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Objective: For transradial amputees, robotic prosthetic hands promise to regain
the capability to perform daily living activities. Current control methods based
on physiological signals such as electromyography (EMG) are prone to yielding
poor inference outcomes due to motion artifacts, muscle fatigue, and many
more. Vision sensors are a major source of information about the environment
state and can play a vital role in inferring feasible and intended gestures.
However, visual evidence is also susceptible to its own artifacts, most often
due to object occlusion, lighting changes, etc.Multimodal evidence fusion using
physiological and vision sensor measurements is a natural approach due to the
complementary strengths of these modalities.

Methods: In this paper, we present a Bayesian evidence fusion framework for
grasp intent inference using eye-view video, eye-gaze, and EMG from the
forearm processed by neural network models. We analyze individual and fused
performance as a function of time as the hand approaches the object to
grasp it. For this purpose, we have also developed novel data processing and
augmentation techniques to train neural network components.

Results:Our results indicate that, on average, fusion improves the instantaneous
upcoming grasp type classification accuracy while in the reaching phase by
13.66% and 14.8%, relative to EMG (81.64% non-fused) and visual evidence
(80.5% non-fused) individually, resulting in an overall fusion accuracy of 95.3%.

Conclusion: Our experimental data analyses demonstrate that EMG and visual
evidence show complementary strengths, and as a consequence, fusion of
multimodal evidence can outperform each individual evidence modality at any
given time.
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1 Introduction

In 2005, an estimated of 1.6 million people (1 out of 190
individuals) in the US were living with the loss of a limb (Ziegler-
Graham et al., 2008). This number is expected to double by the year
2050. The most common prosthesis in upper extremity amputees
is cosmetic hand type with the prevalence of 80.2% (Jang et al.,
2011). As limb loss usually occur in the working ages, dissatisfaction
in the effectiveness of the prescribed prosthesis, will often impose
difficulties in an amputee’s personal and professional life. Therefore,
providing a functional prosthesis is critical to address this issue and
can improve quality of life for amputees.

In recent years there have been numerous efforts to leverage
rapid advancements in machine learning (Pouyanfar et al., 2018;
Sünderhauf et al., 2018; Mohammadzadeh and Lejeune, 2022)
for intuitive control of a powered prosthesis. Much of this
effort is focused on inference of the human’s intent using
physiological signals from the amputee including electromyography
(EMG) and to lesser extent electroencephalography (EEG) (Bitzer
and Van Der Smagt, 2006; Günay et al., 2017; Cho et al., 2020).
Myoelectric control, using EMG, of an upper limb prosthesis has
been the subject of intense study and there are now several devices
commercially available [for review see (Guo et al., 2023)]. Despite
the advances in myoelectric control and commercial availability of
robotic prosthetic hands, current control methods generally lack
robustness which reduces their effectiveness in amputees’ activities
of daily life (Kyranou et al., 2018). Reliance solely on physiological
signals from the amputee (such as EMG), has many drawbacks
that will adversely impact the performance of the prosthetic hand.
These include artifacts caused by electrode shifting, changes of
skin electrode impedance over time, muscle fatigue, cross-talk
between electrodes, stumpposture change, and the need for frequent
calibration (Hakonen et al., 2015; Hwang et al., 2017). Therefore,
there is a need for additional sources of information to providemore
robust control of the robotic hand.

A second major source of information for state-of-the-art
control of powered prosthesis are RGB cameras bundled with
a control methods based on pattern recognition or deep neural
networks. These methods generally use image information to infer
the reaching trajectory, time of triggering the grasp or most
importantly, the grasp type used to inform finger preshaping
movements of the robotic hand (Zaharescu, 2005; Han et al., 2020;
Shi et al., 2020; Park et al., 2022; Vasile et al., 2022). Although great
progress has been made in the use of convolutional neural networks
to classify grasp type, most do not incorporate information about
the gaze of the user. The lack of such data renders these methods
incapable of providing the correct grasp type in clutter fields of
view containing two or more objects. When multiple objects are
present in the field of view, then the gaze modality is absolutely
necessary to identify the intended object. Critically, similar to grasp
classification using the physiological data (such as EMG evidence),
solely relying on visual data with eye-gaze is still susceptible to
artifacts such as object occlusion and lighting changes that limit the
robustness of the system.

The work in (Cognolato et al., 2022) is similar in that it
utilizes gaze information and EMG modalities. While the work in
(Cognolato et al., 2022) only provides rest and non-rest phases, our
work goes beyond that as it not only focuses on the grasp intent

inference but paves the path for an actual robotic implementation
by more closely considering the phases of interaction with the
manipulated object including an estimation of when to start and
stop interacting with the object as given the ability to detect all the
4 phases involved in handling objects, i.e., reach, grasp, return and
rest. This is consistently reflected throughout our work, manifesting
in the aspects of protocol design, selection of inference data, and the
methodology of inference and fusion and is most noticeable in our
discussion of accuracy over time. Lastly, our experimental protocols
are designed based on a more dynamic protocol where the objects
are moved around the table. On the other hand, the aforementioned
work’s protocol is less sophisticated where the subject returns the
object to the same position as the object was placed initially. As
a result, our has been evaluated on a broader range of real-world
scenarios, providing a more comprehensive and realistic foundation
for research and analysis.

To increase the robustness of grasp classification, we propose
fusing the evidence from amputee’s physiological signals with
the physical features evident in the visual data from the
camera while in reaching phase. As presented in Figure 1, the
proposed system design consists of a neural visual classifier to
detect and provide probabilities of grasp gestures given world
imagery and eye-gaze from the eye tracking device; an EMG
classifier predicting the EMG evidence from amputee’s forearm
including both phase detection and grasp classification; and a
Bayesian evidence fusion framework to fuse the two. The selected
gesture is then utilized by the robotic controller to actuate
the fingers.

In addition, we approach the problem with a more dynamic
protocol. The work in (Cognolato et al., 2022) is based on grasping
an object and returning it to the same location. On the contrary,
our approach involves the subjects carrying around the object in
the environment, making it more sophisticated for both visual
and EMG modalities resulting in more challenging data. As a
result, our dataset encapsulates a broader range of real-world
scenarios, providing a more comprehensive and realistic foundation
for research and analysis.

Finally, we propose that employing simpler classification
methods like Yolo, tailored for grasp type recognition, is not only
effective but also offers faster inference times due to reduced
computational complexity compared to Mask-RCNN and LSTM,
thereby mitigating the risk of overfitting.

Our experimental results show that fusion can outperform each
of the individual EMG and visual classificationmethods at any given
time. Specifically, fusion improves the average grasp classification
accuracy during reaching by 13.66% (81.64% non-fused), and 14.8%
(80.5% non-fused) for EMG and visual classification respectively
with a total accuracy of 95.3%. Moreover, such utilization of fusion
allows the robotic hand controller to deduce the correct gesture in a
more timely fashion, hence, additional time is left for the actuation
of the robotic hand. All classification methods were tested on our
customdataset with synchronized EMGand imagery data.Themain
contributions of this work are:

• Synchronized grasp dataset: We collected a multimodal
dataset for prosthetic control consisting of imagery, gaze and
dynamic EMG data, from 5 subjects using state-of-the-art
sensors, all synchronized in time.
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FIGURE 1
Proposed system overview [eye-tracker from (Kassner et al., 2014)].

• Grasp segmentation and classification of dynamic EMG:
We segmented the non-static EMG data into multiple
dynamic motion sequences with an unsupervised method, and
implemented gesture classification based on the dynamic EMG.
• Visual grasp detection: We built a CNN classifier capable
of detecting gestures in visual data, and background
generalization using copy-paste augmentation.
• Robust grasp detection: We implemented the multimodal
fusion of EMG and imagery evidence classifications, resulting
in improved robustness and accuracy at all times.

