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Introduction: It is crucial to identify neurodevelopmental disorders in infants
early on for timely intervention to improve their long-term outcomes.
Combining natural play with quantitative measurements of developmental
milestones can be an effective way to swiftly and efficiently detect infants
who are at risk of neurodevelopmental delays. Clinical studies have established
differences in toy interaction behaviors between full-term infants and pre-term
infants who are at risk for cerebral palsy and other developmental disorders.

Methods: The proposed toy aims to improve the quantitative assessment
of infant-toy interactions and fully automate the process of detecting those
infants at risk of developing motor delays. This paper describes the design and
development of a toy that uniquely utilizes a collection of soft lossy force sensors
which are developed using optical fibers to gather play interaction data from
infants laying supine in a gym. An example interaction database was created by
having 15 adults complete a total of 2480 interactions with the toy consisting of
620 touches, 620 punches—“kick substitute,” 620 weak grasps and 620 strong
grasps.

Results: The data is analyzed for patterns of interaction with the toy face using
a machine learning model developed to classify the four interactions present in
the database. Results indicate that the configuration of 6 soft force sensors on
the face created unique activation patterns.

Discussion: The machine learning algorithm was able to identify the distinct
action types from the data, suggesting the potential usability of the toy. Next
steps involve sensorizing the entire toy and testing with infants.

KEYWORDS

pediatric, rehabilitation, smart toy, robotics, infant-toy interactions, machine learning,
assessment, soft force sensor
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1 Introduction

About 5%–10% of infants are born with neurodevelopmental
impairments resulting from disorders such as Cerebral Palsy
(CP) (Rydz et al., 2005). These impairments often affect cognition
and motor function (Shivakumar et al., 2017). Seventy to eighty
percent of CP cases develop birth complications including
asphyxia, and preterm birth (Vitrikas et al., 2020). While CP is a
lifelong progressive disorder with no cure, effective rehabilitation
can increase quality of life. Rehabilitation has been shown to
be especially effective before 2 years of age, due to the high
neuroplasticity seen in the infant brain (Morgan et al., 2016).
In order for this early intervention to occur, it is imperative
that impairments manifesting as neurodevelopmental delays are
detected early in this critical period of brain development. Detecting
impairments in infants is a difficult task, however. There exist
clinical assessments such as the Test of Infant Motor Performance
(TIMP), and General Movements Assessment (GMA) that can
predict whether an infant is at a high risk of having a diagnosis
of CP at 18 months (Kolobe et al., 2004). However, clinical tests
tend to be less accessible in low resource settings in that they
require qualitative classifications which need clinicians to undergo
time consuming and expensive clinical training in order to learn
how to administer correctly (Kolobe et al., 2004; Noble and Boyd,
2012; Bosanquet et al., 2013). These issues have resulted in low
implementation in low and middle-income countries where
children with CP have a significantly poorer health-related quality
of life and increased mortality rate due to lack of accessible early
detection and rehabilitation (Oguntade et al., 2022).

A potential remedy to this general lack of early and attainable
testing could be the use of accessible technologies including AI
and low-cost sensors to help automate processes, leading to more
quantitative assessments that require less time to master. Evidence
shows that AI and robotic technology systems have the potential
to allow for easier, and more objective testing. For example,
the Play and Neurodevelopment Asessment Gym (Ho et al., 2019;
Chambers et al., 2020; Prosser et al., 2021; Kather et al., 2023) and
CareToy (Serio et al., 2013; Cecchi et al., 2016; Rihar et al., 2016)
are two existing technology efforts to improve early assessment of
infants with neuromotor delays.These systems use pressure sensors,
robotic and mechatronic toys, and machine learning to characterize
infants at playwith andwithout one ormore toys.The sensor infused
toys are a critical part of these early detection efforts. The CareToy
(Rihar et al., 2016) and the SmarToy Gym (Goyal et al., 2017)—an
early version of the PANDA Gym—are gym systems that both use a
sensorized environment plus multiple smart toys to collect a variety
of kinematic and kinetic data that are then used to identify predictors
of neuromotor delay.

To best serve the purpose of collecting insightful and robust
data on infant interaction, a smart toy should be able to perform
relevant interactions with infants at different stages. When trying
to understand infant development, it is common to analyze their
upper and lower body movements. In their first 2–3 months, infants
are known to be capable of batting toys and following certain colors
(Gerber et al., 2010). At 3–4 months, they are able to kick and reach
for objects (Gerber et al., 2010).Then at 4–5 months, they can reach
for and grasp objects (Gerber et al., 2010). After which at 6 months
they are capable of banging and shaking toys (Gerber et al., 2010).

