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Successful operation of a teleoperated robot depends on a well-designed
control scheme to translate humanmotion into robot motion; however, a single
control scheme may not be suitable for all users. On the other hand, individual
personalization of control schemes may be infeasible for designers to produce.
In this paper, we present a method by which users may be classified into
groups with mutually compatible control scheme preferences. Users are asked
to demonstrate freehand motions to control a simulated robot in a virtual reality
environment. Hand pose data is captured and compared with other users using
SLAM trajectory similarity analysis techniques. The resulting pairwise trajectory
error metrics are used to cluster participants based on their control motions,
without foreknowledge of the number or types of control scheme preferences
that may exist. The clusters identified for two different robots shows that a small
number of clusters form stably for each case, each with its own control scheme
paradigm. Survey data from participants validates that the clusters identified
through this method correspond to the participants’ control scheme rationales,
and also identify nuances in participant control scheme descriptions that may
not be obvious to designers relying only on participant explanations of their
preferences.
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1 Introduction

Teleoperated robots, also called remote-controlled robots, exist to extend an operator’s
reach or ability in situations where full robot autonomy is either not preferred or not
possible. These robots are prominent in scenarios where environments are difficult or
dangerous to access, such as in space (Tang et al., 2023), under water (Xu et al., 2021),
in surgery (Li et al., 2023), and construction (Lee et al., 2022). Though teleoperation is
most prominently used to extend an operator’s reach, it can also be used to extend
their physical capabilities by allowing the user to take advantage of the robot’s specific
embodiment (Toet et al., 2020). As an example, a human teleoperating an excavator
is able to pick up large amounts of rubble with the excavator’s arm and bucket, a
phenomenon that would be impossible with their human arm and hand (Gong et al.,
2019). Similarly, a surgeon operating a laparoscopic surgical robot benefits not only
from translating their motions to a different size and location, but can also choose
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end-effectors such as scissors, cautery tools, and needle drivers that
offer more specific functions than comparatively hand-like options
such as graspers (noa, 2023; Li et al., 2023).

To teleoperate a robot with a non-human morphology, a
mapping must be designed to translate the operator’s inputs into
the robot’s corresponding actions (Molnar and Mengüç, 2022). This
mapping, called a “control scheme,” is constrained by the type of
inputs that can be captured by the hardware that serves as the
control interface. It also reflects a conceptual challenge known as
the “Correspondence Problem” (Dautenhahn and Nehaniv, 2002),
which can be paraphrased as: “Given two agents with different
forms, how can the states, actions, or goals of one be mapped
to the other?” Importantly, the correspondences between two
agents may be perceived differently by different observers; thus,
the best functional mapping between user and robot may be user-
dependent.

The control scheme design challenge was reaffirmed as unsolved
as recently as 2022 (Rea and Seo, 2022), in which paper the authors
suggest that improvements from user-centered design have trailed
improvements in technology, creating a situation in which the main
factor limiting teleoperated robot usage is the difficulty of learning
to effectively control them. A common approach to control scheme
design is for a researcher to design several mappings and then
compare user performance for each control scheme (Wang et al.,
2018; Hetrick et al., 2020; Whitney et al., 2020; Meeker et al., 2022;
Molnar and Mengüç, 2022). The control interface is usually pre-
determined, and performance is task-dependent, so the researcher
selects the performance evaluation tasks based on the particular
use case for the robot (Molnar and Mengüç, 2022). In some
studies with a more user-centered approach, the user may be
asked to provide specific demonstrations using a provided control
interface to indicate the control scheme they prefer (Li et al., 2020;
Losey et al., 2020). Note that in all cases, the control interface exists
as a constraining prior.

Recent improvements in Virtual Reality (VR) technology allow
us to adopt a user-centered approach that works in the reverse
order: we can ask users to demonstrate their preferred mappings,
and then build a control interface to accommodate them. In this
paper, we develop the tools necessary to capture information about
the mappings users perceive between themselves and a virtual
robot in VR. We then analyze this data for two sample robot
arms to identify the control scheme paradigms demonstrated by
each user. We then group users into categories based on these
choices for two sample robot arms, and compare these groups with
participants’ self-descriptions of their control scheme paradigms
to validate a common control scheme concept for each group.
To our knowledge, we are the first to examine the possibility
of group-wise personalization of teleoperation control schemes,
and to present a user-centered design method to objectively
identify the existence and identity of such group-wise control
scheme concepts.

2 Related work

Remotely-controlled moving machines as we know them began
with Nikola Tesla near the turn of the 20th century, and has
since progressed to encompass a wide variety of machines (Nof,

2009). Leveraging ever faster and more accessible communication
methods, teleoperated robots continue to support human activity
in remote, dangerous, or otherwise inaccessible environments (Nof,
2009). However, challenges still remain, including: the fidelity
and latency of information transmission, presentation of that
information to the operator in a usefulway, the intuitive design of the
control scheme and interface, and the level and functionality of the
robot’s autonomy are all design features that are still being improved
on (Lee et al., 2022). A survey of usability design guidelines for
teleoperated robots mentions, among other factors, the need for the
naturalness and efficiency of cues and the reduction of cognitive
workload (Adamides et al., 2015). In fact, other researchers have
posited that technological advances have outpaced improvements
in user-experience design to the extent that a lack of trained and
expert users is now the limiting factor in the adoption of teleoperated
robotic systems, rather than any lack of those systems’ usefulness and
functionality (Rea and Seo, 2022).

Virtual Reality has emerged as a promising teleoperation
interface because it provides immersive, natural visual feedback that
is intuitive to understand and produces a strong sense of presence
(Rosen et al., 2018; Nostadt et al., 2020; Whitney et al., 2020). VR
may also uniquely be able to create a sense of embodiment or
ownership over the robot being controlled (Kilteni et al., 2012;
Toet et al., 2020). Recent advances in virtual reality technology
have made it possible to teleoperate robots from within a virtual
environment in real time (Rosen et al., 2018; Whitney et al., 2018;
Jang et al., 2019).

As VR-enabled teleoperation has become increasingly
popular, it has also been leveraged to prototype teleoperation
control schemes, allowing designers to test a variety of control
schemes on test users without the time and cost overhead
associated with mechanical prototyping (Devreker et al., 2016;
Wonsick and Padir, 2020). Attention from the video game
development community has also led to additional research on
viable control schemes for teleoperating non-anthropomorphic
avatars (Won et al., 2015; Krekhov et al., 2018). The native
hand-tracking capabilities of certain VR headsets provide
an additional valuable user interface, enabling direct hand-
to-robot mapping as an alternative to a standard controller
interface with joysticks and buttons (Zhang et al., 2018;
Jang et al., 2019).

