/

24
.2
9

-
-

-
-

-
-

Ps
eu

do
-M

on
o

Ta
o 
et
 a
l.
(2

02
3)

-
M

on
o

27
.4
1/

35
.8
4⋆

18
.5
7/

23
.6
7⋆

16
.1
6/

20
.1
9⋆

29
.2
6/

36
.1
1

22
.1
5/

28
.0
4

19
.2
7/

23
.9
0

-
-

-

A
M

3D
M

a 
et
 a
l.
(2

01
9)

-
M

on
oc

ul
ar

32
.2
3/

-
21

-0
9/

-
17

.2
6/

-
-

-
-

-
-

-

M
on

o
Ps

eu
do

Li
D
A
R

W
an

g 
et
 a
l.
(2

02
2b

)
-

M
on

oc
ul

ar
32

.4
/4

2.
5

21
.4
/2

9.
1

17
.3
/2

4.
7

-
-

-
-

-
-

Ps
eu

do
Li

D
A
R

W
an

g 
et
 a
l.
(2

01
9)

1
St

er
eo

59
.4
/7

2.
8

39
.8
/5

1.
8

33
.5
/4

4.
0

33
.8
/4

1.
3

27
.4
/3

4.
9

24
.0
/3

0.
1

41
.3
/4

7.
6

25
.2
/2

9.
9

24
.9
/2

7.
0

SI
D
E

Pe
ng

 e
t a

l.
(2

02
2)

3.
85

St
er

eo
61

.2
2/

72
.7
5

44
.4
6/

53
.7
1

37
.1
5/

46
.1
6

-
-

-
-

-
-

SA
S3

D
G
ao

 e
t a

l.
(2

02
3)

35
.7
1

St
er

eo
65

.2
6/

77
.4
8

47
.0
7/

58
.4
1

39
.6
2/

49
.9
5

-
-

-
-

-
-

Bi
rd

G
A
N

Sr
iv
as

ta
va

 e
t a

l.
(2

01
9)

-
M

on
oc

ul
ar

58
.2
6/

-
42

.4
8/

-
40

.7
2/

-
-

-
-

-
-

-

PL
U
M

EN
et
-S

W
an

g 
et
 a
l.
(2

02
1b

)
12

.5
St

er
eo

-/
74

.4
-/
61

.7
-/
55

.8
-

-
-

-
-

-

Zo
om

N
et

Xu
 e
t a

l.
(2

02
0)

-
St

er
eo

62
.9
6/

78
.6
8

50
.4
7/

66
.1
9

43
.6
3/

57
.6
0

-
-

-
-

-
-

Ps
eu

do
Li

D
A
R

+
G
eo

Li
 e
t a

l.
(2

02
2b

)
28

.5
7

St
er

eo
68

.2
3/

78
.7
7

48
.3
4/

59
.0
1

44
.8
4/

55
.5
1

-
-

-
-

-
-

Ps
eu

do
Li

D
A
R+

+
Yo

u 
et
 a
l.
(2

01
9)

11
.1

St
er

eo
67

.9
/8

2.
0

50
.1
/6

4.
0

45
.3
/5

7.
3

53
.6
/6

3.
7

44
.4
/5

3.
8

38
.1
/4

6.
8

60
.8
/6

5.
7

40
.8
/4

5.
8

38
.0
/4

2.
8

C
D
N
-D

SG
N

C
he

n 
et
 a
l.
(2

02
0b

)
-

St
er

eo
74

.5
/8

3.
3⋆

54
.2
/6

6.
2⋆

46
.4
/5

7.
7⋆

-
-

-
-

-
-

D
isp

R-
C
N
N

Su
n 

et
 a
l.
(2

02
0b

)
2.
59

St
er

eo
70

.1
8/

83
.2
9

54
.7
2/

66
.1
8

46
.9
9/

57
.6
0

43
.8
7/
50
.7
0

36
.2
6/

38
.3
3

29
.8
1/
33
.5
0

55
.9
8/
61
.6
0

33
.4
6/

36
.8
9

29
.5
1/
35
.0
7

(C
on

tin
ue

d
on

th
e
fo

llo
w
in

g
pa

ge
)

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2024.1212070
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Cabrera et al. 10.3389/frobt.2024.1212070

T
A
B
LE

3
(C

o
n
ti
n
u
ed

)H
yb

ri
d
m
et
h
o
d
s
co

m
p
ar
is
o
n
ta
b
le
.B

es
t
re
su

lt
s
ar
e
h
ig
h
lig

h
te
d
in

b
o
ld

fo
n
t.
T
h
e
su

p
er
sc
ri
p
t
⋆
in

re
su

lt
s
co

rr
es
p
o
n
d
to

te
st

se
t
sc
o
re
s
(s
in
ce

o
n
ly

th
o
se

sc
o
re
s
w
er
e
av

ai
la
b
le
).
T
h
e
A
P
sc
o
re
s

fo
r
ca

r
ca

te
g
o
ry

w
er
e
ca

lc
u
la
te
d
co

n
si
d
er
in
g
Io
U
(I
n
te
rs
ec

ti
o
n
o
f
U
n
io
n
)o

f
70

%
w
h
ile

fo
r
p
ed

es
tr
ia
n
s
an

d
cy

cl
is
ts

ca
te
g
o
ri
es

w
as

5
0
%
,a

s
re
q
u
ir
ed

fo
r
su

b
m
is
si
o
n
to

K
IT
T
Io

fi
ci
al

ev
al
u
at
io
n
.