It has been shown that in comparison to their typically developing
counterparts, infants born at risk exhibit less refined control of
their upper and lower body functions when it comes to actions
such as kicking (Heathcock et al., 2005; Deng et al., 2018), reaching
(van der Heide et al., 2005; Guimarães et al., 2013), and grasping
(de Almeida Soares et al., 2014). With an understanding of infant
milestones and how their performance differs between typically
developing and at-risk infants, it can be concluded that a smart toy
that can distinguish these groups should be capable of identifying
the various interactions seen at thesemilestones.This includes being
able to quantify grasp, contact for when the infant reaches for the toy,
and impact from kicking and batting.

The smart toys used in the CareToy, SmarToy Gym and
PANDA Gym are designed to elicit infant actions such as gazing,
reaching, grasping and kicking. The toys use sound and/or flashing
lights to encourage infants to engage. Accelerometers, gyroscopes,
and pressure sensors embedded in the toys then capture the
interactive data. A limitation of these toys is their inability to
automatically differentiate between the types of physical interactions
the infant imparts to it. A corresponding video capture and
analysis is often required to confirm the type of infant interaction
(Kather et al., 2023).

In a data-driven world, collecting rich data to analyze risk
patterns is critical. Since risk patterns can give insight into an infant’s
neurodevelopment, if these patterns are identified and treated early,
then infant functional outcomes improve. This paper describes the
design and development of a smart toy that uniquely utilizes a
collection of soft lossy force sensors which are developed using
optical fibers to gather and classify physical interaction data such
as touches, punches, and grasps. We describe the creation of a
database of interactions with the toy and a machine learning
model developed to classify the interactions present in the database.
The machine learning algorithm was able to identify the distinct
action types from the data, suggesting the potential usability
of the toy.

1.1 Previous work

The Play and Neuro Development Assessment (PANDA) gym
is an infant play gym created as a tool for collecting quantitative
metrics for detecting impairment in infants as young as 1–6 months
(Goyal et al., 2017). Figure 1A shows the current PANDAGYMwith
an infant. The PANDA Gym system collects these metrics through
the use of multiple cameras, a pressure mat, and the sensorized Ailu
toy (Ho et al., 2019; Chambers et al., 2020; Prosser et al., 2021). The
Ailu toy (Ho et al., 2019) is a critical part of the PANDA Gym and
the first version shown in Figure 1B demonstrates proof of concept
to collect relevant data reliably. Repeated use of the toy revealed
shortcomings and inconsistent data capture.

The original Ailu toy collected data primarily through specially
developed force-sensing resistors (FSRs) to detect contact at its
ears and face, and pressure sensors to detect squeezing at its
arms. Although the FSRs collected analog data, due to their poor
sensitivity, the data could only be processed as a binary interaction,
simply indicating whether the ears or face had been touched. Due
to this shortcoming of the FSRs, insight into how hard the infants
touched or hit the face and ears was lost.
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FIGURE 1
(A) Infant playing with the Ailu toy in the PANDA gym (B) The original Ailu toy (Ho et al., 2019; Chambers et al., 2020; Prosser et al., 2021), (C) Infant
playing with the revised Ailu toy in a revised version of the PANDA gym (D) Human touch showing compliance of lattice structure.

The FSRs of the Ailu toy led to another shortcoming, as they
were inconsistent in detecting contact with the infant. In order
to have FSRs large enough to encompass both the face and ears
of the toy, they had to be custom-developed. They consisted of
two layers of conductive fabric with a layer of pressure-sensitive
velostat sheet in between them. With this configuration, whenever
the sensor was pressed, all three sheets came in closer contact
with each other, allowing for a change in resistance. To measure
this change in resistance, the two layers of the conductive fabric
were each connected to a wire via conductive thread. Although this
configuration was verified to be capable of collecting contact data,
it was not robust to repeated use. The pressure-sensitive velostat
sheet could not withstand the sometimes rough interactions with
infants and would tear and the conductive thread that allowed
for interface with the two layers of conductive sheet would come
loose. As a result, the Ailu toy inconsistently recorded data from its
face or ears, which served as major areas of interaction, and data
often had to be manually verified through visual analysis of camera
recordings of the data collection sessions. In response, the proposed
smart toy, Ailu 2, upgrades the existing solution by leveraging the
latest trends in Soft Robotics, Soft Sensing, Machine Learning and
Medical Device design. The primary physical change planned is to

incorporate Soft Force Sensors, fabricated using low-cost optical
fibers andwaveguides, tomake a compliant toy that is easy for infants
to interact with as compared to the existing rigid FSR sensors.