The rest of this paper continues as follows: section 2 provides
details on system setup and data collection protocols. After that,
section 3 provides an in-depth study of EMG phase segmentation
and gesture classification. Then, section 4 discusses visual detection
and generalizationmethods. Afterwards, section 5 elaborates on our
fusion formulation. In section 6 we describe the metrics used and
present the results for EMG, visual and fusion systems. Moreover,
we discuss related works, limitations and advancements in section 7.
Finally, we conclude our work in section 8.

2 System setup

This section provides the technical details required to replicate
the data acquisition system and results. The details are provided in
four subsections: 1) system overview, 2) sensor configurations, 3)
experiment protocol, and 4) data collection.

2.1 System overview

Our data acquisition system entails collecting, synchronizing,
and storing information from subject’s eye-gaze, surface EMG,
and an outward facing world camera fixed to the eye-glass worn

eye-tracker. Robot Operating System (ROS) enabled the
communication framework. ROS Bag file format was used to store
the data on disc.

In our exploration of camera configurations, we initially
implemented a palm-mounted camera in our previous works
(Zandigohar et al., 2019; Han et al., 2020), but practical constraints
prompted a transition away from this setup. A significant challenge
surfaced as the object within the camera’s field of view became
visible only briefly and relatively late in the grasping process,
allowing insufficient time for preparatory actions. To optimize the
efficacy of the palm camera, we found it necessary to prescribe an
artificial trajectory for the hand. Regrettably, this imposed trajectory
compromised the natural and intuitive elements of the interaction.
Consequently, we pivoted towards a head-mounted camera in our
current work with the following advantages: 1) a head-mounted
camera provides a broader and more comprehensive field of view
and therefore enhances the prosthetic hand’s ability to interpret the
context of the grasp. Understanding the spatial context is crucial for
executing precise and contextually relevant grasps. For example, if
the prosthetic hand needs to grasp an object on a shelf, the head-
mounted camera can capture not only the target object but also the
spatial relationship between the hand and the shelf.This information
aids in determining the appropriate hand posture required for a
successful grasp in that specific spatial context. 2) A camera on the
head offers more stability and consistency in capturing visual input.
The head, being a relatively stable platform, ensures that the camera
maintains a consistent orientation, distance and perspective which
is crucial for accurate and reliable grasp detection. 3) Placing the
camera on the head aligns more closely with the user’s natural way
of perceiving and interacting with objects. People tend to look at
objects of interest before reaching for them, and a head-mounted
camera can mimic this natural behavior, facilitating more intuitive
grasp detection. A palm-mounted camera on the other hand is
heavily dependent on the reach to grasp trajectory and is adversely
affected by variations in hand orientation or distance to the object
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FIGURE 2
System components overview (A) and data collection setup (B). Only the clockwise session is demonstrated in (B).

during grasping. For example, when reaching to put an upside down
glass in the dishwasher an individual would like reach in a supinated
position with the palm facing the floor. In this case a palm mounted
camera would not have view of the glass until just prior to grasp.

It is important to recognize that while a palm-mounted camera
offers distinct benefits, such as delivering detailed insights into the
reaching conditions, including wrist rotation, which can be essential
for achieving greater autonomy in prosthetic control, this aspect falls
outside the scope of our current study. Our research is specifically
concentrated on detecting the type of grasp, for which the head-
mounted camera is more aptly suited. This focus on grasp type
detection aligns the head-mounted camera’s broader field of view
and user-aligned perspective with our study’s objectives, making it a
more appropriate choice in this context.

A mobile binocular eye-tracker (Pupil Core headset, PupilLab,
Germany) with eye facing infrared cameras for gaze tracking and a
world facing RGB camera was used.The gaze accuracy and precision
were 0.60° and 2%, respectively. The gaze detection latency was at
least 11.5 m according to the manufacturer.The world camera of the
eye-tracker recorded the work-space at 60Hz@720p and FOV of 99°
× 53°.The gaze and world camera data were sent to ROS in real-time
using ZeroMQ (iMatix, 2021).

Muscle activity was recorded from subjects’ right forearm
through 12 Z03 EMG pre-amplifiers with integrated ground
reference (Motion Lab Systems, Baton Rouge, LA, USA). The pre-
amplifiers provided x300 gain and protection against electrostatic
discharge (ESD) and radio-frequency interference (RFI). The
signals were passed to 2 B&L 6-channel EMG electrode interfaces
(BL-EMG-6). Then, an ADLINK USB 1902 DAQ was used to
digitize EMG data, which was then stored along with other
signals in the ROS Bag file. The ADLINK DAQ used a double-
buffer mechanism to convert analog signals. Each buffer was
published to ROS when full. The system components are depicted
in Figure 2A.

2.2 Sensor configurations

2.2.1 Eye-tracker configuration
The orientation of the eye and world cameras were adjusted at

the beginning of the experiment for each subject and remained fixed
during the whole experiment. A single marker calibration method
leveraging the vestibulo-ocular reflex (VOR) was used to calibrate
the gaze tracker. While gazing at the marker lying on the table, the
subject moved their head slowly to cover the whole field of view.

2.2.2 EMG sensor configuration
Surface EMG was recorded at f = 1,562.5 Hz in C = 12 muscles

of the arm, forearm and hand in order to capture dynamic hand
gesture information and arm movement: First Dorsal Interosseous
(FDI), Abductor Pollicis Brevis (APB), Flexor Digiti Minimi (FDM),
Extensor Indicis (EI), Extensor Digitorum Communis (EDC),
Flexor Digitorum Superficialis (FDS), Brachioradialis (BRD),
Extensor Carpi Radialis (ECR), Extensor Carpi Ulnaris (ECU),
Flexor Carpi Ulnaris (FCU), Biceps Brachii-Long Head (BIC), and
Triceps Brachii-Lateral Head (TRI). The muscle locations were
found by palpation during voluntary arm movements. After skin
preparation, the surface electrodes were fixed to the skin overlying
each muscle using tape.

2.3 Experiment protocol

Enabling online human-robot interaction via hand and arm
motion proves challenging due to the intricate structure and high
degree of freedom (DOFs) present in the human body. Specifically,
the human hand is complex with its 21 DOFs and 29 controlling
muscles. As such, recognizing real-time human grasp intentions
through the identification of intricate and high-DOF hand motions
poses a significant challenge.
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Historically, research has mainly focused on steady-state
classification involving a limited number of grasp patterns, which
proves inadequate when addressing the nuanced changes in
muscle activity that occur in real-world scenarios. For instance,
conventional protocols usually instruct participants to maintain a
specific gesture for a period of time, capturing data during this
static process. However, in practical applications, muscular activity
and hand configuration shift between static and dynamic positions,
changing in unison with arm movements.

To improve the detection of dynamic movements, we have
incorporated greater variability into our experimental protocol.
This involved gathering and employing data from an expanded
repertoire of gestures, and integrating multiple dynamic actions to
represent the transitions between various grasp intentions based on
natural human movement sequences. Specifically, our experiment
synchronizes hand movements with dynamic arm motions. We
ask participants to naturally and continuously grasp different
target objects from various orientations and positions without a
pause. As the hand moves towards a target to grasp it, the finger
and wrist configurations dynamically adapt based on the object’s
shape and distance. By including all these movement phases and
changes in our experiment, we collect a broad range of motion
data. This approach allows us to leverage the continuity of hand
formation changes to enhance data variability and mimic real-
life scenario.

The experiment included moving objects among cells of an
imaginary 3× 2 grid with pre-defined gestures. The experimental
setup is shown in Figure 2 and the pre-defined gestures are shown in
Figure 3. The experiment was comprised of two sessions. In the first
session, subjects moved objects in a clockwise manner, and in the
second session objects were moved in a counter-clockwise manner
(only the clockwise session is demonstrated in Figure 2). Having
two sessions contributed to the diversity of the dataset for the EMG
signal and the camera image patterns.

