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Neural dynamics of robust
legged robots
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Legged robot control has improved in recent years with the rise of deep
reinforcement learning, however, much of the underlying neural mechanisms
remain difficult to interpret. Our aim is to leverage bio-inspired methods
from computational neuroscience to better understand the neural activity
of robust robot locomotion controllers. Similar to past work, we observe
that terrain-based curriculum learning improves agent stability. We study
the biomechanical responses and neural activity within our neural network
controller by simultaneously pairing physical disturbances with targeted neural
ablations. We identify an agile hip reflex that enables the robot to regain its
balance and recover from lateral perturbations. Model gradients are employed
to quantify the relative degree that various sensory feedback channels drive this
reflexive behavior. We also find recurrent dynamics are implicated in robust
behavior, and utilize sampling-based ablation methods to identify these key
neurons. Our framework combines model-based and sampling-based methods
for drawing causal relationships between neural network activity and robust
embodied robot behavior.
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1 Introduction

In recent years, embodied deep reinforcement learning (RL) systems have demonstrated
intelligent behavior in real-world settings, especially in the areas of quadrupedal
(Lee et al., 2020; Rudin et al., 2022a; Rudin et al., 2022b; Feng et al., 2022; Miki et al., 2022;
Vollenweider et al., 2022) and bipedal locomotion (Siekmann et al., 2020; 2021). These
accomplishments represent significant steps towards generating rich robot behavior that
rivals their biological counterparts (Caluwaerts et al., 2023).

However, there remains a large gap in understanding the neural basis of these
learning-based legged locomotion controllers, especially when it comes to stable,
robust behavior. Some have examined locomotion robustness by varying the degree
of controller decentralization during training (Schilling et al., 2020; 2021). Others have
analyzed neural activity, though these efforts are relatively shallow. One example is
identifying cyclic patterns of neural activity during walking (Siekmann et al., 2020),
which is an unsurprising result given that locomotion is inherently a cyclic behavior.
Another effort draws a connection between sensorimotor processing and a foot-trapping
reflex behavior, but does not attempt to analyze the neural basis of this behavior
(Lee et al., 2020).

The lack of research on interpretability of learned locomotion controllers may be due to
the fact that most robotics and AI researchers focus more on functionality and performance
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and less on mechanistic understanding (Chance et al., 2020).
In recent decades, however, there has been advances made
in explainable artificial intelligence (XAI) (Kamath and Liu,
2021; Minh et al., 2022), which include reinforcement learning
systems (Huber et al., 2019; Heuillet et al., 2021; Beechey et al.,
2023; Hickling et al., 2023). A number of these methods quantify
individual feature importance relative to model behavior
(Bach et al., 2015; Samek et al., 2015; Lundberg and Lee, 2017;
Shrikumar et al., 2019). These methods have been employed for
a variety of RL tasks such as robot manipulation (Wang et al., 2020;
Remman and Lekkas, 2021) and vehicle guidance (Liessner et al.,
2021), however, not for locomotion control. Additionally, these
studies do not consider disturbances and the feature importance
that drives robust controller responses.

Despite the dearth of neural analysis efforts within learning-
based legged robot control, there is a significant body of work
inspired by computational neuroscience that studies task-oriented
artificial neural networks (ANN) (Sussillo and Barak, 2013; Saxena
and Cunningham, 2019; Vyas et al., 2020). Examples include
training networks to perform tasks such as text classification
(Aitken et al., 2022), sentiment analysis (Maheswaranathan et al.,
2019a; Maheswaranathan and Sussillo, 2020), transitive inference
(Kay et al., 2022), pose estimation (Cueva and Wei, 2018;
Cueva et al., 2020b; 2021), memory (Cueva et al., 2020a), and more
(Yang et al., 2019). Many of these studies employ recurrent neural
networks (RNNs), which embed input information across time in
latent neural states and process that information through latent
neural dynamics. One advantage over biology, is the direct access
to the full parameterization of these artificial models, which has
enabled computational neuroscientists to begin reverse-engineering
such systems.

The aforementioned tasks focus on open-loop estimation, where
the system generating behavioral data is fixed, and does not
interact with or involve feedback of the ANN output estimates.
However, the widening application of deep reinforcement learning
has allowed researchers to expand towards closed-loop control
of embodied agents. In one recent study, researchers simulate
a virtual rodent model and study neural activity across various
high-level behaviors (Merel et al., 2020). Another in silico study
(Singh et al., 2021) examines the population-level dynamics of a
virtual insect localizing and navigating to the source of an odor
plume. The analyses in both these studies reveal coordinated
activity patterns in high-dimensional neural populations, however
neither make direct connections to stability or robustness of legged
locomotion. The former (Merel et al., 2020) focuses chiefly on
features of multi-task neural behavior, and the latter (Singh et al.,
2021) focuses on how neural activity relates to spatial localization
and navigation.

In this work, we aim to explicitly investigate the neural basis
of lateral stability of legged robots during walking. Prior work
on embodied legged locomotion have conducted neural ablation
studies to draw causal link between neural activity and behavior,
yet no connection was made to walking stability (Merel et al., 2020).
In this work, we draw inspiration from (Meyes et al., 2019; Towlson
and Barabási, 2020), where ablations are extended from single
neurons to pairs and triplets, as well as (Jonas and Kording, 2017),
which suggests that lesioning studies could be more meaningful if
we could simultaneously control the system at a given moment.

Our method of controlling our agent is by applying precisely-
timed surprise lateral perturbations, similar to those studied in
animals (Karayannidou et al., 2009; Hof et al., 2010), and robots
(Kasaei et al., 2023). However, our focus is not just on the bio-
mechanical response, but on the neural activity that ultimately drives
this stabilizing behavior.

The contributions of this paper include:

• Characterizing cyclic, low-dimensional neural activity of
quadrupedal robot locomotion, which is consistent with prior
neuroscience findings.
• Identifying key bio-mechanical responses implicated in robust

recovery behavior to lateral perturbations, specifically a
stepping strategy commonly found in legged animals.
• Elucidating the neural basis of robust locomotion through

model-based and sampling-based ablation strategies.