The use of optical fibers and waveguides to detect touch,
interactions, strain, Proprioception, Exteroception, and force-
sensing has been explored (Xu et al. (2019); Zhao et al. (2016). Both
Xu and others and Zhao and others demonstrate the usefulness
of the optical fibers and custom waveguides for the detection of
touch, interactions, pressure, strain, proprioception, exteroception
and force sensing. Zhao and others showed its utility within a soft
prosthetic hand. The key principle for accurate sensing is the ability
to detect and quantify the amount of light loss through the optical
fibers due to absorption based on Beer-Lambert’s law,

A = eLc (1)

where A is absorbance, L is the path length, e is the material’s
absorptivity, and c is the concentration of chemical species in the
medium that attenuates light.Thiswork showed the relation between
elongation and power loss in waveguides and their repeatability.
Proprioception and exteroception are observed by waveguides
interacting with each other and causing light to escape from one
and be transferred to the other and detecting the captured light
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at the receiver end. To and others (To et al., 2015) showed a use
case with highly stretchable fibers. They characterized pressure
and strain to light loss due to cracks in the protective coating
that occur due to elongation or bending of the fibers. They
demonstrated that a gold reflective layer could decrease light loss
during transmission and formmicro-cracks on bending, strain, and
elongation. Instron testing and characterization showed promising
results for this soft optical strain sensor. Although the results are
promising, the fabrication of a waveguide coated with a gold layer
is expensive and time-consuming. Several articles (Missinne et al.,
2014;Harnett et al., 2017; Leber et al., 2019) illustrate the fabrication
of cost-effective stretchable optical fibers that can undergo multiple
strain cycles with repeatable transmission and attenuation behavior.
The experimentation included stretching, bending, and indenting
the optical fiber and observing the change in transmission for
multiple wavelengths.The trend observed with this experimentation
follows the Beer-Lambert Law, Equation 1 that strengthens our
hypothesis of an optical force sensor based on the property of light
lost due to bending. There has been a lot of work in medical devices
for rehabilitation that uses force sensors to measure and observe
pressure patterns. Bobin et al. (2018) demonstrates a smart cup for
upper limb rehabilitation, while Mennella et al. (2021) is a review
of technology aided hand assessment in which FSRs show maximal
use. Our proposal of a lossy sensor that works similar to a force
sensor but is capable of collecting richer data can have a wider
use case in applications mentioned in these papers (Bobin et al.,
2018; Mennella et al., 2021). Barlow et al. (2020) uses strain gauges
to collect force data and discusses in depth data analysis of these
collected force signatures. The paper talks about different statistical
values like SD, peak force, dF/dtmax, etc. which conveys significant
information. We draw motivation from this and plan to use deep
learning to learn these statistical values and understand underlying
patterns. In the following section, we describe our development of
a cost-effective force sensor using commercially available products
and 3D printed parts.

2 Methods

2.1 Lossy sensor toy development

Ailu2 Toy is being developed with the intention to replace
all force and pressure sensors in Ailu Toy with the novel lossy
force sensors developed using optical fibers. Figure 1 summarizes
the current stage of development of the Ailu2 toy and how it
is intended to be used with the PANDA Gym as a drop in for
the original smart toy (Figure 1B). Figure 1C shows a simulated
infant in the gym structure on the pressure mat and the arrow
represents the interaction between the infant and the toy—only
the face and support structure has been sensorized. Figure 1D
shows the compliance of the lattice structure housing the optic
fiber and emphasizing the “soft” aspect of the proposed toy. The
development of the single sensor and driving electronics is discussed
in Section 2.1.1.