In each session, 54 objects were placed on a table one by one
within the reach of the subjects so they could locate it on the proper
spot before the experiment began. Then, for each object, an image
was shown on themonitor on the right side of the subject instructing
them how to grasp the object.Then, the moving experiment started.
Audio cues, i.e., short beep sounds, were used to trigger each move.

The subject performed 6 trials for each object, where each trial
was executed along its corresponding predefined path, as shown in
Figure 2B. During the first trial t1, the object was moved from the
initial position P0 to the position P1, followed with another five
trials to move the object clockwise until it was returned to the initial
position P0, leading to 6 trials in total. After moving all objects in
the clockwise order, the second session of counterclockwise started
after a 15-min break. The break meant to help the subject refresh
and to maintain focus on the task in the second session.The interval
between consecutive audio cues was set to 4 s for all objects. The
entire experiment for the 6 trials per object, i.e., moving one object
around the rectangle, took about 37 s including the instructions. In
our experiments, each trial t, constitutes all four distinct phases.
Participants begin each trial in a resting position and then proceed
to reach for an object. Following the reach, they execute a grasp
and transport the object to its next predetermined location. Upon
successfully placing the object at its designated spot, participants
release it and return their hand to the initial resting position,

thus marking the completion of the trial and the re-entry into the
resting phase.

2.4 Data collection

Our decision to initiate our experiments with healthy subjects
is informed by three primary factors. Firstly, identifying disabled
or amputated participants is more challenging due to a smaller
available pool and safety considerations. Additional time, effort,
and administrative procedures are typically required to facilitate
experiments involving these individuals. Secondly, before we
consider involving disabled participants, it is important that we
establish preliminary evidence of the effectiveness and feasibility of
our method. By observing strong patterns among healthy subjects,
we can utilize these findings as foundational data to extend similar
experiments to disabled participants. Lastly and most importantly,
the level of amputation can differ significantly among disabled
individuals, complicating the process of collecting consistent EMG
data channels. One potential solution to this problem is to
use the model developed from the healthy subjects’ data as a
starting point.

Experimental data were collected from 5 healthy subjects (4
male, 1 female; mean age: 26.7 ± 3.5 years) following institutionally
approved informed consent. All subjectswere right-handed andonly
the dominant hand was used for the data collection. None of the
subjects had any known motor or psychological disorders.

Feix et al. (Feix et al., 2016) proposed that human grasp
taxonomy consists of 33 classes if only the static and stable
gestures are taken into account. The human hand has at least
27 degrees of freedom (DoF) to achieve such a wide range of
gestures; however, most existing prosthetic hands do not have
this many DoF (Resnik et al., 2014). Therefore, in our work, the
experimental protocol was focused on those 14 representative
gestures involving commonly used gestures and wrist motions
(Feix et al., 2016). As shown in Figure 3, the 14 classes were: large
diameter, small diameter, medium wrap, parallel extension, distal,
tip pinch, precision disk, precision sphere, fixed hook, palmar,
lateral, lateral tripod, writing tripod, and open palm/rest. In our
classification problem, we mapped the 14 gestures with 14 gesture
labels l ∈ {0,1,… ,13}, where l = 0 was defined as open-palm/rest
gesture and l ∈ {1,… ,13} were accordingly identified as the other
13 gestures in the order listed in Figure 3.

3 Classification of EMG evidence

Extracting user hand/arm motion instructions from EMG
signals has been widely utilized for human–robot interactions. A
major challenge of online interaction with robots is the reliability of
EMG recognition from real-time data. In this section, we introduce
our method for the EMG control of the robotic hand. We propose a
framework for classifying our collected EMG signals generated from
continuous grasp movements with variations in dynamic arm/hand
postures as outlined in Figure 4. We first utilized an unsupervised
segmentation method to segment the EMG data into multiple
motion states, and then constructed a classifier based on those
dynamic EMG data.
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FIGURE 3
Selected 14 gestures for the classification problem.

FIGURE 4
Schematic of the EMG Signal Processing and Data Annotation Workflow. This figure outlines the sequence of processing steps applied to EMG data,
starting with band-pass filtering, followed by RMS envelope computation, MVC normalization, and the application of sliding window techniques. The
featured extracted at this stage is used in gesture classification. In phase classifier, unsupervised data annotation and alignment provides phases of
object manipulation–rest, reach, grasp, and return outlined in the lower section which constitute the labeled activities in the dataset for machine
learning model training and validation, with features such as RMS, MAV, and VAR extracted for analysis.
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3.1 EMG data pre-processing

As outlined in Figure 4, first the raw EMG data were filtered
with a band-pass Butterworth filter of 40–500 Hz, where the high
pass serves to remove motion artifact and the low pass is used for
anti-aliasing and removal of any high frequency noise outside of
the normal EMG range. Afterwards the root-mean-square envelopes
(Hogan and Mann, 1980) of the EMG signal were constructed
using a sliding window of length 150 samples (96 m). A maximum
voluntary contraction (MVC) test was manually performed for
each muscle at the beginning of the recordings. During the test,
the subjects were instructed to perform isometric contractions
constantly for each muscle (Kendall et al., 2005). Finally, the
resulting EMG envelopes were normalized to themaximumwindow
value of MVC data, which were processed the same as the task
data. Finally, the filtered, RMS-ed and normalized EMG signals
were further divided into sliding windows of T = 320 m, with
an overlap of 32 m between two consecutive windows. Both
feature extraction and classification were conducted based on each
sliding window.

3.2 EMG feature extraction

Following the pre-processing stage, wherein the raw EMG
signal is subjected to band-pass filtering, RMS enveloping, MVC
normalization, and segmentation into windows, we can proceed to
extract features from this refined data.

Three time domain features were adopted in this work, including
root mean square (RMS), mean absolute value (MAV), and
variance of EMG (VAR) (Phinyomark et al., 2012).The RMS feature
represents the square root of the average power of the EMG signal
for a given period of time, which models the EMG amplitude as
a Gaussian distribution. MAV feature is an average of absolute
value of the EMG signal amplitude, which indicates the area
under the EMG signal once it has been rectified (Günay et al.,
2017). VAR feature is defined as the variance of EMG, which is
calculated as an average of square values of the deviation of the
signal from the mean. In choosing our festure set, our experiments
revealed that the selected set of features optimally suits our dataset,
demonstrating enhanced generalization capabilities for unknown
subjects, particularly in inter-subject and left-out validation. While
these features may appear to encapsulate similar aspects of muscle
activity, they each offer unique insights under different conditions
which can be invaluable for robust classification in diverse scenarios.
For instance, RMS provides a measure of the power of the signal,
effectively capturing the overall muscle activity and is particularly
sensitive to changes in force. MAV offers a quick and efficient
representation of signal amplitude, useful for real-time applications
and less sensitive to variations in signal strength compared to RMS.
VAR reveals the variability in the signal, an important indicator of
muscle fatigue and changes in muscle fiber recruitment patterns.

The input for the feature extraction is the pre-processed EMG
window X ∈ ℝC×T, where C = 12 is the channel number of EMG
from all muscles and T = 320 m is the window length with a
sampling rate of f = 1,562.5 Hz. For each input EMG window X ∈
ℝC×T, we extracted all the three mentioned time-domain features
leading to an output feature vector of Z ∈ ℝ3C×1.