2 Methods

We outline our methodology in training quadrupedal
robotic agents to walk in a virtual physics simulator, using deep
reinforcement learning. We provide details regarding the agent and
environment, as well as model training and architecture. Given an
RNN-based controller and its embodied motor control behavior,
we discuss methods employed to elucidate the neural activity that
enables the agent’s ability to reject disturbances.

2.1 Agent and environment

In this work, we utilize NVIDIA Isaac Gym (Makoviychuk et al.,
2021), an end-to-end GPU-accelerated physics simulation
environment, and a virtual model of the quadrupedal Anymal
robot (Hutter et al., 2016; Rudin et al., 2022b) from IsaacGymEnvs1.
The agent’s action space is continuous and consists of 12 motor
torque commands, three for each leg. The agent’s proprioceptive
observation space consists of 36 signals: three translational
body velocities (u,v,w) representing longitudinal, lateral, and
vertical body velocities, three rotational body velocities (p,q, r)
representing roll rate, pitch rate, and yaw rate, orientation signals
sin(θ), sin(ϕ), and −√1− sin2(θ) − sin2(ϕ), three planar body
velocity commands (u∗,v∗, r∗), 12-dimensional joint angle
positions θjoint, 12-dimensional joint angular velocity ωjoint. The
agent additionally receives 140 exteroceptive observations in the
form of depth measurements, d, which are uniformly sampled
from a 1 m × 1.6 m grid beneath the agent. These command
and observation signals are computed directly from the physics
simulation of the agent and environment. They are updated every
control time step of 20 ms, and are simulated with uniformly
distributed white noise. Note that there is a decimation of four
simulation steps per control step, meaning the simulation time
step is 5 ms, and there are four simulation time steps for every
control time step.

1 https://github.com/NVIDIA-Omniverse/IsaacGymEnvs
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2.2 Model training

Unlike conventional controllers, these deep RL-based
controllers do not explicitly compute errors from command
and feedback signals. Instead a policy is trained on a reward
function that consists of a weighted sum of linear body velocity
error (u∗ − u)2 + (v∗ − v)2 and angular body velocity error
p2 + q2 + (r∗ − r)2, along with a suite of knee collision, joint
acceleration, change in torque, and foot airtime penalties,
similar to (Rudin et al., 2022b). During training, inputs to the
agents include sensory signals, randomly generated linear body
velocity commands (u∗,v∗), and an angular velocity command
r∗ that is modulated to regulate to a random goal heading.
Therefore, these command signals drive behavior indirectly
through the reward function. This summarizes the training of
the Baseline policy. During evaluation, the user specifies these
command velocities based on the experiment. Most experiments
in this work focus on forward walking, where v∗ = 0 m/s
and r∗ = 0 rad/s.

To build on the Baseline policy, we generate a Terrain policy
by employing a game-inspired curriculum, where agents are
first trained on less challenging terrain before progressively
increasing their complexity Rudin et al. (2022b). The environment
is composed of a grid of sub-regions, where in one direction,
the type of terrain varies from smooth slopes (10%), rough
terrain (10%), stairs up (35%), stairs down (25%), and discrete
terrain (20%), and in the other direction the difficulty of
the terrain increases. Agents that successfully complete the
sub-region they start in are moved to the next terrain level
of difficulty, and agents that complete the hardest level are
cycled back to a random terrain level to avoid catastrophic
forgetting. Once agents can consistently complete the hardest
level of terrain, agents become uniformly distributed across
all terrain levels, rather than biased toward easier levels.
For reference, the hardest level consists of 20° slopes and
0.20 m stair steps.

We expand upon Baseline and Terrain policies by
introducing random force disturbances during training,
which produce Disturbance and Terrain-Disturbance policies,
respectively. Note that we are applying random external force
perturbations, whereas Rudin et al. (2022b) applied random
velocity perturbations. We choose to apply random external forces,
since this allows the simulator to model the physical dynamics
of the agent.

Disturbances are instantiated at random, with a 1% chance
of a perturbation being initiated at each control time step. Once
perturbations are instantiated, there is a 2% chance of termination
each time step. This results in the duration of random perturbations
following an exponential distribution. Each time a new perturbation
is instantiate, its x, y, and z-direction force components are randomly
sampled from a uniform distribution between −0.24 and 0.24 times
body weight, and are held constant throughout the duration of the
perturbation.

For all policies, agents are also exposed to sensory noise, as
well as slight randomizations to gravity and friction during training.
Training hyperparameters are listed in Table 1. Training of the
Terrain-Disturbance policy took 10 h and 47 min on a NVIDIA
GeForce RTX 2080 Ti.

TABLE 1 Hyperparameters.

Name Value

Learning Rate 0.0003

Horizon Length 16

Mini-Batch Size 16,384

Mini-Epoch Size 4

Number of Environments 4,096

RNN BPPT Truncation Length 16

PPO Discount Factor Gamma 0.99

PPO Clipping Epsilon 0.2

PPO KL Threshold 0.008

PPO GAE Labmda 0.95

PPO Entropy Coefficient 0

2.3 Model architecture

Agents are trained using a high-performance, open-source RL
implementation, rl_games2, which implements a variant of Proximal
Policy Optimization (PPO) (Schulman et al., 2017) that utilizes
asymmetric inputs to actor and critic networks (Pinto et al., 2017).
We utilize an implementation that integrates Long-Short Term
Memory (LSTM) networks into both the actor and critic networks.
Both actor and critic networks pass the observation vector [176× 1]
through dedicated multi-layer perceptrons (MLP) with two dense
layers of size 512 and 256, a single-layer 128-cell LSTM network,
and a fully-connected output layer that results in an action vector
[12× 1] as shown in Figure 1. Each LSTM unit consists of a cell
state and a hidden state, which are capable of encoding long-term
and short-termmemory, respectively. Neural activations of these cell
states [128× 1] and hidden states [128× 1] are collectively referred
to as the recurrent states [256× 1]. The action vector contains the
motor torque commands for each of the 12 joints, and is referred to
as the actuation state. The critic network is not illustrated, but has
independently trained weights and identical structure, except that
the fully-connected layer outputs a scalar value estimate, as opposed
to as 12-dimensional actuation state.