Controller interfaces are a critical component of a teleoperation
system, as they define the information that can be gathered from the
user’s movements. The control scheme that maps a user’s motion to
the robot’s motion can only be designed based on the information
that the control interface can provide. The most common control
interfaces fall into three categories: video-game-style controllers
with buttons and joysticks, master/puppet systems, and direct,
human-as-the-master master/puppet systems (Gong et al., 2019;
Li et al., 2019; Chen et al., 2023). These three kinds of systems each
capture different kinds of information and are suitable for particular
robots. The first, video-game-style controllers, are able to capture
discrete degrees of freedom (DoF) in the form of button presses
(binary data) and joysticks (continuous 1- or 2-DoF data). When
the desired behavior of the robot can be described by individual
degrees-of-freedom, this interface is highly useful and adaptable to
many kinds of robots (Winck et al., 2015; de la Cruz et al., 2020). On
the other hand, a master/puppet system is useful for creating an
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intuitive mapping between the local, master device and the remote
puppet one (Glover et al., 2009; Park et al., 2021), although if there
are any differences between the kinematics of the master and the
puppet, a control scheme must be invented to translate between
the two (Rebelo and Schiele, 2012). The final method, with the
human-as-the-master, is similar to the master/puppet system but
uses the human operator’s own body as the master device, tracking
its movement via cameras, datagloves, or IMUs (Ha et al., 2015;
Jang et al., 2019). In this case, control schemes must be invented
to translate the operator’s motion into the joint space of the robot
(Speeter, 1992; Rakita et al., 2017). This method of teleoperation
is expected to be advantageous for the human operator, but its
effectiveness is highly dependent on the construction of an adequate
control scheme (Wang et al., 2021).

Evaluation of control scheme effectiveness is typically done by
comparing user performance across a set of experimenter-designed
control schemes on a predefined control interface (Rosa et al., 2015;
El-Hussieny et al., 2018; Wang et al., 2018; Meeker and Ciocarlie,
2019). An alternative, more user-centered approach to control
scheme design is to base the control scheme off of information
acquired from users in the form of survey or motion data (Li et al.,
2020; Losey et al., 2020; Bobu et al., 2023). Developing control
schemes from user data is often an iterative process: in (Li et al.,
2020; Losey et al., 2020), the researchers first solicited user motions
in order to identify task-relevant latent features, which the authors
of the second paper were able to use to program their robot. They
then gathered a new round of user data in order to determine the
mapping between user motions and the previously identified latent
variables. Importantly, these control schemes were personalized to
every user, and other papers support the premise that that some
level of control scheme personalization is required in order to
accommodate participants’ individual, internal models (Paleja and
Gombolay, 2019; Schrum et al., 2022; Bobu et al., 2023).

3 Research questions

Our goal is to improve human-robot interaction by informing
the design of future teleoperation control schemes, specifically for
robotic embodiments that lack an obvious one-to-onemappingwith
the user and may be confusing to learn.

When designing control schemes for novel robots, designers can
choose from a spectrum of personalization options, ranging from
a single, universal control scheme on the one hand to completely
individualized control schemes on the other. We hypothesize that
neither extreme is required—that users vary in their control scheme
preferences, but those preferences can be grouped into a finite
set of schemes, suitable for development and deployment. In this
paper, we present a method to identify some such clusters on
two example robotic arms, one anthropomorphic and one non-
anthropomorphic. Both arms have similar degrees of freedom, but
different joint configurations, allowing us to examine the effect of
anthropomorphic and non-anthropomorphic robot forms on user
preferences.

In this user-centered design process, we asked participants to
demonstrate the motions they would choose to use to control these
two arms in a simulated, virtual environment. We developed a
procedure (shown in Figure 1) that leverages trajectory analysis

methods popularized by the SLAMcommunity to objectively cluster
users into groups based on the similarity of their control motions.
We use the results of this analysis to answer the following questions:

1. If users are presented with a robot and offered the chance
to design their own control scheme for it, do they naturally
conform to a single control scheme, each invent their own
personalized control scheme, or choose one of a small set
of options?

2. Does robot embodiment or gesture type influence the kinds of
control schemes that users invent?

3. Do users’ self-reported control schemes match the groupings
identified by objective trajectory similarity analysis?

4 Methodology

In order to test the above questions, we developed a virtual
reality (VR) study environment that simulates real robots (in the
form of Unified Robotics Description Format files, or URDFs),
which are pre-programmed using MoveIt (Robot Operating System
software) (Sucan and Chitta, 2013; Unity Technologies, 2023). Users
are able to observe the robot animations in 3D, and can record their
own corresponding movements using the built-in hand-tracking
functionality of the VR headset (Oculus Quest 2). This trajectory
pose data is saved onto the headset in the form of CSV files.
The similarity between participants’ control trajectories can then
be calculated for each pair of participants and used as a basis for
clustering to identify groups of participants with similar control
scheme preferences.

Control motions for fifteen gestures were solicited for each
robot, in the order listed in Table 1. Beginning with the Reachy
robot, participants were instructed to play each gesture as many
times as they desired. They were asked to imagine that the motion
being observed was one what they wanted the robot to perform,
and that they needed to convey this to the robot via their own
movements.Wewere specifically interested in human-as-the-master
master/puppet control schemes, so we informed the participants
a priori that their hand and head poses were being recorded via
the hand-held controllers, but any button presses and joystick
movements they performed were not. The Oculus Quest two
permits full hand-tracking, including finger movements; however,
we constrained the scope of this study to controller-based, 6-DOF
hand position and orientation tracking. Our simplification avoids
possible errors in hand pose estimation that can occur when fingers
overlap with each other from the headset camera’s perspective, while
still capturing enough degrees-of-freedom from the human to form
a complete mapping to the 6 DOF of the robot.

Once the participant had decided their command motion, they
recorded five demonstrations of their commandmotion as the robot
repeated its gesture (see Figure 2). The VR program prompted users
for each demonstration and then prompted them to move on to the
next gesture or robot. We video-recorded participants while they
were in the VR app and asked to narrate their decision-making
process in real time. The rationale behind their final control scheme,
as well as any changes theymade or would like to havemade over the
course of the study was recorded in a post-test survey. Additional
background information for participants was also collected via
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FIGURE 1
The design of the study. Users perform their own control motions to match virtual robot gestures. Their hand pose data (position and orientation) is
captured by the VR headset. These user trajectories are then aligned spatially using Umeyama alignment and aligned temporally using Dynamic Time
Warping (Umeyama, 1991; Salvador and Chan, 2007). Similarity between trajectories is computed using Absolute Trajectory Error (Grupp, 2017), which
is used to cluster users into groups via agglomerative clustering. These groups of participants are those who invented similar control motions for
particular gestures and robots, and thus can be collectively addressed for control scheme personalization.

TABLE 1 Gesture selection for robots. Gestures were selected to include both free-form (G1-G6) and task-oriented motions (G7-G15). Task-oriented
motions included ones that implied basic end-effector control (G7-G9), full-body control (G10-G12), continuous control (G13-G14), and one gesture
with semantic rather than mechanical functionality (G15).