3.3 Data annotation

In order to approach the gesture classification in a continuous
manner, each EMG trial was assumed to include 4 different
movement sequences, i.e., reaching, grasping, returning and resting.
The proposed motion sequences are naturally and commonly
performed actions by human during the reach-to-graspmovements,
giving greater probability to intent transitions that are likely to
follow one another, such as a “grasp” action is always following
a “reach” movement and followed by a “return” action. In our
method, as shown in Figure 5, we first segmented each EMG trial
unsupervisedly into 4 sequences, and then labeled them separately
with gesture label l according to the specific motion. During each
trial, the dynamic graspmovements were performed naturally by the
subject without limitation on the timing of eachmotion phase, so the
length of each phase is not necessarily equal.

3.3.1 Unsupervised EMG segmentation of
dynamic motion

The EMG trial from dynamic grasp movement was segmented
using an unsupervised method of Greedy Gaussian Segmentation
(GGS) (Hallac et al., 2019), based on the assumption that EMG
signal under a specific stationary status can be well modeled
as a zero-mean random process which is Gaussian distributed
(Clancy and Hogan, 1999). The segmentation of dynamic motion
was conducted using unprocessed EMG signals, ensuring that
the raw data was directly employed without the application of
any preliminary filtering or normalization procedures. The GGS
method was proposed to solve the problem of breaking multivariate
time series into segments over which the data is well explained
as independent samples from different Gaussian distributions
corresponding to each segment. GGS assumes that, in each segment,
the mean and covariance are constant and unrelated to the means
and covariances in all other segments. The problem was formulated
as a maximum likelihood problem, which was further reduced to a
optimization task of searching over the optimal breakpoints leading
to the overall maximum likelihood from all Gaussian segments.The
approximate solution of the optimized segments was computed in
a scalable and greedy way of dynamic programming, by adding one
breakpoint in each iteration and then adjusting all the breakpoints
to approximately maximize the objective.

In order to formulate four segments corresponding to the four
grasp motion phases (reaching, grasping, returning and resting), we
assigned three breakpoints to each EMG trial. Practically each of
the four dynamic phases may not be strictly steady-state, but we
nevertheless encode such transitions from one intent to another
based on the proposed motion sequences considering the inherent
stochastic nature of EMG signals. We then utilized the GGS
algorithm to locate the locally optimal segment boundaries given the
specific number of segments. The obtained three optimal segment
boundaries led to four EMG sequences, where each of the four
sequences was modeled as an independent 12-channel multivariate
Gaussian distribution with different means and variances.

3.3.2 Hand gesture annotation of EMG
In order to classify gestures from dynamic EMG signals in a

real-time manner, following the motion phase segmentation, the
resulting EMG segments were further annotated by a group of
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FIGURE 5
Experiment timeline. The subject was given 5 s to read the shown gesture before the first trial. Each trial lasted for 4 s, repeated for 6 trials without
interruption. All EMG trials were segmented unsupervisedly into four sequences of reaching, grasping, returning and resting. The first three motion
phases were labeled as gesture l ∈{1,… ,13} corresponding to the target object, and the resting phase was tagged by the open-palm label l =0.

gesture label l ∈ {0,1,… ,13}, where l = 0 was defined as open-
palm/rest gesture and l ∈ {1,… ,13} were accordingly identified as
the other 13 gestures listed in Figure 3.

During the reach-to-grasp movement, the configuration of the
fingers and wrist changes simultaneously and continuously with the
arm’smotion according to the shape and distance of the target object
(Jeannerod, 1984). For example, humans tend to pre-shape their
hands before they actually touch the target object during a grasp, and
this formation of the limb before the grasp is in direct relation with
the characteristics of the target object (Jeannerod, 1984). Therefore,
to accomplish a smooth interpretation of the grasping gesture,
as presented in Figure 5, we annotated unsupervisedly segmented
sequences of reaching, grasping and returning as the executed
gesture l ∈ {1,… ,13} corresponding to the target object, and tagged
the resting phase with the open-palm label l = 0.

3.4 Gesture classification of dynamic EMG

We constructed a model for classifying the gesture
l ∈ {0,1,… ,13} of dynamic EMG signals with corresponding
data pairs of {(Xi, l)}

n
i=1, where Xi ∈ ℝ

C×T is the ith EMG window
with channel number C = 12 and window length T = 320 m of
f = 1,562.5 Hz sampling rate, and n is the total number of windows.
For each EMG window Xi ∈ ℝC×T, three time-domain features of
RMS, MAV and VAR were extracted as Zi ∈ ℝ3C×1, leading to
data pairs of {(Zi, l)}

n
i=1, which were the final inputs to train the

grasp-type classifier.
We utilized the extra-trees method (Geurts et al., 2006) as

the classifier, which is an ensemble method that incorporates the
averaging of various randomized decision trees on different sub-
samples of the dataset to improve the model performance and
robustness. The number of trees in the extra-trees forest was set to
be 50 in this work, and the minimum number of samples required
to split an internal node was set as 2. In this method, each individual
tree contains 13 output nodes representing grasp classes. To provide
the final vector of grasp type probabilities, the output for all trees are
averaged yielding a single vector with 13 probabilities.

4 Visual gesture classification

As mentioned earlier, visual grasp detection does not rely on
the amputee’s physiological signals, and therefore can provide more
robustness to the system than EMG alone. Despite this major
advantage, there are known challenges to classification and detection
from visual data using deep learning. More specifically, the classifier
needs to be invariant to environment changes such as the lighting,
background, camera rotation and noise. Moreover, in the case
of grasp detection, the final decision should be invariant to the
object’s color.

To face these challenges, we utilize training with data
augmentation techniques. Using the aforementioned set of data,
a state-of-the-art pretrained object detector is fine-tuned for the
purpose of grasp detection. The grasp detector then provides
bounding boxes of possible objects to be grasped with the
probabilities of each gesture.The box closest to the user’s gaze is then
selected as the object of interest, and the corresponding probabilities
will be redirected to the fusion module. The details for each step is
provided below.

4.1 Generalization of the background

In order for a grasp detector to work properly in a variety
of real-life scenarios and in different settings, it is crucial for it
to be invariant to the background. Creating such a dataset is an
arduous and somewhat impractical task since it requires access to
many different locations and settings, and needs the participants and
devices to be moved around. Therefore, in recent years, researchers
(Georgakis et al., 2017; Chalasani et al., 2018) have used more
practical solutions such as copy-paste augmentation (Ghiasi et al.,
2020) to tackle this issue. In copy-paste augmentation, using a mask
which is usually obtained using a depth camera, the object of interest
is copied from the background and pasted into a new background.
This work aims to utilize copy-paste augmentation by relying only
on the visual data. For this, a screen with a specific color such as
blue or green is placed in the experimental environment as the
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FIGURE 6
Overall overview of background generalization using visual mask generation and copy-paste augmentation.

background, and later chroma keying acquires a mask than can
separate the foreground from background. Using this mask, the
resulting foreground can be superimposed into image data from
several places. The overall composition of the proposed copy-paste
augmentation pipeline is demonstrated in Figure 6.

4.1.1 Dataset for background images
Tohave newbackgrounds for this superimposition,we found the

data from NYU Depth V2 (Nathan Silberman et al., 2012) indoor
scenes dataset to be very suitable. This dataset consists of images
from 464 different, diverse and complex settings, i.e., bedrooms,
bathrooms, kitchens, home offices, libraries and many more that are
captured from a wide range of commercial and residential buildings
in three different US cities.

4.1.2 Mask generation
During our experiments, we observed that most of the

unsupervised computer vision methods which are usually based on
color or intensity values fail to separate the foregrounds from the
backgrounds correctly. With this intuition in mind, we found that
instance segmentation is a more promising and robust method to
obtain masks. Because of the simplicity of the task, even when using
very few labeled data, retraining Mask R-CNN (He et al., 2017) can
provide good enough masks to use in copy-paste augmentation. In
our experiments, we labeled 12 images for each of the 54 objects
totalling to 636 images. Each of the 12 images were constituted by
selecting 2 random images from each of the 6 trials. To prevent over-
fitting of the network to the very few data at hand, they were heavily
augmented using horizontal/vertical flipping, scaling, translation,
rotation, blurring, sharpening, Gaussian noise and brightness and
contrast changes. Moreover, we used ResNet-101 (He et al., 2016) as
the backbone structure.