2.1.1 Lossy sensor
The electronics and lattice structure make the core components

and lay the foundations of the sensor design process. Figure 2 shows

the lattice and the circuit for a single lossy force sensor. The lattice
is a custom-designed structure to house an optical fiber. The lattice
structure was carefully chosen to stabilize the optical fiber, inspired
by the design used for the Optical Lace paper, Xu et al. (2019). The
optical fiber needs to be enclosed in a structure that allows for
fairly equal force distribution when compressed to ensure uniform
bending. Since the diameter of the fiber is very small, the latticemust
prevent the fiber from translating laterally within its structure and
cause it to bendwhen the lattice structure is compressed. In addition,
the lattice structure must ensure that the fiber bending direction
is consistent and repeatable. To get accurate and reliable results
the optical fiber was constrained within a lattice that uses a truss
structure. The truss ensures that the force is spread evenly, that the
optical fiber is restricted to bend in a particular direction, and that
uniform bending is observed. Notches within the structure allow the
fiber to be held in place over multiple compression cycles without
the fiber moving. Figure 2A shows the computer-aided model of the
lattice structure with dimensions to depict the scale and intricacy
of the design. Figure 2B shows the soft resin-based 3D printed parts
that were printed and cured for 10 min under UV light. Flexible 80A
was the soft resin chosen to fabricate the lattice structures. With
an ultimate tensile strength of 8.9 MPa (Datasheet), this material
exhibits a characteristic ability towithstandmoderate tensile stresses
before experiencing failure. The relatively low value of 8.9 MPa
signifies that Flexible 80A can deform and stretch under moderate
tensile forces, ensuring that it can securely house the optical fiber
while still permitting controlled compression. This characteristic
makes it an appropriate choice to facilitate uniform bending of the
fiber without risking structural damage. This feature is expected to
enhance the reliability of the toy in assessing infant interactions and
potential motor delays as we expect that its elastic property would
ensure an extended lifetime with repeatable results.

Figure 2C shows the lattice and optical fiber combination. The
combination of optical fiber and lattice waveguide is the Lossy Force
Sensor, which exploits the property of light loss and correlates it
to the force applied. Multiple iterations of the lossy sensor followed
the initial prototype; these iterations tested varying supports, sizes,
dimensions, and uses. The “Lossy” principle was still applicable
irrespective of the changes made to the initial prototype.

The electronic circuit (Figure 2D) for each lossy sensor consists
of an amplifier for the photodiode signal and an IR LED emitter
circuit. The photodiode signal is amplified to make this signal
readable by a microcontroller (Teensy 4.1). The values of the
components were chosen after experimental trade-offs in sensitivity
to light loss and the magnitude of voltage change. These were R1 =
1M Ω, R2 = 220 Ω, C1 = 4,700 pF, V = 5 V.

To make testing robust, and repeatable, a printed circuit board
(PCB), shown in Figure 5B, was designed to contain 12 sensing
circuits, which accommodates 12 lossy force sensor circuits. The
Ailu2 Toy design will ultimately consists of 6 lossy force sensors for
the face (shown in Figure 5C), 2 lossy force sensors for right ear, 2
lossy force sensors for left ear and 2 arm sensors.

2.2 Lossy sensor testing

The lossy sensor was developed individually as a stand-alone
force sensor that can be used in a variety of applications. Once
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FIGURE 2
(A) CAD of lattice structure with dimensions (B) Bunch of freshly cured 3D printed lattices. The lattices are printed on a FormLabs 3 printer using a soft
resin material (Flexible 80A) and cured for 10 min under UV light exposure. (C) Zoomed in image of the sensor with individual components labelled; this
image also shows the optical fiber weave through the lattice. (D) Electronic circuit for single lossy sensor with components: R1 = 1M Ω, R2 = 220 Ω, C1
= 4,700 pF, V = 5 V.

FIGURE 3
(A) Single sensor test bench using a C clamp with and without Clamp compressing the lattice with a fixed number of screw revolutions for repeatability
(B) Single sensor applied force characterization using Force transducer. (C) Single sensor applied force characterization using Instron.

manufactured and assembled, the lossy sensorswere testedmanually
for different human forces and used similar to a Force Sensitive
Resistor (FSR). Figure 3A shows a single lossy sensor under
compression using a c-clamp. Figure 3B shows the lattice in its
neutral position and when being pressed down with a fixed force.
The truss structure distributes the concentrated force and causes
the optical fiber inside it to bend uniformly in the direction of the
force being applied.The sensor characterization process for the lossy
force sensors involved subjecting single sensors alone and multiple

sensors, configured as in the toy face (Figure 1E), to repeated
normal loads (upto 50 N) in order to identify the limitations
of this sensor.

Test bench setups with varying force ranges and data collection
methods were experimented with, as shown in Figure 3. Testing
of a single lossy force sensor used two procedures: 1) manual
testing with a force transducer (Figure 3B) and 2) automated testing
with an Instron device attached with a load cell (Figure 3C). These
experiments led to the understanding of how the sensor functions
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FIGURE 4
(A) Single sensor characterization using Instron. Red is Force (N) and
Blue is Analog Voltage (V). (B) Hysteresis seen in the
force-displacement curve as generated from Instron testing (C) Single
sensor applied force characterization using Force transducer showing
the correspondence between Analog Values and Force.

under various circumstances and how the parameters-amplification
gain, lattice beam thickness, color of LED, etc. can be tuned to get
the desired outcomes. The signals generated from one sensor were
consistent over multiple trials and different interactions.