Gesture type Gesture number Reachy movement (right hand only) Jaco movement

1 DoF Movements

1 Straight arm lift forward Straight arm rotate right

2 Straight arm lift right Straight arm lift forward

3 Rotate at shoulder Mid-arm bend

4 Elbow bend Mid-arm twist

5 Wrist twist Distal bend

6 Wrist bend Distal twist

Touch a target

7 Reach up to target Reach forward to target

8 Reach right to target Reach right to target

9 Reach left to target Reach left to target

Touch target around barrier

10 Reach underneath barrier to target Reach over barrier to target

11 Reach right around barrier to target Reach left around barrier to target

12 Reach over barrier on right to target Reach over barrier on right to target

Push a block
13 Push block forward and to the left Push block forward and to the right

14 Push block backwards and to the right Push block backwards and to the left

Communication 15 Wave Wave (left side)

survey, including details such as participant height, handedness,
their participation in activities requiring fine or gross motor skills,
and their familiarity with robots and VR. Our approach qualifies as

a user-centered study, as we gather both observations from and by
users in pursuit of a teleoperation control scheme design that meets
their needs (Frascara, 2002).
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FIGURE 2
The Jaco robot performs a gesture (G10: “reach over barrier to touch a target”) in the VR test environment. Two GUI buttons allow the user to play the
pre-defined animation, and to play it while recording their own gesture. A virtual mirror provides a reflected view of the robot for added visibility,
although participants were permitted to walk around the robot in VR to observe it more closely if desired. Beneath the time-lapse image of the Jaco
reaching over the virtual barrier are corresponding time lapses of two participants demonstrating the different motions they would like to use to
control this gesture.

4.1 Robot selection

The specific robots chosen for this study are shown in
Figure 3: one anthropomorphic, the other non-anthropomorphic.
The right arm of Pollen Robotics’ Reachy robot has a human-like
configuration (Mick et al., 2019), providing a straightforward one-
to-one structural mapping from user to robot if the participants
so choose. The second robot, the Jaco arm from Kinova Robotics,
has the same six degrees of freedom, but distributed differently
throughout its non-anthropomorphic arm, rendering a one-to-one
structural mapping impossible. This requires participants to invent
alternative control schemes, which we can group by similarity to
investigate Research Question 1 (RQ1).

4.2 Gesture selection

We selected fifteen gestures for each robot, including both free-
form and task-oriented gestures. We expected that the context
or purpose of a gesture might influence the control scheme
which participants chose to command it, and so our test set

sampled gestures of different types rather than providing a complete
assortment of random movements designed to cover the robot’s full
workspace. All robot gestures were performed with the base of the
robot arm anchored in place, and all motions were performed in
the region of space in front of the robot, even if its workspace also
extended behind it.

Gestures were presented to participants in the order shown
in Table 1, and fell into four categories: The first six gestures are
all single-degree-of-freedom motions, and together cover all the
degrees of freedomof the robot arm.These were intended to identify
DoF-to-DoF mappings, as well as to ensure that the participant was
aware of all robot joints. The second category (gestures 7–9) were
the first set of task-related gestures: in these motions, the robot
reaches for a small spherical target within its workspace. Gestures
10–12were similar, but required obstacle avoidance as well as target-
touching. These gestures were intended to capture differences in
control scheme design for cases when intermediate joints must be
controlled as well as the end-effector. Gestures 13 and 14 were push-
a-block gestures; these gestures required continuous control of the
end-effector’s motion, not only at the end of its trajectory. Gesture
15 fell into a different, more semantic category: a wave gesture. As it
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FIGURE 3
The two robots chosen as the targets for control scheme design. (A)
the Reachy (Pollen Robotics Inc) is the baseline robot, with human-like
dimensions and range of motion. Only its right arm is moved during
the study. (B) a 6-DoF Jaco arm (Kinova Robotics Inc.) was the second
robot participants were asked to design control movements for. Both
robot arms have 6 DoF—matching the 6-DoF position and orientation
data being recorded for each hand during the study.

was designed to be communicative rather than mechanical, this task
presented an example of a gesture whose success might not require
either precision in either the robot or human operator.

4.3 Recruitment

16 participants (10 male, four female, two unreported) between
the ages of 18–32 were recruited by email and word-of-mouth in
Atlanta, Georgia in theUnited States. According to the IRB protocol,
participants were given two consent forms, one for the study and a
secondary, optional video consent form, and compensated with a 12
USD gift card.

Out of our initial 16 participants, 15 were right-handed and
only one (P2) was left-handed. Only one participant (P8) had
regular prior experience with VR, and six (P3-5, 10–11, 15)
regularly handled robots in their personal or professional lives.
For self-reported physical activity, 13 participants reported doing
physical activity involving gross motor skills at least weekly, and
13 reported doing fine motor skill activities at least weekly. Of
note is one participant who self-reported as never doing activities
requiring gross motor skills: this was P16, who did the study from a
wheelchair.

5 Clustering method using trajectory
similarity analysis

The goal of data processing is to identify groups of participants
with similar enough control scheme preferences that a control

scheme can be personalized for the group as a whole. To identify
whether such groupings exist and are feasible, we cluster participants
according to the similarity of their control motions for each gesture
of each robot, where “similarity” is calculated using a distancemetric
(Absolute Trajectory Error, or ATE) commonly used in SLAM to
quantify differences in both position and orientation between two
trajectories (Zhang and Scaramuzza, 2018).This allows us to analyze
the formed clusters for continuity across robots and gestures and
determine each group’s common control scheme rationale.

Before calculating the difference between participant control
trajectories, however, we must consider two kinds of natural
variation that may be present which may or may not be intentional
aspects of the control schemes being demonstrated. The first kind
of variation is temporal variation: a participant might lag behind
or anticipate the robot’s motion as they demonstrate their control
trajectory. When this occurs, a moment-by-moment comparison
of trajectory poses might show very large positional differences
that are due to small timing mismatches, creating the appearance
of dissimilar control trajectories. We can compensate for timing
mismatches using Dynamic Time Warping, or DTW, which relabels
one trajectory’s timestamps to minimize the distance between all
synchronous poses, provided that the order of the timestamps
for both trajectories are preserved (Wang et al., 2013; Magdy et al.,
2015; Toohey and Duckham, 2015; Tao et al., 2021).

Another kind of between-participant variation that may occur
is spatial scaling or translation. Participants with different arm
lengths will produce motions at different amplitudes and starting at
different heights; these dissimilarities are not necessarily indicative
of a difference in control scheme preference. On the other hand,
participants who choose to do a motion with their wrist instead
of their entire arm will also show differences in spatial scaling and
initial pose translation which could be important to their control
scheme concept. We can compensate for scaling or translation using
Umeyama alignment, a method which scales, rotates, and translates
one trajectory on top of another in a way that minimizes the
least mean squared error between corresponding trajectory points
(Umeyama, 1991).

In the following sections, we will describe a clustering procedure
that includes either spatial or temporal pre-alignment in order
to identify the benefits and trade-offs of collapsing either type of
inter-participant variation. Clustering begins with pre-alignment of
pairwise participant trajectories 5.1 and is followed by calculating
the ATE between the aligned trajectories to produce a “distance”
or dissimilarity metric between participants for each robot gesture.
After calculating all pairwise dissimilarity metrics for a given
gesture, Agglomerative Hierarchical Clustering is used on the
resultant distance matrix to identify groups of participants with
distinct control schemes.The validity of the clusters that are based on
the reduction in spatial or temporal variance can then be validated
with survey data.