2.4 Neural perturbations

We apply neural and physical perturbations during walking,
with the aim of deepening our understanding of disturbance
rejection properties of our locomotion controller during nominal
operation. We draw inspiration for experiment design from primate
studies, which found low-dimensional structure in their population

2 https://github.com/Denys88/rl_games
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FIGURE 1
System diagram of RNN-based reinforcement learning locomotion controller. The observation states consists of body velocity commands and sensory
feedback signals, which pass through an MLP and an RNN, in this case an LSTM network. The recurrent state feeds back on itself in the RNN, and part
of it feeds into a fully-connected (FC) layer, and outputs the actuation state, which consists of 12 motor torque commands. As the output of the
controller, these commands are sent to Anymal, which is modeled in the NVIDIA Isaac Gym physics simulator. The resulting observation states consist
of sensory feedback signals such as body velocities, orientations, joint positions and velocities, as well as body velocity command signals. These are
then updated and are fed back into the RL controller for the subsequent time step.

dynamics (O’Shea et al., 2022), and to date has not been applied
to RL-based agents. The only similar RL study (Merel et al., 2020)
perturbed RNN hidden states by inactivating neuronal states
or replacing with neural states from other behavioral policies,
but did not apply targeted perturbations to better understand
low-dimensional structure. For neural perturbations, we compute
the population response in the top principal component (PC)
directions, and in separate experiments, apply normal and tangential
perturbations to the recurrent state during walking.

2.5 Physical perturbations

After training, we perform physical perturbations trials, where
an external lateral force is applied to the robot at its center of mass
for 80 ms, which is a similar duration as found in other works
(Hof et al., 2010; Kasaei et al., 2023). Unless otherwise specified, we
apply a perturbation of 3.5 times body weight at the moment when
the LF and RH foot hit the ground. We then analyze the resulting
sensory, recurrent, and actuation neural activity, as well as the bio-
mechanical response. Our primary metric for stability is recovery
rate, which is the percentage of trials in which agents successfully
recover from the lateral perturbation, from 0% to 100%.

2.6 Dimensionality reduction

It can often be difficult with high-dimensional multivariate
datasets to isolate and visualize lower-dimensional patterns, due
to feature redundancy. Because of this, we perform principal
component analysis (PCA), a linear dimensionaility reduction

technique, to identify the directions of dominant activity in our
neural populations. To do this, we utilize the scikit-learn

Python library, first applying Z-scale normalization, and then
applying PCA to the normalized data. This feature scaling through
normalization, involves rescaling each feature such that it has a
mean of 0 and standard deviation of 1. When presenting PC data,
we constrain the data to the context in which it is presented. For
example, when presenting observation states, recurrent states, and
actuation states for various walking speeds, we found the principal
components for each of those three datasets, with each dataset
incorporating data across all walking speeds trials.

After training and during data collection rollouts, the agent
is commanded with a range of forward speed commands u∗
between 0.8 and 2.0 m/s, while v∗ and r∗ remain at 0 m/s. We
perform principal component analysis (PCA) on this dataset, in
order to determine the dominant neural populations and improve
interpretability. For all perturbation studies presented in this work,
we hold the forward speed command u∗ at 2.0 m/s, and transform
the data based on the original non-perturbed PCA transformation.
During data collection, noise parameters and perturbations are
removed, unless otherwise stated.

2.7 Subspace overlap

Subspace overlap is a quantity that measures the degree to which
a population response occupies similar neural state space to another
population response. This measure is utilized in comparing cyclic
neural trajectories in primates (Russo et al., 2020), and is utilized
similarly for robots in this work. The reference population response
RA is dimensions [n× t], where n is the number of neurons and t
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is the number of neural recordings. After applying PCA to RA, it
yields WA which has dimensions [n× k], where k is the number
of PCs. Variance is computed as V(R,W) = 1− |R−RWWT|F/|R|F ,
where | ⋅ |F is the Frobenius norm. The subspace overlap is
computed as V(RB,WA)/V(RB,WB), and lower values indicate the
neural populations occupy different neural dimensions, relative to
one another.

2.8 Neural ablations

We employ neural ablations in order to investigate the causal
links within the neural network controller, similar to (Merel et al.,
2020). Ablation involves latching the activation of target neurons to
their cycle-average neural activation during normal walking. For the
recurrent state, this in effect, forces the neural state to the center
of the typical limit cycle trajectory shown in Figure 5. We apply
neural ablations at the start of the trial, and keep those neurons
ablated throughout the entirety of the agent’s response to lateral
perturbation.

2.9 Computing relative contribution of
upstream neural activity driving
downstream actuation behavior

We quantify the degree to which upstream neurons drive
downstream actuation by leveraging the fact that neural network
models are backward-differentiable and internal gradients can
be computed. Similar to the gradient-times-input methodology
proposed in Layer-wise Relevance Propagation, we can estimate the
relative contribution from different inputs to the output actuation
(Bach et al., 2015; Samek et al., 2015). We can do this for different
inputs, such as sensory signals as well as command signals. We can
also extend this to compute the relative contribution of internal
recurrent neurons to output actuation. For example, to obtain the
relative impact of upstream neurons to a specific joint actuation
behavior, we first compute the gradients of the actuation activity
with respect to the upstream recurrent neurons of interest. We
then compute the product of these gradients and the corresponding
upstream recurrent neural activation. To implement this in PyTorch,
we set the flag requires_grad=True() for the upstream
recurrent neural states and we compute the gradients with respect
to the downstream output actuation neuron using backward().