Figure 4A shows how the analog value changes when the force
is applied and its corresponding force values from the Instron.
Figure 4B clearly shows a hysteresis in the force-displacement graph
that primarily arises due to the plasticity of the material being
used. This is one of the reasons why a regression between the force
applied and the analog value is difficult to determine. However,
repeated testing with a handheld force transducer gave us consistent
results. As seen from Figure 4C this sensor has a correspondence
between the force applied and analog voltage that implies light
loss. The relationship was essentially logarithmic, modeled by the
following equation:

y = 0.0592 ∗ ln (x) − 0.0633

where y is the relative analog voltage change and x is the force
applied in Newtons.

2.3 Lossy force sensor integration into toy

Previous work has shown us how sensors can be integrated
into a toy that is meant for infant handling. Serio and others
successfully developed novel wireless toys to measure infants’ uni-
manual and bi-manual actions (Serio et al., 2012; Serio et al., 2013).
The previous Ailu Toy for the PANDA Gym was embedded with
an inertial measuring unit (IMU), pressure sensing soft hands, and
force sensing resistors for the face and ears. In this iteration of Ailu2,
the face is the first to be sensorized with our custom lossy force
sensors. Figure 5A shows the individual components that make up
the toy: the 3D printed face, PCB and PCB housing, lossy force
sensors and a infant friendly fabric cover made from poly.

The face of the toy was designed to accommodate 6 lossy sensors
securely. Specifically, slots were strategically incorporated into the
face to house the sensors, which were instrumental in capturing data
and facilitating interaction. Slots were also made to hold the LED
and Photodiode holders in place, with holes to pass wires running
from the PCB to the LED and photodiodes. The face was designed
using SolidWorks, and 3D printed in ABS material using Stratasys
F120 FDM printer. New and longer lattices were designed such that
fiber optic cables could pass exactly through their center close to
the top face of the lattice, to get high sensitivity to compression.The
longer lattices were designed onOnshape, and 3Dprinted in Flexible
80A resin using Formlabs Form 3B + Resin printer. 3D printed resin
holders, placed in their respective slots, were designed to secure the
LED and photodiode pairs in place on the printed face and to ensure
accurate positioning and alignment of the LED and photodiode with
the optical fibers.

The lossy sensors, consisting of LED and photodiode pairs,
were carefully assembled. Optical fibers were woven through lattices
super-glued onto the toy’s face and each end was squeezed into the
holder for the LED and, then the Photodiode. The holders were
hot-glued to the toy’s face to align the holes with the fibers exiting
the lattices. Each photodiode and LED pair was connected to the
PCB. The new lattice arrangement along with the photodiodes and
LEDs are shown in Figure 5C. Figure 5B shows the PCB board
housing 12 sensor components arranged symmetrically along the
circumference. This arrangement allows the board to be easily
populated and simplifies the routing of LED and photodiode cables
to the face surface for varying lattice patterns. A separate housing,
3D printed in ABS material using Stratasys F120 FDM printer,
was designed to be attached beneath the face to accommodate
the Printed Circuit Board (PCB) assembly and provide structural
stability to the toy. In the future, the head will accommodate the
hands of the toy (Figure 5). To enhance the toy’s aesthetics and
minimize the impact of ambient light on the sensors, an infant
friendly fabric covering was used.

The toy force range was measured across the face using an
Analog Force Gauge with a least count of 2.5N. The minimum and
maximum force measured for each sensor shows a neat correlation
with its length as shown in Table 1. The longer sensors have a
larger range and this trend is continued with medium and shorter
length sensors also.
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FIGURE 5
(A) Exploded CAD view of the toy showing each individual component that makes up the toy (B) Labelled PCB showing the circular arrangement for 12
sensor circuits around the circumference for ease of lattice placement across the toy (C) Internal arrangement of the lattices on the face of the toy.
This figure shows the pair of photodiode and LED housing for each sensor.

TABLE 1 Minimum/Maximum force range for each sensor showing
correlation with length of lattice.