5.1 Data alignment

The VR software records participant right hand, left-hand, and
headset position and orientation in space during each recorded
movement and saves them as comma-separate-values (CSV) files.
It simultaneously captures the robot’s joint angles and end-effector
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FIGURE 4
Spatial alignment using Umeyama’s method. The original trajectories are given on the left, with the shade of the color of each trajectory representing
the passage time (from light to dark). The trajectories after alignment are shown on the right.

poses, which are moving through their pre-programmed gesture
during the participant’s recording. These CSV files are stored on the
headset, to be downloaded for later processing.

Determining the similarity between different control motions
first requires that we identify the primary hand used to control that
motion. For each gesture, we compared the range of motion of each
hand to determine which hand (left, right, or both) had been used
for the control movement. The primary hand which performed the
motionwas the only one used for subsequent steps. Left-handed data
was marked for reference, but was used as provided without any
additional processing (e.g., mirroring), as no participants chose to
mirror the robot’s motion. The hand’s pose data was then centered
based on the participant’s initial head position at the start of each
demonstration.

We performed two kinds of data alignment prior to computing
the distance metrics between pairs of trajectories. Spatial alignment
corrects for differences in reference frames, participants with longer
or shorter arms, and motions at different scales (e.g., a participant
who uses a wrist motion instead of an elbow motion). Spatial
alignment between pairs of trajectories was performed using the
Umeyamamethod (Salas et al., 2015; Zhang and Scaramuzza, 2018),
provided by the evo package (Grupp, 2017). The effects of spatial
alignment can be seen in Figure 4. Temporal alignment is performed
using Dynamic Time Warping (DTW) (Salvador and Chan, 2007).
Dynamic Time Warping allows us to synchronize motions that may
be partially or completely at different velocities, providing ameans to
correct for participants who lagged behind or anticipated the robot’s
movement. The temporal alignment of two trajectories before and
after applying DTW can be seen in Figure 5.

Dynamic Time Warping requires a scalar value to compare
distances between the two trajectories at each timestep; however
our trajectories consist of six dimensional poses. To compute the

scalar distance metric, we use a modified version of the Absolute
Trajectory Error (ATE) for each pose, which is commonly used
in the SLAM/Visual Odometry literature to compare 6-DoF robot
trajectories (Zhang and Scaramuzza, 2018). While the original
version only makes use of the translation part of the pose for
computing the error value, our modified version uses the full pose.
We define the error, E, with the following equation:

E = ‖log(R−1i SPi)‖2

where at time i, Ri ∈ SE(3) is the pose of the first participant,
Pi ∈ SE(3) is the pose of the second participant, S ∈ Sim(3) is a
similarity transform computed from the spatial alignment that
ensures both poses are in the same coordinate frame, and log is
the logarithm map which converts the resulting 4× 4 pose matrix
(which is a matrix Lie Group) into the equivalent 6D vector
representing the corresponding Lie algebra(which is a vector on the
tangent space of the SE(3) manifold) (Chirikjian, 2012). For more
details, please refer to Solà et al. (2018).

Once the trajectories are aligned, we can compute the ATE as

ATE = 1
N

N

∑
i=1
‖log(R−1i SPi)‖2

where N is the total number of points in the trajectory. The
ATE implicitly computes the Root Mean Square Error (RMSE)
between two trajectories, and so is normalized with respect to the
trajectory length.

For each gesture, we compute the ATE for each pairwise set
of demonstrations between two participants and average them to
compute the overall similarity score between participant trajectories
(lower scores mean a smaller differences). Proceeding with all
participant combinations, we populate a similarity matrix with the
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FIGURE 5
An example of temporal alignment using Dynamic Time Warping. Black lines show the temporal alignment between points on two participant
trajectories. Without DTW, P5’s smaller, faster motion would be compared against the early parts of P7’s slower, larger movement. With DTW, time
points are aligned such that key parts of the trajectories, such as their inflection points, are compared when calculating the ATE.

ATEs between all participant pairs for each gesture of each robot.
We repeat the process with trajectories that have been aligned
temporally instead of spatially. A heatmap of the similarity matrices
makes participants with similar/different control trajectories easy to
visualize—see Figures 6, 7 for examples.

5.2 Clustering

To identify groupings of participants that may have mutually-
compatible control scheme preferences, we perform clustering on
the control trajectories provided for each gesture. We use the mean
Absolute Trajectory Error stored in our similarity matrices, as the
ATE captures the difference over the complete trajectory using both
the position and the orientation.

Since the true underlying number of clusters is unknown a
priori, we leverage Hierarchical Agglomerative Clustering (Day and
Edelsbrunner, 1984) to compute the different clustering levels. We
use the gesture’s similarity matrix as the distance matrix and set the
linkage criterion to “average”. The distance threshold was selected
based on the average bifurcation point of a histogram bar plot of
ATE values (see Figure 8).

The similarity matrices shown in Figures 6, 7 allow for visual
comparison of the ATE error between trajectories for different
users for a single gesture. In this case, the arm-lifting forward
motion corresponding to Gesture 1 on the Reachy and Gesture two
on the Jaco. For this simple, 1-DoF motion, the clusters between
participants are visually distinct, at least for the Reachy robot,

though the actual linkage value for distinguishing clusters was
determined by the aforementioned histogram binning.

The participants split up differently for the Jaco, despite the
similarity of the gesture; however, Figures 6, 7 show regions of low
and high error that still reveal prominent clusters. If participant
trajectories are plotted, as in Figure 9, we can see motions that are
representative of the hand motions associated with the two main
clusters. In this case, the feature that distinguishes the two clusters
is the same for both robots: one cluster performed an arm raise that
spanned their own full range of motion, while another group raised
their arm to match the robot’s position in 3D space. More details
on the features that distinguished the clusters that formed for other
gestures is presented in Section 6.

6 Results

6.1 Effect of spatial and temporal
alignment on cluster size

Before analyzing the clusters formed for different robots and
gestures, we examine the effects of our two different pre-processing
alignment techniques. As with the example shown in Figure 9,
temporal alignment and spatial alignment compensate for different
types of motion scaling and can join users who might otherwise
be considered outliers into a larger cluster. The two methods
for alignment compensate for variation in trajectory speed via
DTW, and scaling/rotation/translation of trajectories via Umeyama
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FIGURE 6
Heat maps showing between-participant similarity for the raise-arm-forward motion of the Reachy (Gesture 1). Each block reveals the Absolute
Trajectory Error (ATE) between the pair of participants matching the row/column entry. Low error values are indicative of more similar trajectories after
either spatial or temporal variation has been accounted for (spatial and temporal alignment effects are shown separately). The effects of spatial and
temporal alignment can be seen on this figure: Participants 1 and two made their command movements quickly, intending to provide an advance
command for the robot to follow. Temporal alignment reduced the difference between P1 and two and the other participants, allowing P2 at least to
join in the main cluster. On the other hand, P16 did the study from a wheelchair, and performed most of the movements with their wrist instead of their
full arm. Spatial alignment compensated for the difference in scaling and allowed P16 to be grouped in with other participants.