4.1.3 Refinement of masks
Although instance segmentation can provide correct bounding

boxes and masks, it is crucial to have a very well defined mask
when augmenting data with copy-paste augmentation. As seen in
the original work (He et al., 2017), despite the great success of Mask
R-CNN in segmenting the objects, a closer look at the masks reveals
that the masks do not match the objects’ borders perfectly. This
usually results in missing pixels in the destination image.

To further refine the masks to have more accurate borders,
we propose to combine Mask R-CNN with GrabCut algorithm
(Rother et al., 2004). Each mask obtained by Mask R-CNN can be
used as a definite foreground, while anything outside the bounding
box is considered definite background. This leaves the pixels inside
the bounding box that are not present in the initial mask as possible
foreground.

4.1.4 Blending
Due to contrast and lighting differences between the source and

destination images, simply copying a foreground image does not
result in a seamless final image. To have a seamless blend as the
final step for copy-paste augmentation, we use Poisson blending
(Pérez et al., 2003). The refined masks from the previous step are
slightly dilated to prevent null gradients. The resulting images are
depicted in Figure 7.

Mask generation, refinement and blending provides a pipeline
for generalizing the imagery data to enable classification of gestures
in different environments. The rest of the augmentation techniques
are mentioned in the next subsection accompanied by in-depth
analysis of training the grasp detection and classification network.

4.2 Gesture detection and classification

In order to detect the suitable gesture from visual data and
control the gesture of the robotic hand, the detector needs to find the
box bounding the object and classify the possible gesture. We base
our method on YoloV4 (Bochkovskiy et al., 2020) that has shown
promising results in the domain of object detection. YoloV4 is a fast
operating speed object detector optimized for parallel computations
in production developed inC++.The architecture of YoloV4 consists
of: i) backbone: CSPDarknet53, ii) neck: SPP, PAN and iii) head:
YOLOv3. The similarity of MS-COCO dataset (Lin et al., 2014)
which the network is trained on to our dataset makes YoloV4
a suitable source for transfer learning. As the COCO dataset is
a general purpose dataset used in many classification, detection
and segmentation networks specialized in objects purposed to be
interacted with, we found its domain similar to our task at hand.
This similarity makes it a suitable and opportune to exploit transfer
learning. Out of the 54 object classes, 11 precisely match with classes
from the COCO dataset. The remaining classes exhibit similarities
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FIGURE 7
Three examples of the final images after copy-paste augmentation. Images on the top demonstrate masks before and after refinement. As seen here,
mask refinement can significantly improve mask borders and missing parts. Poisson blending can adjust the object being pasted w.r.t. the contrast and
brightness of the destination image.

either in appearance, such as pliers to scissors, or in context,
for instance, “glass container (HANDS)” and “bowl (COCO),”
both belonging to the kitchen appliances category. This nuanced
categorization enhances themodel’s ability to recognize objects with
contextual and visual resemblances. Lastly, the high throughput of
the network when deployed on the GPU will result in real-time
detection. Using this method, the object detector determines the
bounding box corresponding to the person’s gaze. The vector of
probabilities for each grasp type is readily available in the last layer
of the network. When used in isolation, the class with the highest
probability is typically selected as the output of the object detector.
However, in our case, we retain the probabilities for all classes and
present the entire vector as our output. Therefore, we have a vector
from the last layer of the YOLO neural network containing all 13
probabilities for each grasp type.

5 Multimodal fusion of EMG and vision

Previous sections provided independent studies on classification
of EMG and visual evidence, with the aim of providing generalized,
realistic and accurate inference models for each source of
information. Despite these efforts, there exists many contributors
for each method to fail in the real world scenarios. To name but a
few, EMG evidence would change drastically if any of the electrodes
would shift, muscle is fatigued, skin electrode impedance is changed
over time or a posture change. On the other hand, the visual
information is similarly susceptible to its own artifacts, including
object obstruction, lighting changes, etc. Fusion aims to improve
robustness of the control method by exploiting multiple sources of
information. In this section, we first formulate the proposed fusion
method and thereafter, validate and provide our results.

As shown in Figure 8, given the visual information and
appearance V of a specific target object, the user first reacts
accordingly to the observed V with a designated gesture intent L,
and then correspondingmuscle activitiesM of the user are triggered
and executed according to the intended gesture comprehended by
the user. The purpose of the multimodal fusion between EMG and
vision was to maximize the probability of the intended gesture given
the collected EMGand vision evidences.Therefore, the optimization

FIGURE 8
The graphic model of the multimodal fusion between the EMG and
vision evidences.

of this fusion was formulated by the maximum likelihood problem
of object P(L = ̂l|V,M), modeled by the graphic model in Figure 8,
where V and M are defined as vision evidence and muscle EMG
evidence, and L presents the grasp type with optimal decision ̂l.

For deriving the optimization object of the multimodal fusion,
we wrote down the joint distribution of L, V andM according to the
graphic model in Figure 8 as follows:

P (L,V,M) = P (M|L)P (L|V)P (V) , (1)

so the object P(L = ̂l|V,M) of the optimization problem can be
further written as Eq. 2 according to Eq. 1:

max
̂l∈{1,…,13}

P(L = ̂l|V,M)

= max
̂l∈{1,…,13}

P(M|L = ̂l)P(L = ̂l|V)P (V)
P (V,M)

.
(2)

Since P(V) and P(V,M) are not functions of variable L and P(L)
is evenly distributed over all classes, the optimization object Eq. 2 is
equivalent to the following representation

max
̂l∈{1,…,13}

P(M|L = ̂l)P(L = ̂l|V)

= max
̂l∈{1,…,13}

P(L = ̂l|M)P (M)

P(L = ̂l)
P(L = ̂l|V)

∼ max
̂l∈{1,…,13}

P(L = ̂l|M)P(L = ̂l|V) .

(3)
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The final object of the multimodal fusion is illustrated in Eq. 3,
where the optimal estimation ̂l of the ground truth should lead to
a maximum value of P(L = ̂l|M)P(L = ̂l|V) among all the 13 grasp
types l ∈ {1,… ,13}. The probability estimators of P (L = l|M) and
P (L = l|V) are implemented by the EMG classifier and CNN built
in Section 3 and 4, respectively.

6 Experimental results

To demonstrate the efficacy of our proposed method, we utilize
the dataset collected in subsection 2.4 and train the proposed
EMG and visual gesture classifiers, fuse the two using the propose
Bayesian evidence fusion and demonstrate the results. We first
provide the metrics used for each module in subsection 6.1. Then
we present the results of EMG gesture classification utilizing
EMG modality in subsection 6.2, followed by the results from the
visual modality in subsection 6.3. Lastly, results from fusing both
modalities are provided in subsection 6.4. The results provided are
all analyzed offline.

6.1 Metrics

In assessing our multimodal system, we implement intuitive
metrics to gauge the effectiveness of the individual modules and the
integrated framework.

For the visual module, the mean Average Precision (mAP)
is the metric of choice. The mAP is a comprehensive measure
that evaluates the average precision across different classes and
Intersection over Union (IoU) thresholds. It reflects the model’s
accuracy in identifying and classifying various objects in images.
By averaging out the precision scores over a variety of classes and
IoU benchmarks, mAP provides an overall picture of the model’s
performance in detecting objects accurately and consistently. To
elaborate more, for each class, predictions are sorted by the
confidence score and Intersection over Union (IoU) is calculated.
IoUs of over the threshold are considered True Positives (TP) and
the rest are False Positives (FP). Then precision P) and recall R) are
calculated given TP and FP values. For each class, the area under the
curve of the P-R curve provides the Average Precision (AP) for that
class. Finally, mAP is provided by calculating the mean across AP
values of all classes.