Sensor
number

Lattice
length
(mm)

Minimum
force(N)

Maximum
force(N)

1 98 2.5 40.0

2 98 5.0 45.0

3 112 5.0 52.5

4 70 2.5 30.0

5 70 5.0 25.0

6 112 5.0 47.5

2.4 Human interaction data collection

To test the viability of the lossy sensors as a tool for classifying
infant-toy interactions in the PANDA gym, the toy was mounted
to a VIJIM LS11 desk stand, which was, in turn, clamped onto a
desk (Figure 6). The desk stand suspended the toy in an almost
fixed position in space, with a little rotation at the connecting

FIGURE 6
Experimental setup used with desk stand to suspend toy and
collect data.

joint permitted to simulate the use-case conditions. In the PANDA
gym environment, the toy would be suspended above the baby by
being attached to the upper frame, with a mild degree of rotation
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permitted as shown in Figure 1C. Thus, this setup enabled the
emulation of the PANDA gym set-up while maintaining ease of
access for subject trials. Additionally, a power supply set to 5 V was
connected to the toy.

Fifteen adult subjects helped us build a database of interactions.
Adults were seated in front of the hanging toy, and then, instructed
to perform the four relevant infant-toy interactions—touch, kick
(replaced by a punch), weak grasp, and strong grasp. The
four interactions were selected based on prior work conducted
(Kather et al., 2023). In place of kicking the face, however, subjects
were instructed to punch the toy to emulate a baby’s kick.Nodetailed
instructions were given on performing the interaction—each
interaction depended on the subjects’ interpretations. Subjects
performed each interaction on the toy’s face 50 times each, for a
total of 200 interactions per subject or 750 trials per interaction. A
Python program guided the subject through the interactions while
the toy collected data from the six lossy sensors. Only data on force
interaction was collected and used in the database. No identifiable
data was used.

2.5 Classification/learning algorithms

Since rehabilitation of developmental disorders is especially
effective before age 2, detecting impairments at an early age is
important. Machine learning methods provide an efficient and
accurateway to classify toy-subject interactions.Wehypothesize that
interactions with the toy can be classified using neural networks.
Because the start and end times of each interaction were easily
identified when pre-processing the data and we assume that the
probability of an interaction occurring is independent of the
previous one, we believe that a CNN architecture is suitable for
our classification task. Additionally, compared to other network
architectures like transformers, CNNs require less data to achieve
accurate classification. In this study, the ResNet50 architecture
(Figure 7) was used because it is a high-performing pre-trained
CNN, well-suited for the relatively small PANDA data set. The
dataset was pre-processed prior to training. The start time of
each trial was found using Z-score thresholding and padded
at the beginning of each trial with 10 values. Each trial was
then clipped to 4 s to produce uniformly sized data samples for

training. After this, data was normalized so that values were
between 0 and 1.

To train the model on the PANDA data set, input and output
dimensions in the ResNet50 model had to be modified. The input
layer dimension was changed to fit 1 interaction (trial) at a time.The
‘channels’ dimension was increased to 6 for the 6 sensors contained
in the toy configuration.The output layer was altered to classify four
classes of data, corresponding to each type of toy-subject interaction.
Before beginning the training of the model, data was split into a
training set and a validation set with a ratio of 75:25. Training
data (75 percent) was shuffled randomly before being fed into the
model so that the trained model would not base its predictions
on the order of the trials. The validation data (25 percent) was
used after training the model to evaluate its performance and assess
model accuracy.

3 Results and discussion

Collecting the sensor data across all trials yielded a data set
of 2,480 interactions with distinguishable start times from Z score
thresholding that could be aligned. This dataset was used to train
the classification model and validate it. Figure 8 shows examples of
the raw data collected from all 6 optical force sensors for Touch
(Figure 8A), Punch (Figure 8B), StrongGrasp (Figure 8C) andWeak
Grasp (Figure 8D).While not all sensors were engaged during every
interaction, at least two sensors were activated. Figure 9 shows the
spread of the dataset collected for the four interactions. Each figure
shows the mean and standard deviation spread of all six sensor
signals for each interaction. Although baseline voltage values read
by each sensor differed, each had relatively stable voltage outputs and
consistently detected interactions.The punch and touch interactions
resulted in low voltage changes and involved all sensors. In contrast,
both grasp actions resulted in moderate to large voltage changes
and involved a subset of sensors. The similarity between sensor
signals for an individual interaction can be observed in each subplot.
The contrast between the signals for different interactions can
be observed between different subplots, thus implying the use of
classification algorithms to be valid.