3 Results

3.1 Training and evaluating locomotion
policies for robustness

To achieve our goal of analyzing and interpreting robust
quadrupedal locomotion policies, we first define a quantitative
metric for robustness, and second, train policies that perform well
relative to our defined robustness metric. In this work, we focus on
the agent’s ability to recover from physical disturbances, specifically
a surprise lateral external force during forward walking on flat
ground. We estimate robustness by simulating, in parallel, batches

of agents exposed to lateral disturbances, and recording recovery
rates, defined as the percentage of agents that successfully recover
and continue walking. Our experiments consist of many batches,
grouped by policy, disturbance magnitude, and timing within the
gait cycle when the disturbances are applied.

We obtain a Baseline policy by training agents on flat ground.
Following intuition, Figure 2 shows that gait-averaged recovery rates
approach 100% for trials where lateral external forces approach
zero, and monotonically decrease as external forces increase in
magnitude. The Baseline policy achieves a gait-averaged recovery
rate of 99.7% for lateral forces of 0.5 times body weight, however
this falls to 0.05% when lateral forces are increased to 2.0
timed body weight.

We next obtain a Terrain policy by training agents on mixed
terrain, described in Section 2.2. The Terrain policy is significantly
more robust than the Baseline policy, achieving a mean recovery
rate of 99.7% for lateral forces up to 1.5 times body weight.
When disturbance magnitudes are increased to 2.0 times body
weight, the Terrain policy maintains a relatively high gait-averaged
recovery rate of 91.0%.

We introduce random disturbances during training of the
Baseline and Terrain policies to generate Disturbance and Terrain-
Disturbance policies. Upon comparing the gait-averaged recovery
rates, we find that adding random disturbances during training
result in significantly higher recovery rates for the Terrain-
Disturbance policy, relative to the Terrain policy. For a 3 times
body weight disturbance, the mean recovery rate for the Terrain-
Disturbance policy is 76.1%, meanwhile it is only 21.0% for the
Terrain policy. In contrast, the benefits of introducing random
disturbances during training are not seen in the Disturbance policy.
The gait-averaged recovery rates are similar, if not slightly lower, for
the Disturbance policy relative to the Baseline policy.

Recovery rates depend not only on the control policy and the
disturbance magnitude, but also the part of the gait cycle that the
agent is in when the disturbance is applied. We define the beginning
of the gait cycle as the time after both the left front and right
hind feet make contact with the ground. Figure 2 captures this
gait-dependent robustness, with Terrain and Terrain-Disturbance
policies exhibiting significantly lower recovery rates in themiddle of
the gait cycle. For example, recovery rates of theTerrain-Disturbance
policy are 98% when disturbances are applied at the beginning of
the gait cycle, and drop to 5% when disturbances are applied in the
middle of the gait cycle 200 ms later.

When lateral disturbances are increased to 3.5 times body
weight, we see that the Terrain-Disturbance policy is capable of
recovering from lateral disturbances, with a 98% recovery rate when
disturbed at the start of the gait cycle. The Terrain-Disturbance
policy is clearly the most robust when faced with 3.5 times body
weight disturbances, with a gait-averaged recovery rate of 54.1%,
compared to 3.6% with the Terrain policy and 0% with the Baseline
and Disturbance policies.

3.2 Bio-mechanical behavior of robust
legged robots

Now that we know the Terrain and Terrain-Disturbance policies
are more robust to physical perturbations than the Baseline and
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FIGURE 2
Recovery rates to lateral perturbations, of four quadrupedal control policies trained with different curricula (Baseline, Terrain, Disturbance,
Terrain-Disturbance), which serve as a measure of stability. Recovery rates vary based on the magnitude of the lateral force as well as the time during
the gait cycle when the perturbation is applied. Disturbances are applied for 80 ms duration, and their magnitudes are scaled by body weight. The
beginning of the gait cycle is instantiated after the front left and right hind feet enter stance, touching down on the ground. Agents become more
stable when trained with terrain curriculum, and become even more stable when interleaved with a disturbance curriculum. Recovery rate is computed
as the ratio of agents that recover from disturbance, relative to all agents (N = 100).

Disturbance policies, we study their bio-mechanical responses as a
way to deepen our understanding of how agents robustly recover
from lateral disturbances.

In Figure 3 and in the supplementary video, we provide a
comparative visualization of single trial lateral disturbance tests,
with agents trained via the Baseline, Terrain, Disturbance, and
Terrain-Disturbance policies. Visual inspection of these catalogued
snapshots reveal the Terrain-Disturbance agent regains balance, and
before doing so, its right hind (RH) leg rapidly swings out to the
right before its foot makes contact with the ground. This distinct
behavioral response is not apparent in agents trained by the other
three policies, which all fail to recover.

In order to quantitatively measure this phenomenon, we study
and compare the bio-mechanical data each of the four control
policies. Since agents sideslip and roll when laterally perturbed, we
visualize the time series recordings of the lateral body velocity v and
the roll angle ϕ in Figure 4. Additionally, since snapshots in Figure 3
reveals the Terrain-Disturbance agent responding with rapid RH
hip joint movement, we also visualize the RH hip position and
corresponding torque command in Figure 4. This data reveals that
the peak RH hip torque of the Terrain-Disturbance control policy
is significantly larger than the other three policies, which in turn
leads to a much wider RH hip angle and foot position. The Terrain-
Disturbance RH hip angle is able to reach 150°, allowing the leg
to swing out further, moving the center of pressure further to the

right of the center of mass, and generating greater traction force to
stabilize the agent.

The Terrain agent also successfully gets its RH foot onto the
ground after the perturbation, however it does not maintain ground
contact, and the agent’s roll orientation continues to increase until
it falls on its side. This failure may be driven by the fact that the hip
angle stops around 100°, prevent the agent from achieving a wider
stance and generating sufficient traction.

We also visualize the gait patterns of the four different controllers
in Figure 4, and find that during normal walking, different
controllers exhibit different gaits. The Baseline and Disturbance
controllers have longer stance periods and shorter stride periods,
resulting in sometimes three or four feet being in contact with
the ground. The Terrain policy has shorter stance periods, but
still exhibits some gait pattern asymmetry. The Terrain-Disturbance
policymore consistently exhibits two legs in stance at any given time,
and sometimes even just a single leg in stance.