FIGURE 7
Heatmaps for Gesture two for the Jaco, the “raise arm forward” gesture that is most similar to the Reachy Gesture 1. With the Jaco robot, the control
scheme paradigms that correspond with the main clusters are often similar to those of the Reachy, but the participants group differently, as can be
visually discerned from these heatmaps. The actual clusters are calculated using Agglomerative Clustering based on a threshold linkage value which
was determined by ATE histogram binning.
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FIGURE 8
Histogram binning was used to determine the distance threshold for Hierarchical Agglomerative Clustering. Histograms of ATE values for spatial
alignment are shown. For spatial alignment, fewer ATE values occur between pairs of trajectories in the 1.2–1.8 ATE range, although the actual
least-common ATE varies with gesture. A linkage threshold distance of 1.4 was selected for clustering for both robots for ease of comparison. For
spatial alignment, the maximum ATE values were lower, and the distance threshold determined from histogram binning was 0.6.

FIGURE 9
Participants designing motions to control the straight-arm raise for both robots fell almost entirely into two clusters: those that used their hand to
precisely follow the robot’s motion (red), and those that did an equivalent arm-raising motion in the natural range of their own arm (blue). Hand
trajectories are colored from light to dark to show motion over time.

spatial alignment. Either of these methods of reducing participant
variation will reduce both arbitrary and intentional variations
between participants, so we examine them separately in order
to identify what cluster types each pre-alignment method hides
or reveals.

To see these alignment methods in action we can look at the
raw ATE metrics in Figure 6’s similarity heatmap, which show

visual differences in group sizes based on the type of alignment
which was used. While most of the members of the group were
within the threshold for inclusion, P1 and P2 performed their
movements quickly, in advance of the robot’s motion and were
both considered outliers in the case where temporal alignment
was not performed. In the case of P16, who performed the study
from a wheelchair, the demonstrated trajectories were performed
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with the wrist rather than the entire arm. This participant was
considered an outlier when temporal alignment was performed,
but was joined into a cluster when their motions were scaled by
spatial alignment.

In the alluvial diagram showing how clusters formed and
evolved across the set of gestures for each robot (Figure 10,
temporally-aligned trajectories resulted in more distinct clusters
than spatial alignment. This indicates that reducing spatial variation
while permitting temporal variation yields larger groups of similar
participants. In other words, participants in our study varied more
by shape than speed.

Since most participants reported in the post-study survey that
their intended control scheme was to map their hand to the robot’s
end-effector, this temporal consistency may make sense. On the
other hand, many participants reported that they became impatient
with the robot’s speed and moved quickly to its end position, the
probable cause of many velocity discrepancies. Manual tuning of the
threshold clustering parameter allows a designer to more carefully
capture the kinds of temporal and spatial variation desirable for their
particular focus.

6.2 Effect of robot and gesture type on
cluster formation

Figure 10 shows that participants split into fewer clusters for the
Reachy robot than the Jaco, but that the clusters that formed for
the Jaco persisted at least as stably as for the Reachy. Given that the
Reachy robot was anthropomorphic and had an obvious one-to-one
structural mapping with the user, unlike the Jaco, it makes sense
that the Jaco inspired a greater variety of control schemes than did
the Reachy.

For both robots, at least one multi-participant cluster formed
for most of the gestures, although it persisted most stably in
the spatially-aligned case. However, it is worth noting that the
individuals who fit into these clusters were different for the two
robots. Figures 6, 7 highlight this: for the Reachy, almost all
participants fell into the same cluster. However, the Jaco similarity
matrix in seven shows that while the Jaco also had one large
cluster and some outliers, the breakdown of which participants
were in each cluster was different—even though the robot motions
the participants were attempting to map to were almost identical.
Fortunately, as will be discussed further in Section 6.3, the
characteristics of the main clusters were similar for both robots.
This suggests that these control scheme paradigms may be worth
developing for, even if the paradigm that a particular user will prefer
cannot be known a priori.

Gesture type and complexity also influenced the number of
clusters that formed. Recall that G1-6 are 1-DoF gestures with no
environmental interaction, and that succeeding gestures tend to
increase in complexity, length, and the amount of environmental
interaction until the final, communicative gesture (G15). Figure 10
shows that early gestures tend to have fewer singletons than later
gestures, although the small wrist bending gestures in Reachy G5
and Jaco G6 tend to be difficult for spatial alignment to consolidate.
Long gestures such as those performed by the Jaco in G11-14 are
varied in ways that are particularly difficult for temporal alignment
to reduce. The variety in the task-oriented gestures from G7-G14

stems primarily from participants choosing to provide task-relevant
motions for the robot to imitate rather than attempting to directly
control the robot, which was the more common approach with the
first six gestures.

6.3 Cluster descriptions based on
trajectory data

To understand the types of clusters that may be represented,
we use Figure 11. This figure shows example clusters identified
after spatial alignment for Gesture eight of the Reachy robot and
Gesture two of the Jaco. In the case of Reachy G8 (“reach over
a barrier on the right to touch an obstacle”), participants formed
three clusters. In the first, participants matched the robot’s end-
effector very closely with their hand, matching it in terms of both
space and velocity. (Note that the change in color of the hand
trajectories from light red to dark red are uniform, representing
similar positions at similar points in time. Also note that temporal
alignment has not been implemented on this set of gestures to force
those gestures to be temporally uniform.) In the second, participants
more loosely matched the motion of the robot’s end-effector, with
some variation in speed and position. In the third cluster, two
participants moved their hand almost directly between the end-
effector’s start point and end point, disregarding the intermediate
positions.

The clusters that were identified for G2 of the Jaco (“Raise arm
in front”) were similar in type to the clusters found in Reachy G8,
though this simpler gesture showed fewer overall clusters. The Jaco
G2’s Cluster B represents participants who carefully followed the
path and timing of the robot’s end-effector, while the participant
in Cluster A moved their hand directly from the end-effector’s
starting position to its ending position, similar to Cluster C for
Reachy G8.