M
e
th
o
d

So
u
rc
e

FP
S

C
am

e
ra

in
p
u
t

K
IT
T
Id

at
as
e
t
va

lid
at
io
n
se
t
(A
P
3
D
/A

P
B
E
V
)

C
ar
s

P
e
d
e
st
ri
an

s
C
yc

lis
ts

E
as
y

M
o
d
e
ra
te

H
ar
d

E
as
y

M
o
d
e
ra
te

H
ar
d

E
as
y

M
o
d
e
ra
te

H
ar
d

C
G
-S

te
re

o
Li

 e
t a

l.
(2

02
0)

1.
76

St
er

eo
76

.1
7/

87
.3
1

57
.8
2/

68
.6
9

54
.6
3/

65
.8
0

-
-

-
-

-
-

LI
G
A-

St
er

eo
G
uo

 e
t a

l.
(2

02
1)

2.
86

St
er

eo
84
.9
2/
89
.3
5

67
.0
6/

77
.2
6

63
.8
0/
69
.0
5

-
-

-
-

-
-

D
SG

N
++

C
he

n 
et
 a
l.
(2

02
2a

)
5.
62

St
er

eo
69
.1
2/
78
.9
3

-
42
.4
4/
50
.0
6

-
-

42
.4
8/
45
.7
7

-

the information scarcity of local cost volume, match reweighting
is applied in addition to structure-aware attention to enhance the
concentration of depth information. It suggests a shape-aware non-
uniform sampling approach to make use of the pertinent data
from the object’s exterior region. While utilizing trained neural
networks to transform 2D images into 3D representations and using
existing networks to operate directly on 3D data to produce better
results is discussed in (Srivastava et al., 2019). A framework called
ZoomNet is introduced in (Xu et al., 2020) for stereo imagery-based
3D detection that leverages a standard 2D item identification model
and adaptive zooming to generate pairs of left-right bounding boxes.
It also proposes the 3Dfitting score to assess the 3Ddetection quality
and the learning of component positions to increase resistance
to occlusion.

A lightweight pseudo-LiDAR 3D detection system is proposed
in (Li et al., 2022) that achieves responsiveness and accuracy by
using Binary Neural Networks (BNNs) to increase the completeness
of objects and their representation in 3D space. While a strategy
in which a one-stage stereo-based 3D detection pipeline that
simultaneously recognises 3D objects and calculates depth, closing
the gap between semantic and depth information is discussed in
(Chen et al., 2020b). Using a statistical shape model to produce
dense disparity pseudo-ground-truth without LiDAR point clouds,
broadening applicability and addressing the issue of lack of
disparity annotation has been tackled in (Sun et al., 2020). To
increase the efficiency of learning semantic features from indirect
3D supervision, a second 2D detection head was attached in
(Guo et al., 2021), which enhanced the overall geometric and
semantic representation. Also, depth-wise plane sweeping, dual-
view stereo volume, and stereo-LiDAR Copy-Paste to lift 2D and 3D
information to the stereo volume have been explored in (Chen et al.,
2022). This is a multi-modal data editing technique to maintain
cross-modal alignment and increase data effectiveness.

5 Trends in reliable three-dimentional
object detection

From the presented results and analysis in this work, it can be
projected that the object detection community is moving towards
employing hybrid methods on stereo vision that leverage Pseudo-
LiDAR representation and infer depth through dedicated networks
or combine these approaches with geometric constraints. The
current LiDAR based state estimation and detection approaches
have provided a wide array of hybrid techniques and has also
provided the background needed to propose new detectors without
manipulating LiDAR data. Considering the best results in terms of
AP3D/APBEV and its corresponding methods, they run at least in
30 FPS (real-time) and SAS3D(39.62/49.95) is the most prominent
framework of the hybrid branch. It outperforms its counterparts of
geometric,MonoGround (15.58/20.56), and end-to-end,MonoCon,
(15.98/21.93) branches. Interestingly, end-to-end methods do not
generally perform better than the model-based approaches in
terms of inference time. This gives the impression that end-to-end
approaches will still need further improvements in the case of real-
time applications, and more specifically for safety-critical scenarios
in highly dynamic settings. In particular, end-to-end methods that
rely on a two-branch structure tend to be have higher AP but
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slower inference, similarly as with 2D detection. Conversely, model-
based detectors obtain rapid results due to levering depth through
geometric scene and not dense feature map, but this is also its
weakest point since this process is more sensitive to depth artifacts.
This branch can be use for real-time applications with sufficient
awareness on AP results. Lastly, hybrid-methods, expressly those
based on Pseudo-LiDAR representation, heavily depend on previous
depth estimator regarding both in detection quality and speed, in
other words it is its major bottleneck.