3.3 Neural dynamics during unperturbed
and slightly perturbed walking

So far, we have identified that robust agents exhibit distinct
behavioral responses to disturbances, based on the bio-mechanical
analysis presented in Section 3.2.Here, we study howneural patterns
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FIGURE 3
Time lapse of four agents trained with different curricula (Baseline, Disturbance, Terrain, Terrain-Disturbance), after applying a 3.5 times body weight
disturbance. The agile RH hip reflex unique to the Terrain-Disturbance policy is visible in the second and third snapshot on the right.

FIGURE 4
Time history of bio-mechanics data from four agents trained with different curricula (Baseline, Dist, Terrain, Terrain-Disturbance), where a lateral
disturbance of magnitude 3.5 times body weight and duration 80 ms is applied. Only the robot with Terrain-Disturbance control policy is stable enough
to recover from the disturbance. This agent reacts with a large torque command in the RH hip joint, enabling a wider hip position and wider stance
during recovery. The agent trained with Terrain curriculum is able to catch itself in a similar manner, but it does not reach as wide of an angle. The
timing of ground-foot contact is shown for left front (LF), right front (RF), right hind (RH), and left hind (LH) legs.
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are implicated into locomotion, by shifting our focus from bio-
mechanics to sensory, recurrent, and actuation neural activity of the
agent. In this section, we begin by first studying the nominal case of
unperturbed locomotion, and then examine walking in the presence
of low-magnitude neural and physical perturbations.

One challenge in studying neural activity, is that often the neural
populations of interest are high dimensional. In our case, there are
176 sensory neurons, 256 recurrent neurons and 12 actuation neurons.
To address this, we perform principal component analysis (PCA), a
dimensionality reduction method described in Section 2.6. After the
data is z-score normalized and projected into PCA space, we are able to
visualize the data along the highest-varying principal component (PC)
directions. Section 2.6 describes this process in further detail.

We conduct a set of trials with forward walking speed command
u∗ varying between 0.8 and 2.0 m/s. We independently perform
PCA and cycle averaging for observation, recurrent, and actuation
states, and produce the neural activity shown in Figure 5. The
recurrent state trajectories maintain their shape as walking speed
is modulated, but appear to vary in scale. The actuation neural
state also shows increased scaling at faster walking speeds. This
leads to separation between trajectories of different speeds, with
no noticeable areas of overlap when projected into the top three
PC directions. Sensory observation states increase in scale and
translation with faster walking speeds. We also observe that gait
cycles shorten for faster walking speeds, i.e., faster walking leads
to faster gait cycles. Gait cycle frequency is roughly 1.8 Hz when
walking forward at 0.8 m/s, and 2.3 Hz when walking at 2.0 m/s,
which is roughly a 28% increase in mean trajectory speed. We find
similar patterns when varying v and r as well.

In addition to visually studying the neural separation across
trials, we can quantify the subspace overlap (Russo et al., 2020)
across any two trials, as defined in Section 2.7. This pairwise metric
measures the degree to which the neural activity of two trials
overlap within a common subspace. We find that neural trajectories
are relatively similar when yaw rate commands are inverted from
positive to negative, whereas the difference is greater when the
forward speed command is inverted, or when the lateral speed
command is inverted. This is expected since flipping yaw rate
direction involves minor gait adjustments, whereas flipping forward
speed or lateral speed implicates joint torques in very different
ways. This is illustrated in Figure 6, where the subspace overlap
between different conditions is shown. We see that the subspace
overlap is unity along the diagonal when comparing neural datasets
to themselves. Subspace overlap is higher when r is inverted, with a
mean subspace overlap of 0.40 than when u or v is inverted, which
have mean subspace overlaps of 0.24 and 0.26. And for inversions of
a single velocity command, the subspace overlap is generally higher
than when two or all three velocity commands are inverted.

We also want to study the agent’s neural dynamics, which we
accomplish through conducting two perturbation-based experiments.
The first experiment involves three low-magnitude targeted neural
perturbations. The second involves a small physical perturbation.

To understand the neural dynamics during quadrupedal robot
walking, we apply targeted neural perturbations during forward
2.0 m/s walking. Since there are 256 recurrent neurons, and some
are implicated more than others in forward walking, we choose to
apply neural perturbations that are in the top principal component
directions. Specifically, we conduct three trials. The first trial applies

a neural perturbation in the first principal component direction, and
is timed such that the perturbation is tangential to the direction
of neural movement within the ellipsoidal trajectory in the PC1-
PC2 space. The agent’s neural response presented in the left column
of Figure 7 is salient, resulting in a persistent phase offset visible
in neural activity spanning PC1 through PC4. In contrast, when
the same neural perturbation is applied at a different time instant,
such that the perturbation is orthogonal to the PC1-PC2 neural
movement, PC1 neural activity asymptotically converges back to
the nominal trajectory and PC2 through PC4 activity is relatively
unaffected.The third and final trial involves a neural perturbation in
the PC4 direction, and this does not impact neural activity spanning
PC1 through PC4. These results indicate that the neural activity is
more greatly affected when perturbed in the PC1 direction than
the PC4 direction, and when the perturbation is tangential to the
direction of neural movement than then it is orthogonal. In all three
trials of neural perturbations, the agent recovers.

In the second experiment, we perturbed the agent during
forward 2.0 m/s walking with a random change in linear body
velocity. Again, we are interested in how the neural activity is
affected. When the agent receives its virtual ‘push,’ its recurrent
and actuation states are perturbed off their nominal trajectory, as
shown in Figure 8. Within one to two gait cycles, the recurrent and
actuation state converges back to their nominal cyclic trajectory, as
the agent regains its balance.

3.4 Structure-based neural ablations

To deepen our understanding of the mechanisms that drive
robust behavior, we observe the effect of performing neural
ablations. A convenient starting place is to ablate neurons based on
their structure. For example, sensory neurons, or observations, are
structured in the order shown in Figure 1. To ablate these sensory
neurons, we override them to their mean neural activation. We
perform two sets of experiments.