Gestures found after temporal alignment also form groups
with similar descriptions, for gestures where clusters can be found.
The most common control scheme descriptions across all robots,
gestures, and alignment methods involve participants who match
the robot end-effector’s motion with their hand in terms of
both time and space. A second common cluster maintains the
hand-to-end-effector mapping, but loosens it either temporally
or spatially—for reasons that are best explained from participant
narration and survey data (see Section 6.4). A third, often small, but
consistent control scheme is one where the participant represents
the start and end points of the robot’s end-effector with their
hand, and assumes that the robot will interpolate or do obstacle
avoidance as necessary. The Jaco inspired one additional control
scheme, adopted and reported by two participants: a two-handed
control scheme, where the dominant hand was mapped to the
robot’s end-effector and the non-dominant hand mapped to the
position of the Jaco’s “first elbow.” This control scheme was
not captured by the clustering method described above, which
assumed a single-hand control scheme; the fact that this scheme
included mapping of the dominant hand to the robot’s end-effector
allowed this control scheme to blend in with other single-handed
demonstrations. (This highlights an opportunity for future work
to extend this method to capture two-handed control schemes.
Participants who did not fall into a multi-person cluster for any
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FIGURE 10
The evolution of control scheme clusters for each robot, with the top plots showing clusters that form for temporally-aligned trajectories and the
lower plots showing clusters that form for spatially-aligned trajectories. Participants are represented by rows and gestures by columns, although
participant order is rearranged to position users who fall into similar clusters together as much as is feasible. In each gesture column, clusters are
shown as groups of participants connected together; clusters are separated from each other by white space. Shaded lines between gestures show how
participants rearrange into new clusters for different gestures. Note that the number of non-singleton clusters in a gesture is usually between one and
three, depending on the robot embodiment, gesture, and pre-alignment type, and these clusters tend to follow similar paradigms, as shown in
Figure 11. However, certain combinations of embodiment, gesture, and alignment have more singletons than multi-participant clusters, which can only
be sensibly combined by manual tuning of the cluster threshold value.
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FIGURE 11
Examples of the clusters that form for different gestures. The end-effector’s motion is shown by orange-to-purple-colored line. For the Reachy (G8)
gesture, “touch a ball on the right,” Cluster A was the largest group, with participants who synchronized carefully with the robot in terms of both time
and space. In Cluster B, participants still generally followed the robot end-effector’s motion, but their hand trajectories show a looser coupling with the
robot in terms of both space and time. For Cluster C, participants moved their hand nearly straight from the start to the end position. In the other
callout, for Jaco’s G2 (“Straight arm raise forward”), similar clusters formed, but with different numbers of participants. Participants in Cluster A, one
participant again went straight from the start point to the end point. In Cluster B, participants swung their arms to follow the robot’s exact motion.

particular gesture were not considered to be representative of a
collective control scheme paradigm within the context of the size of
our study.

It is also worth noting that additional control schemes were
invented, though they were not used by multiple participants
and sometimes did not persist across multiple gestures. However,
these unique control schemes—particularly ones that did persist
(for instance, the reduced-scale control scheme performed by
participant 16, usually visible as the bottom participant row in
the temporal alignment plot)—serve as a reminder that additional
control schemes may be viable, even if they are not the control
schemes that are intuitive to most users.

6.4 Cluster descriptions based on
participant self-reported control scheme
rationales

Trajectory clustering highlighted three predominant control
scheme paradigms (shown in Figure 11), but the features
distinguishing these clusters were inferred based on visual
inspection of the clusters by the first author. To validate and
refine these cluster definitions, we compare them with participants’
self-reported explanations of their control scheme rationales.
The aim of this analysis is to assess the validity of our cluster
definitions, understand participant priorities and concerns, and
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explore the value of trajectory vs. survey data for personalized
control scheme design.

6.4.1 Trajectory-based vs. survey-based control
scheme descriptions

The three most prominent clusters identified in Section 6.3
all involved a hand-to-end-effector mapping. In the first, users
synchronized between their hand pose and the robot’s end-effector
pose in terms of both space and time; in the second, users loosely
followed the robot end-effector with their hand but diverged
somewhat in terms of speed and/or position; in the third, users only
matched their hand to the robot’s end-effector at key points such
as the beginning and the end. This hand-to-end-effector mapping
is corroborated by participant descriptions: in post-study surveys,
all participants mentioned incorporating a hand-to-end-effector
mapping in their control scheme concepts for both robots. In the
case of the Reachy, participants described their control scheme as
“mimicking the robot” in its entirety (arm-to-arm mapping was
both demonstrated and reported by 100% of participants, as was
noted by the first author, based on participant arm positioning for
barrier-avoidance gestures). For the Jaco, users were much more
likely to focus only on the end-effector (demonstrated by 100%
of participants based on arm position during barrier-avoidance
gestures; mentioned by 50%). Still, 38% of users stated that they
tried to match the entire Jaco arm for gestures 1-6, while motions
were simple enough that this was still possible. On the flip side, 13%
of users noticed discrepancies between their limb lengths and the
Reachy’s arm length and had to decide how to scale their motion so
that it would still “match.”

While the hand-to-end-effector mapping was nearly universal,
the majority of the stable control scheme clusters showed that
temporal and spatial synchrony between the two was not. Many
participants were aware of this and reported their intentional
change in speed or range of motion in their control scheme
descriptions.Thepercentage of users who demonstrated temporal or
spatial deviations matches the clusters observed through trajectory
similarity analysis, validating that trajectory-based clustering can
identify conceptually different control schemes. The rationales
behind these adjustments were provided by participants verbally
during the test, as well as in the post-test survey, and are shown
in Table 2. It is worth noting that not all participants mentioned
their spatial or temporal adjustments when explaining their control
schemes. Some participants took spatial or temporal scaling for
granted, although participants were much more likely to comment
on deviations from the robot’s speed and/or motion than on their
synchrony with it.

Participants were also more likely to comment on spatial or
temporal variations if their control scheme had changed to include
or exclude them over time. Temporal changes included shifts away
from and towards synchronizingwith the robot. Users who departed
from temporal synchrony sped up over time due to impatience;
users who did the reverse began with fast, possibly semantic
motions, and then synchronized with the robot’s end-effector as
its motions became more complex. Participants who changed their
spatial scaling over time generally moved towards a smaller range
of motion: they became physically tired from trying to match the
robot’s full range, and scaled it down as the study progressed. One
exception to this is in the case where a participant exaggerated

a movement to provide additional context: Reachy’s Gesture 10
(“Reach underneath a barrier to touch a target”) required the same
elbow-bend motion as in Gesture 4, but some participants bent over
or enlarged theirmotion in order to emphasize the need for the robot
to go around the barrier.

The fact that trajectory analysis revealed nuances in participants’
control schemes that were not always or fully captured by
survey responses suggests that both kinds of analysis may be
required to fully understand participant preferences on their control
scheme paradigms. Surveys allow participants to describe the
rationales behind the mappings they intend, which trajectory
analysis does not provide; on the other hand, trajectory analysis
can disambiguate between participants who describe their control
paradigms similarly, allowing us to uncover aspects of their
control schemes that could be relevant to control scheme and
interface designers.