In contrast, for the electromyography (EMG) and the fusion
modules, we apply the top-1 accuracy metric. Top-1 accuracy is a
widely recognized metric in model evaluation, demanding that the
model’s most probable prediction matches the expected result to
be considered correct. This metric is exacting, as it counts only the
highest-probability prediction and requires a perfect match with the
actual label for the prediction to be deemed accurate.This exactness
is crucial for the EMG signals and the precision necessary in the
fusion of EMG and visual data for effective robotic control, making
top-1 accuracy an appropriate measure of the system’s reliability.

By leveraging these metrics, we ensure a thorough and detailed
evaluation of our system’s accuracy and reliability. mAP allows us
to understand the visual module’s complexity in image processing,
whereas top-1 accuracy offers a straightforward evaluation of the
EMG and fusion modules’ operational success. Together, these

metrics provide a foundation for ongoing improvements and guide
the advancement of our system towards enhanced real-world utility.

6.2 Dynamic-EMG classification

6.2.1 Training and validation
We performed inter-subject training and validation for the

14-class gesture classification of dynamic EMG. The classification
analyse was implemented through a left-out validation protocol. For
each subject, the collected 6 EMG trials of each object in Figure 2B
were randomly divided into training set (4 trials) and validation set
(2 trials), leading to 216 training trials (66.7%) and 108 validation
trials (33.3%) in total for each subject.The classifier was only trained
on the training set while validated on the validation set which
was unseen to the model. We validated the pre-trained model on
each entire EMG trial (including four phases of reaching, grasping,
returning and resting) from the validation set, whereas we trained
the model only with reaching, grasping and resting phases in each
EMG trial of the training set. Since our main goal is to decode the
grasping intention and pre-shape the robotic hand at an earlier stage
of reach-to-grasp motion before the final grasp accomplished, we
therefore excluded the EMG data of returning phase during training
to reduce the distraction of themodel from the phasewhere the hand
already released the object.

6.2.2 Time-series alignment
As shown in Figure 9, time series of all validation trials were

aligned with the beginning of the grasping phase, which wasmarked
as 0 m in the timeline. The overall evaluated performance of the
model was averaged over the performances of all validation trials
based on the given aligned timeline. The four dynamic phases were
freely performed by the subject, leading to their different lengths.
Therefore, aligning the validation time serieswith the grasping phase
during the performance average concentrated the assessment more
on the central region between reaching and grasping phases, which
were themost important phases for decisionmaking.This resulted in
more orderly time series, which were more relevant to the dynamic
validation of overall performance.

As illustrated in Figure 9, each validation trial was shifted
backward 700 m (around half the length of entire resting phase), for
presenting the resting phase from last trial in front of the reaching
phase of current trial, to show the dynamic performance transition
between the two movement phases.

6.2.3 Results
Performance of the dynamic-EMG classifier was evaluated by

two metrics - the predicted probabilities and the accuracy on
validation set, which are presented in Figure 10 as functions of
time. Each time point in Figure 10 represents a EMG window and
both metrics were averaged based on each time window over the
validation set. The breakpoints between different motion phases
(represented by vertical dashed lines) were also averaged across
validation trials. In Figure 10A, the predicted probability is defined
as the output probability of the classifier corresponding to each
class, and here we show the probabilities of grasp gesture, rest
gesture and top competitor. The grasp gesture is defined as the
executed true gesture during the non-resting phases, the rest gesture
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FIGURE 9
The time series alignment for different trials.

FIGURE 10
The performance on the validation set of the dynamic-EMG gesture classifier. The grasp gesture and accuracy is defined based on the executed true
gesture during the non-resting phases, the rest gesture and accuracy represent the open-palm/rest gesture during the resting phase. The top
competitor is the second most likely prediction from the classifier (second best decision the model predicts).

represents the open-palm/rest gesture, and the top competitor is
identified as the most possible gesture except for the grasp gesture
and the rest gesture. In Figure 10B, the corresponding accuracy
curves of successfully detecting the grasp gesture and rest gesture
are displayed, where the accuracy is defined as the frequency of
appearance of a specific label with the maximum probability over
the output probability distribution.

As illustrated in Figure 10A, the predicted probability of the
grasp gesture l ∈ {0,1,… ,13} increased steadily during the reach-
to-grasp movement when the grasp was carried out from the
resting status, reaching its peak in the grasping phase, and then
gradually decreased when subject finished the grasp and returned
to resting status again. Simultaneously, the predicted probability of

rest gesture first reduced dramatically to the value lower than 0.2
as the grasp movement happened, until the hand returned to the
resting position when the open-palm probability progressively went
up again. In addition, the predicted probability of the top competitor
was remained stably lower than 0.2. The first intersection of
predicted grasp-gesture and rest-gesture probability curves indicates
the point when the grasp-gesture decision outperforms the rest-
gesture decision. Ideally, this intersection is expected to appear
right at the junction where the resting phase ends and the reaching
phase starts in order to indicate the beginning of the hand motion.
However, in practice, the hand movement could only be predicted
based on the past motion, and such motion first starts from the
reaching phase. So the intersection is expected to be observed after
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TABLE 1 Inter-subject motion and gesture classification accuracies among the 5 subjects.

Fold 1 (%) Fold 2 (%) Fold 3 (%) Mean (%)

Sbj. 1
motion clf 77.2 74.5 78.2 76.6

gesture clf 91.5 88.7 91.5 90.6

Sbj. 2
motion clf 75.3 73.1 72.8 73.7

gesture clf 88.9 85.3 86.6 86.9

Sbj. 3
motion clf 72.6 73.4 72.7 72.9

gesture clf 87.4 87.2 87.8 87.5

Sbj. 4
motion clf 78.7 76.6 76.4 77.2

gesture clf 89.3 87.4 88.3 88.4

Sbj. 5
motion clf 78.4 75.9 79.1 77.8

gesture clf 82.8 80.5 82.2 81.8

TABLE 2 Training setup.

Learning rate 0.001

Momentum 0.949

Decay 0.0005

Iterations 28,680

Batch Size 64

Input Size 608 × 608 × 3

Angle 0

Saturation 5

Exposure 1.5

Hue 1.0

the start point of the reaching phase, but the closer to this start
point, the better. In Figure 10A, the first intersection of the two
curves appears >700ms earlier than the start of the grasping phase,
which is after but very close to the beginning of the reaching phase
and allows enough time to pre-shape the robotic hand before the
actual grasp.

As a validation metric, we use the top-1 accuracy as the
conventional accuracy, where model prediction (the one with the
highest probability) must be exactly the expected answer. As shown
in Figure 10B, for the grasp gesture classification, the averaged
accuracy was higher than 80% throughout most of the reaching
and grasping phases, which are the most critical phases for making
robotic-grasp decision. The average accuracy during resting phase
were also highly accurate and sensitive to perform as a detector
to trigger the robotic grasp as shown in Figure 10B. In between

dynamic phases of resting and non-resting, the accuracy also shows
a smooth transition. It is worth noting that the validation accuracy
was still higher than 75% at the beginning of the returning phase
even though the model was not trained on any data from that
phase, illustrating the generalization and robustness of our model
on dynamic EMG classification.