In the first experiment, we observe how forward walking is
affected when specific sensory neurons are ablated. We observe that
the agent behavior changes during forward walking, depending on
which sensory neurons are ablated. Ablating u causes the agent to
walk faster, ablating v cause greater sideslip, and ablating the z-
direction body-frame gravity vector causes greater yawing. Ablating
the sensory signals w, p, q, as well as orientation signals sin(θ) and
sin(ϕ) have no visible effect on forward walking. These results are
catalogued in the second column of Table 2.

In our second experiment, we apply a lateral perturbation
to agents while simultaneously ablating targeted sensory neurons,
essentially removing sensory feedback from the agent’s disturbance
response. Recall from Figure 2 that the nominal recovery rate
for Terrain-Disturbance is 100% when no neurons are ablated.
We observe that the recovery rates to lateral disturbances vary,
depending on which sensory neurons are ablated. For example, the
ablation of sideslip v, roll rate p, and roll signal sin(ϕ) cause the
largest decreases in recovery rates.

In contrast to the sensory and command input neurons,
recurrent neurons do not have an explicit structure. Because the
initial weights of the recurrent neural networks are randomized
before training, we do not know which recurrent neurons, if any, are
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FIGURE 5
Neural data for a suite of forward speed commands, ranging from 0.8 to 2.0 m/s. Across-speed PCA was conducted on aggregated data from all seven
speed conditions. For the recurrent state, the elliptical shape is retained, whereas a ‘figure-eight’-shaped projection arises in the actuation trajectory. At
faster walking speeds, both the recurrent and actuation states seem to scale or ‘stretch’, generating a speed-dependent separation of trajectories.

FIGURE 6
Two-dimensional matrix illustrating the subspace overlap of different
velocity conditions. Specifically, the eight conditions are the 23

combinations of u∗ = ±2.0 m/s, v∗ = ±2.0 m/s, s, r ∗ ±0.25 rad/s. The
subspace overlap is greatest when r is varied, significantly lower when
v is varied, and lowest when u is varied. This conforms to our intuition,
that turning while walking is requires only a slight adjustment, whereas
walking forward and walking sideways requires significantly different
gait patterns. Note that we are only transforming data using the first
10 PCs, so the ij and ji subspace overlap values vary slightly.

driving recovery behavior. However, one structure-based ablation
that is possible, is to simply ablate all recurrent neurons. When we
ablate all the recurrent neurons, agents are still able to walk, albeit at
a slower speed of 1.6 m/s. This indicates that recurrent neurons are
implicated in forward walking, but are not necessary. The sensory
feedback signals and their direct feedforward pathway through the
LSTM network alone enable forward walking.

3.5 Gradient-based neural ablations

In this section, we study the causal relationships between neural
and physical behavior by exploiting the fact that artificial neural

networks are backward-differentiable. We interrogate the neural
network controller with the aim of identifying the specific upstream
neurons that drive specific behavioral responses.

From the bio-mechanical analyses in Section 3.2, we have
observed that RH hip actuation is a part of the robust recovery
response. Based on this knowledge, we analyze upstream neurons in
an effort to identify particular neurons that drive the rapid actuation
of the RH hip. We focus on three regions of the neural network, the
sensory and command neurons that are input to the LSTM network,
the recurrent neurons that are input into the LSTMnetwork, and the
recurrent neurons that are outputted by the LSTM network.

We apply the gradient-times-input methodology to estimate
the contribution of each sensory signal to RH hip actuation, as
illustrated by the time series data shown in Figure 9. When studying
the sensory states that drive actuation, we identify a series of sensory
neurons that drive RH hip actuation at different times during the
recovery. These findings are consistent with our ablation study
results previously presented in Table 2, where we find significant
degradation of agent robustness during perturbation. We observe a
strong signal from v which contributes to driving the initial RH hip
torque actuation. We observe that later in the disturbance response,
the roll signal sin(ϕ) also contributes to RH hip torque actuation.

We also compute the gradient-times-input for recurrent neurons
outputted by the LSTM network. We compare these signals during
lateral disturbance to the nominal activity seen during a undisturbed
gait cycle. For hidden recurrent states outputted by the LSTM
network, which feed into actuation, we find that hidden neurons 13,
56, 101, and 108 exhibit the greatest deviation.We confirm the causal
relationship between neural activity and behavior by ablating these
four neurons and observing robust recovery behavior drops from
100% to 42% for a 3.5 times body weight lateral perturbation.

We perform the same computation in an attempt to identify
recurrent neurons inputted to the LSTMnetwork that exhibit a large
gradient-times-input deviation. However, when ablated, recovery
rates are not affected to the same degree as seen with the output
recurrent neurons. This is likely due to the fact that the magnitude
of the gradient-times-input deviation is significantly lower for input
than output recurrent neurons. To further examine how recurrent
neurons inputted to the LSTM drive robust behavior, we look to
random ablation methods.
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FIGURE 7
Neural perturbation response of recurrent states in PC1 through PC4 directions, before and after targeted neural perturbations. A perturbation is applied
to PC1 that is tangential to the PC1-PC2 plane (left), which causes a significant phase shift in the gait cycle. This is evident in PC1 through PC4. However,
the same perturbation applied later such that it is orthogonal to the PC1-PC2 trajectory (middle), does not cause any disruption to the gait cycle. When
applying a perturbation in the PC4 direction (right), there is little impact on the population activity, despite it being tangential to PC1-PC4 movement.

FIGURE 8
Perturbation study of agent while walking forward at 2.0 m/s reveals (left) the recurrent state and (right) the actuation state move in a direction
orthogonal to its direction of motion and ultimately converge back to their nominal trajectory within nearly one cycle. Specifically, at t = 1.5s the
perturbation is applied for a single time step, after which the recurrent and actuation trajectories experience transient responses. This is a single-agent
trial (N = 1), so there is no across-trial averaging.