6.4.2 Participant commentary on their control
scheme choices

In post-study surveys, all users mentioned that for most (if
not all) of the study, their control scheme concept had been
based on a mapping between one of their hands and the robot’s
end-effector. This was true even for the Jaco robot with its non-
anthropomorphic joint configuration, and even for gestures where
control of intermediate joints was important. Participants reported
that without the ability to iterate through control scheme options
or view all gestures simultaneously, they began with this end-
effector-focused control scheme as their default, and most of them
maintained it throughout the study for the sake of consistency
even as they became aware of its limitations. When presented with
obstacle-avoidance tasks, these consistency-focused participants
decided to assume that the robot had the intelligence to do
whatever obstacle-avoidance and inverse-kinematics calculations
were required, rather than adopt a new control scheme that more
completely specified the robot’s motion:

P4 – “Originally I moved to mimic all the motions of the Jaco
arm, i.e. mapping its shoulder joint to mine, elbow, etc., but
once it started to domotions that I am not capable of, I would
think of justmovingmy hand as the end-effector and imagine
it is dealing with all the joint movements itself, which was
especially the case during the demo of it swinging its armover
a glass wall to get to the ball just behind it. So, in the end I
just mimicked the end-effector of the arm with my hand and
ignored the shoulder and elbow movements for complicated
actions.”

P5 – “I just simplified my gesture….If the robot needed to do
all of those other movements to orient itself the appropriate
way, I would expect it to do those on its own rather than me
specifically having to changemy gestures to accommodate for
the robot’s physical limitations.”

In the post-study survey, seven of the sixteen participants
expressed concerns about the limitations of their final control
scheme. Although they had the ability to fully specify the robot’s
configuration with their own arm’s 6 DoF (whether the 6-DOF of
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TABLE 2 Users described the ways they diverged from exactly matching the robot’s end-effector, spatially and temporally.

User behavior Explanation(s) Percentage of users reporting or demonstrating this behavior

Synchronized spatially and
temporally with the robot

Reachy

  13% reported

  38% demonstrated

Jaco

  6% reported

  38% demonstrated

Temporal Variations

  Went faster than the robot

Were impatient with the robot’s
speed

Reachy

  31.25% reported

  38% demonstrated

Intended to command the robot in
advance, not in real time

Jaco

  6% reported

  13% demonstrated

Spatial variations

  Reduced scale or range of
motion

Fatigue/ergonomic reasons

Reachy

  13% reported and demonstrated

  (1 additional person suggested it without doing it)

Jaco

  19% reported

  25% demonstrated

Skipped uncomfortable or
extraneous robot motions

Reachy

  19% reported

  25% demonstrated

Jaco

  38% reported

  44% demonstrated(Jaco)

Exaggerated motion to convey
intention

Reachy

  31% reported

  38% demonstrated

Jaco

  6% reported and demonstrated

Focused on task; let the robot
figure out the rest

Reachy

  19% reported and demonstrated

(Continued on the following page)
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TABLE 2 (Continued) Users described the ways they diverged from exactly matching the robot’s end-effector, spatially and temporally.

User behavior Explanation(s) Percentage of users reporting or
demonstrating this behavior

Jaco

  31% reported

  50% demonstrated

their hand’s position/orientation or the 6-DoF associated with the
joint motions available between their shoulder and wrist), they said
that they hadnot provided complete directives to the robotwith their
choice of motions and asked if the robot could be expected to be
intelligent enough to fill in the missing pieces.

Individuals also expressed concerns about ergonomics and
fatigue. According to notes taken by the first author during
the studies, at least five participants chose to match the robots’
motions exactly, going to the limits of their own reach despite
mid- or post-study complaints about operating at the limits of
their range of motion. Five others were noted for adjusting their
posture at the ends of trajectories to avoid discomfort, while only
two intentionally scaled down their control motions at any point
during the study according to survey responses. Of these two,
the only one who consistently operated at a reduced scale had a
disability that made them unusually susceptible to muscle fatigue.
Most other participants expressed concerns about the long-term
ergonomics and fatigue effects associated with a hand-to-end-
effector mapping as the operating control scheme, but for cognitive
simplicity and the sake of consistency, they chose and maintained
that mapping.

P6 – “I’m just trying to mimic it because that’s easier for
me to remember. My brother is more of a gamer person, so
he might choose more abbreviated motions to represent the
whole thing. But for me, this is easier.”

P12 – “Because I’m mimicking his movements–I’m thinking,
‘if this robot was my arm, how would I move it?’ But in real
life, I’d probably want a smaller range of my own motion to
correspond to the robot’s motion. It’s just that I can’t see my
own movements, so I exaggerate.”

P16 – “Because of my disability and muscle fatigue
limitations, I became aware of the strain on my arm very
quickly. Even though it made sense to do full arm motions,
I tried to reduce effort by doing fine wrist motions to control
the robot’s gross arm motions (it seemed like 90% of what
the robot was doing), and I further reduced muscle strain by
anchoring my elbow on my arm rest when possible.”

Five participants mentioned a different concern: that their
control scheme was limited to a human range of motion and would
not be adequate for controlling the robot in its full workspace. Their
reasoning for retaining a hand-to-end-effector mapping despite this

limitation was based on 1) their own urge for consistency (a priority
expressed by 25% of participants, although one participant took the
opposite view), 2) they believed that a more sophisticated control
scheme could only be invented iteratively, with knowledge of the
robot’s full capabilities, 3) mental convenience, as exemplified by the
following anecdotes:

P6 – “I want a motion that helps me keep track of where all
the joints are going to go. Maybe the robot doesn’t need that,
but I want to keep track so I don’t make it hit anything.”

P8 – “There’s a difference between what’s conceptually and
physically easy.”

P12 – “This is more about remembering—it’s a memory test.”

6.4.3 Alternative control scheme paradigms
Participant 8’s quote—“There’s a difference between what’s

conceptually and physically easy”—is crucial to note for future
studies on user-centered control scheme design. Participants
universally defaulted to mapping their hands to the robot’s end-
effector. Though there were variations in how this mapping was
interpreted (did it require strict temporal synchrony? Exact spatial
correspondence? Did it only apply at key points of the motion?),
every participant recognized and, at some point, used this mapping.
For designers attempting to create intuitive control schemes for a
broad swath of users, this would seem to be an ideal control scheme,
and indeed, it is the control scheme identified by both our trajectory
analysis and survey results. However, participants’ concerns about
the limitations of their control schemes are valid, and indicate that
the most intuitive control scheme may not be one that is functional
in the long term. As P8 identified, there is a difference between
what is cognitively and what is physically easy, and on a first pass,
participants were optimizing for the former.

Further research is needed to determine if longer-term studies
with more iterative design methods lead to more physically-optimal
control scheme paradigms, and to determine whether such control
schemes are also clusterable. What we can tell from this study is that
38% of participants identified at least one of their control scheme’s
limitations, and that these same participants were able to brainstorm
alternative, non-pose-to-pose and hand-to-end-effector mappings.
Some of these schemes were demonstrated (as outliers in the alluvial
plot), andmany weremerely described as participants brainstormed
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control motion choices but ultimately erred on the side of cognitive
simplicity and consistency across gestures.