Several critical detection aspects are yet to be tackled which
include, failure of CNN to capture the finest texture details while
only focusing on local visual information and limitations in its
extraction capabilities. As a possible remedy to such issues, visual
transformers (ViT) have been proposed as the deep learning
structure to obtain global visual information and to keep long-term
spatial structures due to its embedding mechanism.

Several transformer-based frameworks, have already been
presented in this survey, which include, MonoDTR (Huang et al.,
2022), DST3D (Wu et al., 2022), and MonoDETr (Zhang et al.,
2023). These frameworks have been used for precise depth inference
or serves as feature backbones. A key feature of such methods is
its end-to-end learning capabilities and its scalability. Also, it is
concerning that only a few approaches have categorically addressed
the occlusion problem, considering that most street scenarios suffer
from varying degrees of occlusion. The KITTI dataset contemplates
occlusion for mAP calculation by considering categories of Easy,
Moderate, and Hard. As another possible solution to this issue,
the authors of (Liu et al., 2022; Su et al., 2023) have exploited
the anti-occlusion loss function which fuses depth and semantic
information and defines a confidence occlusion parameter inside the
loss. However, further investigation and analytical analysis must be
carried out to effectively tackle the issue of occlusion.

An alternative approach of designing a part-awaremechanism to
extract features from non-occluded parts of the vehicle, i.e., wheels
or car plates was undertaken by ZoomNet (Xu et al., 2020). Those
parts can guide the pose prediction learning flow evenwith occluded
instances. Also, robust detector design must also contemplate
adversarial attacks, which represent a high potential safety threat
to pedestrians and other drivers. The survey did an extensive report
on how 3 types of attacks affect 3D detection. They decided to apply
disturbances to class labels, object position, and orientation, inject
patch noises to 2D bounding boxes and dynamically resized them
depending on the target size of the object.Thefindings of thework in
showed that: depth-estimation-free approaches aremore sensitive to
adversarial attacks, BEV representation only provides robustness in
class perturbation, and temporal integration or multi-view could be
integrated into current networks tomitigate adversarial attacks even
further.

It has also beenobserved that sensor fusionpipelines have gained
considerable attentionafter attaininggoodpositions inKITTI testing
score ranking. These methods can handle occlusion since they fuse
features from multiple inputs. For instance, if a stereo camera setup
suffersfromocclusion,LiDARfeaturesmaybeenoughtocomplement
visualaspectsandpredict thebounding(Kim et al.,2023), theauthors
alleviated the gap between image feature representation and LiDAR
point cloud by fusing these in a voxel feature volume to infer 3D
structureofthescene.Whiletheauthorsof(Wu et al.,2023)suggested
a reduction in the redundancy of virtual point clouds and proposed

an increase indepthaccuracyby fusingRGBandLiDARdata inanew
operatorcalled,VirConv(VirtualSparseConvolution)whichisbased
on a transformed refinement scheme. Furthermore, to primarily
rely on visual information, multi-sensor fusion can be done under
a collaborative or networked 3D object detection pipeline under
considerations of bandwidth and network schemes discussed in the
previous section. Altogether, the discussed aspects in this section is
poised to be an integral part of the research interests in the following
years to accomplish reliable 3D object detection in autonomous
driving.

6 Conclusion

This survey presented an in depth discussion regarding
3D object detection for autonomous driving using stereo and
monocular cameras. At first, the 2D object detection techniques
were covered and their challenges were highlighted in urban
settings, which in turn motivates 3D object detection techniques
in real-time. A classification composed of model- and learning-
based was then presented to reflect the different feature extraction
and 3D structure learning. This was subsequently followed by a
detailed comparison of real-time capabilities for each approach,
through its inference time (FPS) and KITTI dataset validation
results. Furthermore, a discussion was provided on depth inference
foundation, learning schemes, and internal representation based
taxonomy with three classes: geometrically limited, end-to-end
learning, and hybrid methods. Further, assessment indicators have
been included to emphasise the benefits and shortcomings of each
category of these techniques. To summarize, this paper aimed to
provide a comprehensive survey and quantitative comparisons with
state-of-the-art 3D object detection methodologies and identified
research gaps and potential future directions in visual-based 3D
object detection approaches for autonomous driving. On top of the
identified research trends and challenges, the authors encourage to
put detailed focus to the social implications of AI usage in aspects
of policy making that addresses security and job concerns, eco-
friendliness of AVs, economical impact, and availability of this
resource in unrepresented social groups and countries.
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