3.6 Random sampling-based neural
ablations

More broadly, we study the impact of random neural
ablations to locomotion robustness as a means of identifying key
neurons and the behaviors they drive. This work is inspired by
computational neuroscience experiments that ablate individual

neurons within a population to understand the neural basis
for behavior. In some neural systems, experiments such as
these can elicit meaningful conclusions, such as identifying key
command neurons (Hampel et al., 2015; Zhang and Simpson,
2022). However, it can also become intractable when neural
populations become large, or ineffective when behaviors are
driven by more than a single neuron. With artificial neural
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TABLE 2 Tabulated results of normal walking trials and disturbance
trials during which structure-based neural ablations are made. The first
experiment is summarized by the middle column, which catalogues
behavioral changes observed when various sensory neurons are ablated
during normal walking. The second experiment is summarized by the
rightmost column, which lists recovery rates when specific sensory
neurons are ablated simultaneously with a lateral perturbation of 3.5
times body weight. Recall from Section 3.1, that the recovery rate for a
3.5 times body weight lateral disturbance with no ablations is 1.00.

Neural ablations Normal walking
trial

Disturbance
trial

Behavior Recovery rate

u← 0 |u|↑ 0.78

v← 0 |v|↑ 0.00

w← 0 0.75

p← 0 0.12

q← 0 0.99

r← 0 1.00

sin(θ) ← 0 0.98

sin(ϕ) ← 0 0.55

-√1− sin2(θ) − sin2(ϕ) ←
−1

|ψ|↑ 1.00

u∗ ← 0 u = 0 0.68

v∗ ← 0 1.00

r∗ ← 0 1.00

θjoint← θjoint 0.00

ωjoint← ωjoint 0.79

d← d 0.60

networks, evaluation can be orders-of-magnitude faster with
tensor-accelerated processing, however combinatorial explosion
still limits complete evaluation. Therefore, it is necessary to
employ sampling strategies in order to make these ablation
studies feasible.

Here, we conduct trials where agents are laterally disturbed
while random recurrent neurons are simultaneously ablated. For
example, we perform 400 trials in parallel, and in each trial, a
random set of eight recurrent neurons is ablated. We then perform
another 400 trials, where we ablate those same sets of neurons,
in addition to new random sets of eight recurrent neurons. We
continue repeating these trials until all 128 neurons are ablated.
We perform these experiments for output (post-LSTM) hidden
recurrent neurons, as well as input (pre-LSTM) hidden and cell
recurrent neurons. We observe that as the number of randomly-
ablated neurons increases, recovery rates decrease, as shown in
Figure 10B. We also find that recovery rates are most sensitive
to ablation of post-LSTM hidden neurons, somewhat sensitive to
ablation of pre-LSTM cell neurons, and least sensitive to ablation

of pre-LSTM hidden neurons. Additionally, we repeat all trials
by performing targeted ablations, where the neuron ablations
are ordered from greatest gradient-times-input to least. We find
that targeted ablations of post-LSTM hidden neurons significant
lowers recovery rates, relative to random ablation trials. This
phenomenon is weaker for pre-LSTM cell recurrent neurons,
and in fact inverted for pre-LSTM hidden neurons. The lower
gradient-times-input values shown in Figure 10A may be the
reason why the targeted ablations of input recurrent neurons
does not result in greatly lower recovery rates than random
ablations. These neurons simply are not very implicated in driving
RH hip actuation.

Based on Figure 10B, it is clear that pre-LSTM cell neurons
contribute to the robust recovery behavior, however, it is still
unknown which neurons are most significant. In order to identify
these neurons, we look to the data from each random ablation
trial. We compute the conditional recovery rate, based on whether a
specific neuron is ablated or not. If all neurons contribute equally to
the robust recovery response, we would expect conditional recovery
rates to be equal across all neuron ablations. However, the actual
conditional recovery rates do vary based on if particular neurons are
ablated, as displayed in Figure 11.

From this data, we quickly identify that pre-LSTM cell neurons
6, 13, 18, 54, 60, 73, 94 are much more often implicated in failed
recoveries than the average neuron. To confirm the significance,
we ablate these seven neurons and find that the recovery rate
drops from 100% to 3%. This is significant because random and
targeted ablation trials, as depicted in Figure 10, do not approach
such a low recovery rate until nearly all 128 pre-LSTM cell neurons
are ablated.

4 Discussion

4.1 Robust bio-mechanical recovery
response relies on stepping strategy

Through bio-mechanical analysis, we found that the most
robust agents agents, trained via the Terrain-Disturbance policy,
exhibit rapid RH hip actuation when responding to a surprise
lateral disturbance. To understand why this agile response arises,
we look at disturbance-based legged locomotion studies of insects
(Jindrich and Full, 2002; Revzen et al., 2013), humans Hof et al.
(2010), and robots (Kasaei et al., 2023). In (Hof et al., 2010), it
is concluded that humans recover from lateral perturbations
by taking a wider next step and also shifting their center of
pressure through ankle adjustment. Our quadrupedal robots
do not have ankle joints, which leaves the stepping strategy
as the most accessible option. This corroborates with our bio-
mechanical study, which reveals the RH hip actuation enables
the agent to take a wider step and regain balance Additionally,
we find agents trained with this policy often has fewer legs
in stance, which may increase ability to produce a more
agile response.

This recovery behavior is likely learned through the terrain
curriculum presented during training. This is because the Terrain-
Disturbance policy only experiences disturbances of 0.24 times
body weight in training, yet is able to recover from 3.5 times
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FIGURE 9
Relative contributions of different sensory neurons to the RH hip actuation response during lateral perturbation recovery.