The accuracy of the machine learning model during the
validation stage depended primarily on the batch size and number

FIGURE 7
Representation of the neural network architecture derived from ResNet-50 used for classification.
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FIGURE 8
List of interactions collected with the corresponding sensor readings. Example videos of each interaction are provided in the Supplementary Material.
(A) Touch (B) Punch (C) Strong Grasp (D) Weak Grasp.

of epochs specified for training (Supplementary Material). Choosing
optimal values for batch size and number of epochs allows themodel
to achieve high classification accuracywhile reducing computational
cost. A hyperparameter sweep of batch sizes 5, 25, 50, and
100 was conducted. We found that a batch size of 25 achieved
over 95% accuracy without incurring high computing cost (see
Supplementary Figures S1, S2). Though accuracy provides a good
representation of the overall performance of the model, it does not
provide insight into how the model performs in classifying specific
interactions from the data. To understand which interactions
were being mistaken for others, a confusion matrix was created.
The confusion matrix records all instances of classification and
organizes them based on their true and predicted values. For easier
interpretation, the confusionmatrix is normalized and displayed as a
heat map. For the 6-sensor-model training, consistent high accuracy
was shown after the fourth epoch. This model excels not only in
overall accuracy but also in the precision at categorizing each action.

As evident in Figure 10, the normalized confusion matrix for the 6-
sensor array predominantly features values of 1 along the diagonal
for most action categories. This indicates a near-perfect accuracy
in label predictions, affirming the model’s robustness across
all categories.

After attaining a high accuracy for the trained model, we
investigated whether a toy with only one sensor could provide
sufficient data to the model. To investigate whether all six sensors
were necessary in the device design for interaction classification, we
trained six separate models corresponding to each sensor and its
data. No other aspect of the models was changed from the original
other than the “channels” parameter. It was found that in every
case, the models using data from only one sensor were at least
20 percent less accurate. While the accuracy of the single-sensor
models is lower than that of the 6-sensor model, their performance
stabilizes with fewer fluctuations after several epochs. This suggests
that the single-sensor models faced challenges in distinguishing
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FIGURE 9
Plots explaining the dataset spread for each sensor and each interaction.

FIGURE 10
Performance of model trained on data from all six sensors.

between the interactions, which further motivates our proposed six
sensor design.

Notably, the misclassifications were not identical among single-
sensor models. For instance, Sensor #6 frequently confused
“weak grasp” actions with “touch” actions which seems to be
counterintuitive. Such consistent challenges led to repeated errors
in each validation, resulting in accuracy scores within a small
range. Figure 11 presents the confusion matrices for individual

sensors offering deeper insights into the single-sensor model’s
misclassification of actions. Sensor #1, Sensor #2, and Sensor #6
exhibit a fluctuation of about 5% in accuracy over the last five
epochs. Each of these sensors proficiently categorized punch with
less error. This phenomenon can potentially be explained by the
localized nature of certain actions on the toy. For instance, punch
and touch actions induced vibrations throughout the toy, producing
similar signals across all sensors. In contrast, grasp actions generated
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FIGURE 11
To motivate the six-sensor design of the PANDA toy, we investigate the interaction classification accuracy when only using a singe sensor. We trained
six new models, one for each sensor, on the data only produced by that sensor. The validation set for each model is 620 samples. These plots show
that the interaction classification accuracy suffers and the PANDA toy benefits from including all six sensors.

signals localized to the sensormost directly squeezed. Consequently,
some actions may not have been discernible using data from a single
sensor. From this experiment, we conclude that all six sensors in the
toy are necessary for accurate interaction classification.

The work presented shows significant application in various
haptic applications. As compared to other Smart Toys we show
improvement in detection accuracy and robustness of interactions
and location. By building a diverse dataset of infant interaction we
envision the toy aiding clinicians in detecting developmental delays
promptly and positively impacting life.

Other studies on tactile sensors used to collect human data have
used machine learning models such as Neural Structured Learning
(NSL) and modified Convolutional Neural Networks (CNN) to
classify interactions Sun et al. (2017); Uddin and Soylu (2021); Jun
and Choi (2020)). The model in this study was a ResNet, an off-
the-shelf powerful neural network, trained using data collected
from adults who were instructed to perform certain tasks. Since
infants do not display collaborative behavior (Rihar et al., 2016),
it would be time-consuming to prepare and label data (as with
the data used in this study) from infants to retrain the model.
Modifying the architecture of the model may allow flexibility in

how data is presented to the model. This is why some studies have
opted to use unsupervised models when dealing with data from
non-collaborative subjects (Jun and Choi, 2020). However, using
unsupervised learning often introduces uncertainty where it might
not be as effective in isolating the behaviors of interest in such a
varied dataset. The use of supervised learning is still favored over
unsupervised learning since supervised learning allows for more
targeted training on specific behaviors.