6.2.4 Inter-subject analysis
To analyze the inter-subject variations in each subject, results

in Table 1 demonstrate the average classification accuracies for each
cross-validation fold from both motion-phase classifier and gesture
classifier, with the mean accuracy over all folds given for each
subject. The average accuracy of the 4-class motion-phase classifier
for each individual subject varies between 72.9% and 77.8%, while
the 14-class gesture classifier presents average accuracies ranging
from 81.8% to 90.6%. Those results reveal that the grasp phases
and typeswerewell-predicted in general.The dynamic-EMGgesture
identification showed a better performance than the motion-phase
detection, due to the higher degree of freedom regarding to how
subjects performed different motion phases than the grasp type,
as the experiment protocol did not specify the particular speed or
angle to grasp.The illustrated inter subject variability across different
validation trials may also come from the varied grasping patterns
and directions for different trials of the same subject. However, this
higher degree of freedom could enablemore robustness and stability
of the model to a wider range of user postures during the dynamic
grasp activity. In addition, the training data from various subjects
also present different classification performances, which could be
influenced by factors such as shifting sensor locations and distinct
movement patterns of different users.

6.3 Visual gesture classification

We fine-tune the pre-trained YoloV4 on our dataset using the
images augmented by our copy-paste. These images are further
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FIGURE 11
Training and validation loss (mAP). As the computation time for each
mAP calculation will significantly impact the training time of the
network, mAP calculations happen every 3,000 iterations.

generalized by utilizing photometric and geometric distortions and
other augmentations from “bag of freebies” (Bochkovskiy et al.,
2020) i.e., saturation, exposure, hue and mosaicing. To make the
network completely invariant to the object’s color, we set hue to the
maximum value of 1.0 in our experiments. All the training setup are
outlined at Table 2.

To train, validate and test the network, imagery data has been
split based on 4 trials for training and validation and 2 trials for
test, to 48,537 (54.1%), 12,134 (13.5%) and 29,029 (32.3%) images
respectively, and balanced according to each class. The augmented
data is only used in the training process and is applied in an in-
place style.Thismeans that the data augmentation is applied directly
to the existing data instances without creating additional copies.
This can be particularly useful when computational resources or
storage capacity is a concern, as it allows for the expansion of the
dataset without significantly increasing its size.The transformations
are applied on-the-fly during the training process, and each epoch
of training sees a slightly different version of the data which enables
improved model generalization by presenting a more varied dataset,
helping the model perform better on unseen data. We use the
commonly used mAP for the visual module where mAP calculates
the average precision across different classes and/or Intersection
over Union (IoU) thresholds, providing a single comprehensive
measure of a model’s performance in detecting and classifying
various objects in images. Training loss and validation mean
average precision (mAP) are outlined in Figure 11. To prevent
any over-fitting, validation mAP provides a guide on the iteration
with the best generalization, reaching 85.43% validation mAP.
This results in the very close mAP of 84.97% for the test set,
proving the high generalization of the network. Notably, this
marks a substantial improvement compared to the baseline, with
the original COCO dataset yielding a 64.4% mAP. The close
alignment of our results with the COCO baseline underscores
the success of transfer learning, emphasizing the data’s intrinsic
similarity to COCO.

FIGURE 12
Average validation accuracy. Note that the predictions from each
source generally complements the other source. Fusing EMG and
visual evidence has improved the overall accuracy and robustness of
the estimation.

6.4 Multimodal fusion of EMG and vision

To have a fair comparison of accuracy between EMG and visual
classifiers and their resulting fusion, each classifier is trained on the
same set of data and tested on data that is unseen to all classifiers.
To this end, from the 6 trials belonging to each experiment, 4 has
been randomly selected for the training of EMGand visual classifiers
and the remaining 2 as the test data. As a result, all of the results
presented in this work are based on data unseen to both EMG and
visual classifiers.

Figure 12 visualizes the average validation accuracy of EMG,
vision and fusion modules over time. The accuracy at each time is
defined as the frequency of appearance of the correct label as the
maximumprobability in a classifier’s output probability distribution.
We observe that the classification of visual information can perform
decently almost at all times and without significant changes except
during the grasp phase and some portions of the neighbouring
phases where the object is most likely occluded. On the other hand,
EMG information can complement this deficiency, given that the
subject’s hand is mostly active during this phase. This is clearly
evident in Figure 12 as the EMG classification outperform visual
classifier. The complementary characteristic of EMG and visual
information is also noticeable at rest phases where the subject’s
hand is least active. During resting, the object of interest is clearly
visible by camera, therefore resulting in high accuracy of the
visual classifier.

In addition to this complementary behaviour, fusion is always
outperforming each individual classifier. This means that fusion
can add additional robustness even when both sources provide
enough information for a correct decision. To provide more details,
the summary of each module’s accuracy is provided in Table 3 in
different phases. As outlined in the aforementioned table, the grasp
classification accuracy while solely utilizing the Gesture classifier
on the EMG modality is 81.64% during the reaching phase. On the
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TABLE 3 Accuracy of each module during different phases in
percentage. Reach phase is demonstrated in bold, as is the most critical
phase for decision making. Note that a random classifier has a 1

13
= 7.7%

chance for each class.

Modality Phase Total

Rest Reach Grasp Return Rest

EMG 16.86 81.64 78.66 45.41 6.33 41.85

Vision 90.69 80.5 66.22 74.05 88.59 81.46

Fusion 94.89 95.3 89.7 89.81 93.31 92.93

other hand, solely relying on the visual modality, the visual classifier
yields 80.5% accuracy during the reaching phase. Combining these
two provides a significant improvement of 95.3% accuracy which
results in 13.66% improvement for the EMG modality and 14.8%
improvement compared with the visual modality alone.

Having a robust control of the grasp type at all times is essential
especially at reaching phase, where the actual grasping decision is
sent to the robot’s actuators. Fusion of visual and EMG evidence
enables robust classification of grasp types, giving the robotic hand
enough time to perform the grasp. The existing fusion method
operates exclusively based on the instantaneous outcomes of each
modality, rendering it stationary in time and, in essence, memory-
less. This approach entails making decisions at a specific moment
without considering the historical context of past decisions. To
introduce temporal dynamics and incorporate the influence of prior
decisions, one could explore methodologies such as a Kalman filter
or a neural network.Thesemechanisms have the capacity to leverage
the history of past decisions, allowing the fusion process to be
more adaptive and informed by the temporal evolution of the data.
Therefore, we recommend utilizing robot control policy to exploit
past decisions into their fusion based on their system configurations
and constraints, as our experiments show that by simply smoothing
fusion decisions, the average accuracy is further increased to the
significant value of 96.8%. We suggest that future studies can also
utilize more sophisticated methods based on machine learning and
deep learners for fusion of the information.

7 Discussion

Robotic prosthetic hands hold significant promise, particularly
considering that limb loss often occurs during working age.
Dissatisfaction with the effectiveness of a prescribed prosthesis
can adversely impact an amputee’s personal and professional
life. Consequently, a functional prosthesis is vital to mitigate
these challenges and enhance the quality of life for amputees.
However, single-sensing systems in prosthetics come with inherent
limitations. In the utilization of robotic prosthetic hands for
transradial amputees, intuitive and robust control system that can
compensate for the challenges posed bymissing or inaccurate sensor
data is paramount.This research advocates for a shift from relying on
single data sources, such as EMG or vision, which each have their
own limitations, to a multimodal approach that fuses various types
of information.

In controlling robotic prosthetic hands, the intended grasp
type needs to be known a few hundred milliseconds before the
grasp phase. Therefore, in addition to inferring the grasp type
desired by the user, the time when this information is obtained is
important. Hence, our article investigates and analyzes the evidence
available for inferring grasp type over time. To aid with the time
understanding, e.g., to enable the robotic hand to actuate the fingers
at the correct time, which is crucial for successful robotic grasping,
our work employs an EMG phase detection algorithm in addition
to the EMG and vision grasp classifiers. The focus on real-time
understanding and analysis is an important aspect that sets this work
apart from the current state-of-the-art.