FIGURE 10
On the left (A), top five targeted post-LSTM hidden neurons, pre-LSTM cell neurons, and pre-LSTM hidden neurons. Targeted neuron ablations are
ordered from largest to smallest deviation of gradient-times-input values relative to RH hip actuation. Note that this deviation is measured across the
first gait cycle following the lateral disturbance, and is relative to nominal neural activity during normal walking. On the right (B), recovery rates for
varying numbers of targeted and random neural ablations. Recovery rates are most sensitive to targeted ablation of output, or post-LSTM hidden
neurons. These recurrent neurons also exhibit the largest gradient-times-input deviations, indicating they help drive the rapid RH hip actuation
behavior after lateral disturbances.

body weight disturbances during robustness trials. This is
something that the Disturbance policy cannot do. This suggests
that during training, Terrain and Terrain-Disturbance agents
are not directly learning how to reject external disturbances,
but are learning how to recover after losing balance, something

that happens often when agents are learning to traverse mixed
terrain. Conversely, the Baseline and Disturbance agents are much
less likely to lose balance during training, since they are not
challenged to walk on mixed terrain, and simply learn to walk on
flat terrain.
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FIGURE 11
Conditional recovery rates for varying number of random cell neuron ablations, which is defined as the ratio of successful recovery trials to total trials
where a specific cell neuron is ablated relative. Recovery rates decrease as the number of cell neuron ablations increase, which aligns with Figure 10.
Note that conditional recovery rates are relatively similar regardless of which cell neurons are ablated, with the exception of cell neurons 6, 13, 18, 54,
60, 73, and 94. These specific neurons experience lower conditional recovery rates, which suggest they may play a more significant role in robust
recovery behavior than the average cell neuron.

4.2 Analogies between biological and
artificial recurrent neural networks

The cyclic neural activity visualized in Figure 5 agrees
with similar reports of cyclic neural activity during bipedal
(Siekmann et al., 2020) and quadrupedal robot (Chiappa et al.,
2022) locomotion tasks. Additionally, rapid convergence to the
nominal elliptical trajectory after perturbation shown in 8 suggests
it is a stable limit cycle.

Additionally, our analysis confirms that altering the agent
walking speed and gait speed, leads to the recurrent neural
activity moving to different parts of the neural state space. Prior
work demonstrates that this phenomenon occurs in recurrent
neural networks, regardless of the task (Sussillo and Barak,
2013; Maheswaranathan et al., 2019b), because in recurrently-
driven systems, altering trajectory speed, in this case gait speed,
requiresmoving to a different region of state space (Remington et al.,
2018). The patterns of activity presented here are also similar
to the trajectory separation found in primate cycling tasks
(Saxena et al., 2022).

Based on the data shown in Figure 7, we find that perturbing
neurons along dominant PC directions elicits a larger magnitude
response, and also implicate other neural populations as well.
Perturbation responses return to nominal activity within less
than half of a gait cycle. Additionally, neural perturbations
cause a phase shift in the gait cycle when perturbations are
tangential to the instantaneous direction of neural activity,
causing greater interaction with the neural dynamics. In contrast,
when perturbations are orthogonal to the direction of neural
activity, the effect on the network is nearly negligible. These
two findings suggest that our RNN-based controller exhibits
structured low-dimensional neural dynamics, similar to primates
(O’Shea et al., 2022).

4.3 Command neurons and sensory
feedback drive locomotion

From biology, we know commands signals from higher-level
parts of the nervous system typically control animal behavior
(Hampel et al., 2015; Zhang and Simpson, 2022). Autonomous
systems often vary in their structure, with some deep RL controllers
learning end-to-end navigation and locomotion control, and others
separating these into two different modules. In this work, our
learned controller solely performs low-level locomotion control, and
adjusts its behavior based on receiving external user-defined velocity
commands, (u∗,v∗, r∗).

We find that forward walking behavior is driven largely by the
forward velocity command and forward velocity sensory feedback
signal. Ablating forward velocity u causes the agent to walk faster.
Despite the controller not having explicit control laws, it appears
that ablating the sensory input u = 0, when actually u > 0, causes a
positive feedback and drives u higher and higher until agents fall
over from locomoting too fast. Additionally, we find that robust
recovery behavior is also driven by sensory feedback. Ablating
sensory neurons, especially signals that are activated during lateral
disturbances, greatly reduce robustness.

4.4 Model and sampling-based ablations
generate neural hypothesis

Computing model gradients has been shown to be an effective
means of identifying which output, or post-LSTM hidden recurrent
neurons drive RH hip actuation. Targeted ablation studies have
provided confirmation that these neurons are necessary for
robust recovery.

We applied the same methodology for targeted ablations of
input, or pre-LSTM hidden and cell neurons, despite them having
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significantly lower gradient-times-input values. The result is that
recovery rates are not significantly different between targeted and
random ablations. However, we do see recovery rates degrade as
more neurons are ablated, suggesting some of these neurons that
are required for a robust response, despite the fact that they are not
driving the RH hip actuation behavior.

Large-scale sampling-based neural ablations and analysis of
successful recovery trials enabled us to identify seven input, or pre-
LSTM cell neurons that drive robust behavior. Without them, only
3% of agents successfully recovery from lateral disturbances. Only
two of these seven neurons were previously identified through the
targeted gradient-based RH hip actuation methodology. The other
five neurons do not drive this particular actuation behavior, yet are
still significant to the overall robustness of the agent during lateral
disturbances.

5 Conclusion

This work proposes approaches for elucidating the neural
basis for robust legged locomotion. Similar to prior work, we
identified and characterized cyclic patterns of neural activity that are
inherent to locomotion.We compare controllers trained via different
curricula, and found agents trained with terrain and disturbance
curricula are the most robust to physical perturbations.

We observe distinct behavioral responses of robust agents,
specifically a rapid actuation of the hip joint, which led to a
wider stance to regain balance. We examine the gradients within
the robust model to identify which neurons drive this specific
behavior. Leveraging this model-based method, we identify key
output recurrent neurons and and sensory signals that drive this
behavior as well. We find that input recurrent neurons are not as
implicated in driving the rapid hip joint response, but through
a supplemental sampling-based ablation strategy, identify neurons
that are are critical to robust response. By interleaving physical
perturbations with neural ablations, as well as model information
and sampling techniques, we have further elucidated the neural and
behavioral bases of robust quadrupedal robot locomotion.
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