3.1 Limitations and design challenges

The custom lossy force sensors were not uniform in their
performance when compressed. The inconsistent performance may
have been due to the use of optic fibers at different lengths and
our method of affixing the lattice structure to the Toy face using
hot glue. For a sensor to cover more area, longer lengths of optic
fiber were required. Looking at Figure 5C, Sensors 3 and 6 had the
highest optic fiber lengths, Sensors 1 and 2 had shorter lengths, and
Sensors 4 and 5 had the shortest. As optic fiber length increases, the
traveling light has more length to escape, resulting in lower levels of
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light received and read by the sensors and, hence, lower baselines.
Notably, Sensors 4 and 5 had differing baseline values while having
the same optic fiber length. During the assembly process, glue
got onto the optic fiber for sensor 5, attaching it permanently to
the lattice and warping it. As a result, the baseline value shifted
as a significant amount of light was continually lost—regardless,
the sensor still provided similarly useful information, just scaled
down. Additional calibration procedures are needed to understand
the relationship between sensor response and sensor length.
Noise was a feature in the data due to an experimental set-
up that was not robust to vibrations. During human interaction
trials, when subjects interacted with the toy, many of the
external probes reacted and moved while being connected to the
breadboard, resulting in electronic noise that’s visible in Figure 8
(prominent in touch and punch interactions; present in weak
grasp interaction). In future iterations of the toy, all components
will be housed internally and appropriate signal conditioning
will be applied.

3.2 Future steps

Ideally, we will complete the sensorization of the entire toy
using the lossy sensors and re-test with in situ experiments. The
dataset generated and experiments conducted were in a simulated
setup, Figure 6 very similar to the actual test setup with infants
seen in Figures 1A, C. A clear next step is to build a more robust
dataset with real data from infants. The dataset generated with
adults is to show proof of concept of the sensor, the integrated toy
and the confidence in the ML model to classify interactions. It is
correct to assume that there will exist a bias if we use the same
dataset with infants. The future goal is to build a completely new
robust dataset with real infant interactions.The current classification
algorithm was most accurate when all face 6 sensors were used
to train it. This suggest that the placement of sensors on the
toy will be critical to its success. Developing the algorithm to
simultaneously classify whole body interactions as well as identify
developmental risk in infants will be a near challenge. Additionally,
we can investigate alternative algorithms specifically designed for
temporal data.

The current method to classify interactions is to collect data
from an entire trial and then obtain results after post-processing on
a separate system, this can slow the analysis process greatly. Tiny
Machine Learning (ML) is an upcoming field that deploys learning
algorithms on the edge by running the inference on lightweight
devices. Such a device can be housed in the toy and be used to
get real-time results about infant-toy interactions. The infant-toy
interactions can then be used to classify and alert clinicians on
abnormalities in the interactions from a healthy infant to an infant
at risk of neurological or motor developmental delays.

4 Conclusion

The work presented in this paper explains the development of a
“Lossy Force Sensor” inspired by previous work in the field of optical
fibers and soft robotics. Its characteristics to sense a wide force range
with scalable lattice designs allow it to be used in many versatile

applications. Here we have demonstrated its use in an infant toy that
collects interaction data for analysis. The current version of the toy
tested in this paper can be used to accurately identify interaction
patterns using the lossy force sensors, however spatial information
about where the interaction occurred is absent. Exploring how to
increase this capability will be explored.

Like the previous version, the goal is to have a version of
Ailu2 that incorporates lights, sound and additional kinematic
sensors such as IMUs. While, the lossy force sensors by themselves
provide ample tactile information that can be used for classification,
incorporating IMUs into the toy will give even more rich data that
can be used to improve results and learn insightful information.
With the addition of lights and sounds the Ailu2 toy will provide
feedback to the infants, which is often alluring to infants and
encourages increased interactions.

The ML algorithm used was accurate in classifying the four
different interactions that were performed on the toy. From a clinical
perspective, this is helpful information as it aids the clinician’s
assessment of the infant and qualitatively informs them about
the number and kind of interactions performed during the trial.
This allows the clinician to focus on more niche cues that infants
show during trials that can help with their assessment and use the
classified interaction results as a supplement to this.
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