Alternative control scheme suggestions include:

• Two-handed control of Jaco robot to increase the number of
DOF available for control inputs: one hand to operate the end-
effector, and the other to operate the “first elbow.” (P10, P11)
(See the second participant in Figure 2 for an example.)
• Semantic hand gestures used as a kind of sign-language to tell

the robot which of a pre-defined set of gestures to perform
(P1, P2)
• (Suggested but not demonstrated): A control scheme involving

buttons, to tag individual objects based on the type of
interaction expected (i.e., “avoid,” “go through,” “grab”). The
robot would then be allowed to figure out its own path. (P9)
• One arm bent or a button pressed to indicate which joint is

being controlled by the wrist of the opposite hand (P10)
• To control the robot’s full wrist rotation: a spiral motion with

the other hand (P11); a wrist “flick,” with the speed intended to
indicate the distance to be rotated (P13); a screwing motion for
more precise rotation control (P13)

For final determination of a functional control scheme,
participants also requested an iterative process where they could
test and refine their control schemes with feedback from the
robot. Participants 6, 8, 9, 11, and 12 reported that the lack of
foreknowledge of the robot’s movements and/or their inability to
iteratively refine their control scheme constrained them to the hand-
to-end-effector mapping that they maintained.

7 Conclusion

In this paper, we utilized trajectory similarity analysis to analyze
the control motions contributed by 16 users for two robots,
one anthropomorphic and the other non-anthropomorphic. We
discovered that participants demonstrated both individuality and
commonalities, split into twoor three clusters based on the similarity
of their control motions, supporting the hypothesis (from RQ1) that
neither a single universal control scheme nor completely individual
personalization is necessary for control scheme design.

Addressing 2, we discovered that clusters were similar for both
robots in their underlying rationale, and did not appear to change
based on the type of gesture that the users were being asked
to control. More complicated gestures and less anthropomorphic
robots did tend to produce more additional, outlier control motions
than the alternatives.

There was a unifying concept underlying the control schemes
for all the predominant clusters: a pose-to-pose mapping between
one of the user’s hands and the end-effector of the robot. Different
interpretations of the nature of this mapping led to the three main
clusters observed. For one cluster, this mapping required exact
spatial and temporal synchrony between the hand and end-effector.
For another, strict temporal synchrony was not required, and slight
adjustments of the spatial mapping might also be permitted (e.g.,
moving the hand in a range relevant to the user’s frame of reference
rather than the robot’s). For the last small but consistent cluster,

the control scheme only required matching the hand pose to the
end-effector pose at key points, such as the start and the end.

Importantly, and answering 3, trajectory similarity analysis was
able to differentiate between these groups of users, even when
they described their control scheme rationale simply or similarly.
The key features that visually distinguish between the identified
clusters can be found in participants’ descriptions of their control
scheme rationales, validating that objective clustering and trajectory
similarity analysis is able to identify meaningful distinctions
between control scheme paradigms. Combining trajectory analysis
with participant survey data allows designers to capture important
kinematic information about user control scheme preferences and
also allows them to understand the rationale behind the observed
differences.

Some of these differences in control scheme preference may be
irrelevant to a designer’s goals, and they may make a conscious
decision to ignore them. Since participants were largely consistent
about mapping their hand to the robot’s end-effector, a participant
can likely accommodate a designer’s choice as to the timing of the
command or the scale of the motion required to teleoperate the
robot. This statement does not imply that all timing/scaling choices
are equally useful. For instance, participants expressed concerns
about fatigue and ergonomics over the long-term when using large
control motions, and prior research on time delays in teleoperation
suggest that best-case performance occurs when latency is as close
to zero as possible (Lee et al., 2022).

Considering timing and scaling from the user perspective,
participants often made explicit note of their deviations from the
robot’s speed or movement as though assuming that the default
control scheme should be synchronous with the robot in time and
space. A control scheme that follows the robot’s movement closely
spatially and temporally is more likely to be intuited by a new user
than one that is scaled or time-shifted toward a specific prior user’s
preferences—but since the largest clusters of participants were time-
and space-synchronous, choosing a clustering threshold value that
incorporates asynchronous participants into the main cluster will
likely still tend toward a synchronous control scheme.

Several users noted limitations of the control schemes they had
selected. Although the identified clusters seemed to draw upon
a nearly universal control scheme concept, making them highly
intuitive, participants noticed that a hand-to-end-effector mapping
placed restrictions on the robot’s range of motion and required
the user to execute large, fatiguing, and sometimes uncomfortable
motions. One participant said it succinctly: “there’s a difference
between what’s conceptually and physically easy,” and participants’
initial choice of control scheme preferred the former. The control
schemes that our participants invented on a first pass were
cognitively intuitive, but probably ill-suited for long-term use or full
functionality. Participants suggested and/or attempted alternative
control schemes as a first attempt at resolving these concerns: some
utilized both hands to control a single arm, while others attempted
to communicate the type of gesture desired through sign language
(or requested a button interface) and expected the robot to perform
its own path-planning. Still others wanted a button or gesture that
allowed control mappings to change during use, or invoked specific,
physics-inspired motions to command joints moving beyond their
personal range of motion. Further research is necessary to identify
if iterative control scheme design resolves some of the limitations of
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the demonstrated control schemes. Future work can also investigate
whether participants continue to fall into clusters with similar
preferences if the physical constraints, rather than the cognitive
ones, are prioritized.

Additional research is also warranted in several areas which
were simplified for the scope of this study. One simplification
was the restriction of user inputs to 6 DOF hand poses rather
than unconstrained hand and finger motion. This reduced the
complexity of the gestures that participants could demonstrate
down to the theoretical minimum number of degrees of freedom
which could be used to fully control the robot arms. While
there are computational advantages to matching the DOF of
the inputs with the outputs, this constraint likely influenced
the control scheme paradigms that participants produced. Future
experiments that record unconstrained hand motion could be used
to determine 1) the effect of increased freedom in control inputs
on the clustering of users’ control scheme preferences, and 2)
what particular movements or combinations of movements [usually
called “synergies” (Vinjamuri et al., 2010; Scano et al., 2018)] would
be most useful as control inputs if 6DOF controls are desired.

An additional opportunity for future research comes from the
set of robots we studied. Participants consistently conceptualized a
mapping between their hand and a robot end-effector, which was
a convenient control scheme for two arm-like robots. It would be
valuable to conduct another study with other kinds of robots to
understand how control schemes differ for other robot shapes, as
well as the impact shape may have on the feasibility of groupwise
personalization.

Finally, we note that participants did not have the chance to use
the control schemes they demonstrated, and there is opportunity
for further research on the functionality of those schemes. Allowing
participants to test out their control schemes would also permit
research on how participant preferences evolve if they are allowed
to develop their mappings over multiple iterations, as several
participants suggested. The single-pass data collection design of our
study allowed us to capture user preferences prior to any inadvertent
training: in normal operation, the robot’s real-time responses
provide feedback to the user, who may adapt their control motion
during the gesture to encourage the robot to perform the desired
motion. This was important for understanding commonalities in
user preferences; however, without real-time feedback (and with
goal gestures that were not strongly time-sensitive), the specificity
of participants’ command motions may have been correspondingly
loose. Our research suggests that functional control schemes can
be developed using sensibly-combined data from multiple user
demonstrations, but to accomplish this will likely require multiple
iterations of data collection and testing as well as sophisticated
processes for merging data from multiple user demonstrations.
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