The classification accuracies for EMG, vision, and their fusion
across different phases provides insightful results. The EMG
classification shows varied performance, excelling in phases like
Reach (81.64%) and Grasp (78.66%) where the EMG data is most
meaningful, but significantly lower in Rest (6.33%) where the data
semantically has no correlation with the grasp being performed.
Here we observe that the low accuracy attained in the Rest phase
by EMG is aligned with a random classifier where the chance
of a random classifier for correctly classifying a class among 14
labels is 1

14
= 7%. This reiterates that no useful information can be

utilized from the EMGmodality during the rest phase and our EMG
classifier is not overfitted to the noise. Vision-based classification,
on the other hand, maintained high accuracy across most phases,
particularly in Rest (90.69%) where the object has no occlusions.

Most notably, the fusion of EMG and vision data consistently
achieved superior accuracy in all phases. Considering the
reaching phase as the most accurate case, while the EMG
modality provides 81.64% and the visual modality yielding
80.5% accuracy when used individually, combining these two
provides a significant improvement of 95.3% accuracy which
results in 13.66% improvement for the EMG modality and 14.8%
improvement compared with the visual modality alone. This
highlights the significant advantage of combining these modalities,
particularly in critical phases like Reach and Grasp, where precise
control is of supreme importance. The fusion method’s robustness
across different phases, with accuracies consistently above 89%,
underscores its potential in enhancing the functionality and
reliability of prosthetic hand control.

In our work we have introduced several novel advancements in
grasp classification that are not observed in prior research. These
enhancements are particularly evident in our approach to visual
generalization, finer distinction of classes, and provision of critical
timing information. Firstly, in terms of visual generalization, we
utilize background generalization to provide more realistic data for
our visual grasp classification module. This step, not previously
observed in grasp classification research, allows our system to
better prepare for real-world scenarios, making our data more
representative and robust.

While direct comparisons to state-of-the-art are challenging
due to differing data, our work further distinguishes itself through
a more granular classification of grasp types. We identify 14
distinct grasp types, compared to the 10 grasp types utilized in
(Cognolato et al., 2022). This expanded classification presents a
more challenging and realistic problem, advancing beyond the
current state-of-the-art. Our method not only provides a more
refined solution but also achieves a higher accuracy in the critical
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reaching phase. We report a 95.6% accuracy during the reaching
phase, compared to the 70.92% average accuracy for able-bodied
subjects reported in (Cognolato et al., 2022).

Lastly, and most importantly, our research significantly extends
the scope beyond the conventional focus on rest and non-rest
phases, as seen in previous studies. Our study investigates the time
dynamics and the different phases of electromyography (EMG)
signals within our setup to enhance the classification of grasp
types. It is crucial to understand how system components react
during different phases of EMG; the way the hand is resting has
no correlation to how the hand will grasp later. Hence, resting
should not be part of the grasp classifier but a separate model.
Neglecting this consideration may lead to overfitting of the model,
which can negatively impact its generalizability. Similar limitations
have been observed previously with spatial domain, where models
trained solely on cloudy images tended to incorrectly identify tanks
(Dreyfus, 1992).

Our work not only explores the implementation of grasp
intent inference but also lays the groundwork for practical robotic
implementation. This is achieved by carefully analyzing the various
phases of object interaction, including precise estimations of
when to initiate and cease interaction. Our approach enables the
detection of all four critical phases involved in object handling:
reach, grasp, return, and rest. This comprehensive analysis is
evident throughout our research, influencing our protocol design,
the selection of inference data, and the development of our
inference and fusion methodology. The depth of our approach is
particularly apparent in our discussions on accuracy over time.
Therefore, this work provides a new avenue in grasp classification
in the field providing more precise and meaningful grasp
classification.

Our advancements represent a significant leap forward in grasp
classification, particularly in terms of accuracy and realism in the
critical phases of prosthetic hand operation.

7.1 Limitations and future advancements

While we recognize that a larger sample size would contribute to
enhanced generalizability, we would like to emphasize that our study
serves as a preliminary investigation into the feasibility and efficacy
of the proposed multimodal fusion approach. The decision to begin
with a smaller cohort was based on the exploratory nature of our
work but overall would not make a large impact on the described
system for data fusion which is the central focus of the paper. This
approach allowed us to assess the initial viability of ourmethodology
and pave the way for more extensive studies in the future.

The current study has focused on establishing the feasibility and
efficacy of our approach in a controlled environment with healthy
subjects. However, we understand the importance of addressing
the translational aspect to clinical applications, particularly in the
context of amputees. To shed light on the translatability of our
approach, we acknowledge that training our model for amputees
would necessitate a subject-specific adaptation. Each amputee
presents a unique set of physiological characteristics and muscle
activation patterns, requiring a tailored training process for optimal
performance. Future work in this direction would involve subject-
specific training.

It is noteworthy to mention that measurement of EMG from
intrinsic hand muscles used in this experiment (FDI, APB, FDM,
and EI) would likely not be present in most amputees requiring
a prosthetic hand. The remaining muscles used (EDC, FDS,
BRD, ECR, ECU, FCU, BIC, and TRI) would remain in most
wrist level amputees. In the case of most below elbow amputees
the residual limb retains key anatomical landmarks, allowing
for strategic placement of electrodes. Several investigations have
compared classification performance using targeted vs. non-targeted
electrode placement with outcomes generally favoring targeted
placement (Farrell et al., 2008; Yoo et al., 2019). Furthermore, most
commercial myoelectric devices offer some ability for customization
of electrode position though typically for a small number of
electrodes. Additionally, numerous investigation have examined the
impact that number of electrodes has on classification and there
are currently several approaches for determining pareto-optimality
between electrode number and classification accuracy. Electrode
placement and number were not specific foci of the current
investigation. In general electrode placement will be determined by
the anatomy of the amputee and other clinical considerations hence
beyond the scope of this work. Certainly, as the methods proposed
here progresses to real application the number and placement of
electrodes could be considered. However, this does not diminish our
current contribution because the system to implement fusion is not
dependent on these factors.

Lastly, there are several recent works incorporating palm-
mounted cameras not only to recognize the object being grasped,
but also the reaching conditions, e.g., the wrist orientation
thereby facilitating a more versatile grasp with additional degrees
of freedom (Castro et al., 2022; Cirelli et al., 2023). While head-
mounted cameras offer a wider, more natural field of view that
is generally more stable and reliable for grasp detection, it is
beneficial to use an additional palm-mounted camera enabling
the recognition of optimal approaching conditions directly from
the hand’s viewpoint and consequently contributing to a more
autonomous operation of the robotic hand.

8 Conclusion

For robotic prosthetic hands to effectively compensate for the
lost ability of transradial amputees during daily life activities,
control of the hand must be intuitive and robust to missing and
sometimes inaccurate sensor data. Solely relying on one source of
information, e.g., EMG or vision, is prone to poor performance due
specific drawbacks of each source. Hence a shift in the approach
to one that fuses multiple sources of information is required.
In this work we collected a dataset of synchronized EMG and
visual data of daily objects and provided details on our proposed
process for sensor fusion including EMG segmentation and gesture
classification and camera-based grasp detection that is bundled with
background generalization using copy-paste augmentation. Based
on a graphical model, we represented the multimodal fusion as a
maximum likelihood problem to increase robotic control accuracy
and robustness.

In our experiments, we observed the complementary behaviour
of visual and EMG data. EMG generally performs better when
reaching and grasping an object when the imagery data cannot
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provide useful information due to occlusion. Visual information can
provide information about the needed grasp prior to movement,
when EMG is unavailable. Our experiments show that fusion always
outperforms each individual classifier demonstrating that fusion
can add additional robustness even when both sources provide
enough information for a grasp decision. We observe that fusion
improves the average grasp classification accuracy while at reaching
phase by 13.66%, and 14.8% for EMG (81.64% non-fused) and
visual classification (80.5% non-fused) respectively to the total
accuracy of 95.3%.
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