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Over the past few years, there has been a noticeable surge in efforts to
design novel tools and approaches that incorporate Artificial Intelligence
(AI) into rehabilitation of persons with lower-limb impairments, using
robotic exoskeletons. The potential benefits include the ability to implement
personalized rehabilitation therapies by leveraging AI for robot control and data
analysis, facilitating personalized feedback and guidance. Despite this, there is a
current lack of literature review specifically focusing on AI applications in lower-
limb rehabilitative robotics. To address this gap, our work aims at performing
a review of 37 peer-reviewed papers. This review categorizes selected papers
based on robotic application scenarios or AI methodologies. Additionally, it
uniquely contributes by providing a detailed summary of input features, AI model
performance, enrolled populations, exoskeletal systems used in the validation
process, and specific tasks for each paper. The innovative aspect lies in offering
a clear understanding of the suitability of different algorithms for specific tasks,
intending to guide future developments and support informed decision-making
in the realm of lower-limb exoskeleton and AI applications.

KEYWORDS

artificial intelligence reinforcement learning, support vector machine, neural network,
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1 Introduction

Lower-limb rehabilitation is a field of great clinical relevance, dealing with the
rehabilitation of individuals with motor disabilities in the lower-limbs a result of trauma,
or neurological or musculoskeletal heath conditions. Shi et al. (2019); Zhou et al. (2021).
Globally, in 2019, 2.41 billion individuals had conditions that would benefit from
rehabilitation, contributing to 310 million YLDs (years of life lived with disability). This
number increased by 63% from 1990 to 2019. The disease area that contributed most to
prevalence was musculoskeletal disorders (1.71 billion people) (Cieza et al., 2020).

Traditionally, lower-limb rehabilitation has been conducted by human therapists
through physical therapy including specific exercises. However, the integration of wearable
robotic technologies, i.e., the lower-limb exoskeletons, and Artificial Intelligence (AI)
is paving the way for the design of new tools and approaches to improve the quality
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of therapies and increase patients’ independence and mobility
(Holzinger et al., 2019; Di Tommaso et al., 2023; Reddy, 2022).

Among all the devices purposely designed to assist patients’
lower-limbs, exoskeletons are wearable robots that closely interact
with humans. Typically, they are mechatronic structures that
operate alongside human limbs and increase human locomotory
economy, augment joint strength, and increase endurance and
strength (Tamantini et al., 2023a). Nowadays, exoskeleton devices
are studied and employed in many application scenarios such
as industry (Masood et al., 2016), space (Lovasz et al., 2017) and
healthcare (Bortole et al., 2015; Pecoraro et al., 2022). Moreover,
they can also be used in industry, for tasks such as heavy lifting or
repetitivemotion, reducing the risk of injury to workers (Herr, 2009;
Pons, 2010). Exoskeletons can be used for rehabilitation, allowing
patients with spinal cord injuries, stroke, or other conditions to
regain mobility and improve their physical function. Currently,
there is a large interest in the design of lower-limb-compliant
exoskeletons aimed at gait rehabilitation or assistance (Zhang et al.,
2016; Sanchez-Villamañan et al., 2019).

Lower-limb exoskeletons typically comprise a frame, actuators,
sensors, and control systems that enable them to mimic human
locomotion (Bhardwaj et al., 2021). Batteries or other energy sources
can power them, and they can be controlled by a person’s
actions, by a software-based controller, or by a combination of
both (Talatian et al., 2021). Lower-limb exoskeletons are composed
of actuators disposed on multiple joints, in particular the hips,
ankles, or knees of the users. Each joint can assist different
movements produced by an anatomical joint (Zhang et al., 2017).
Therefore, the exoskeletons can be classified as follows according
to the joint or joints that can be assisted during the robot-
assisted gait.

• Hip Exoskeletons assist the hip joint connecting upper and
lower-limbs, enabling a person to perform flexion/extensions,
abduction/adduction, and medial/lateral rotation. These
motions are necessary for a person to walk or run. Those
exoskeletons have actuators placed on the users’ hips to enable
a reduction of stress on hip and ankle muscles (Zhang et al.,
2018).
• Most knee exoskeletons present only one DoF, needed for the

motion on the knee flexion/extensions actions. In those cases,
a soft inflatable cushion is typically used as an actuator. The
inflatable part is placed behind the user’s knee for the reduction
of weight of the exoskeleton. It uses a pneumatic system to
inflate and deflate the component. The exoskeleton is inflated
during the swing phase of the walking gait and deflated the gait
cycle during walking (Celebi et al., 2013).
• Ankle exoskeletons have been developed to assist one degree

of freedom. The ankle joint has four bones and three planar
motions (three DoF). Plantar or dorsiflexion movement is a
primary movement during the gait cycle that can be assisted
through robotic devices (Gordon and Ferris, 2007).
• Multiple joints exoskeletons integrate more than one actuator

to assist users during robot-assisted gait. They actuate a
combination of joints implementing sophisticated control
strategies, to face the increase in hardware complexity, and to
produce a harmonious gait (Qiu-zhi et al., 2016; Franks et al.,
2021; Kalita et al., 2021).

Within the realm of exoskeleton development, AI emerges
as a fundamental cornerstone, actively contributing to various
functional tasks in exoskeleton-assisted lower-limb robot-aided
rehabilitation.These tasks include Robot Control (RC), Locomotion
Classification (LC), Intention Detection (ID), and Human Joints
Trajectory Prediction (HJTP). AI dynamically adapts to the wearer’s
movements, seamlessly integrating the exoskeleton with the user.
This adaptability enhances responsiveness and underscores the
personalized nature of the interaction.

The synergy between AI and exoskeletons refines movement
coordination, augmenting the potential for more efficient and
tailored therapeutic interventions. AI methodologies optimize
adaptability to tasks and users in RC. In LC, it improves adaptability
to the environment and generalizes to unknown and unstructured
settings (Tu et al., 2021). AI approaches contribute to advancing
user action perception, enhancing system responsiveness, and
promoting the customization of responses, leveraging data from
wearable sensors and cameras (Wu et al., 2018; Tamantini et al.,
2023b), in ID and HJTP applications, respectively. This review aims
at elucidating how the application of AI, as indicated by these
acronyms, adds value to various aspects of exoskeleton-assisted
lower-limb robot-aided rehabilitation, supported by evidence in
scientific literature.Through literature analysis, we intend to provide
a comprehensive understanding of the specific contributions of AI in
different contexts of exoskeleton-assisted lower-limb robot-assisted
rehabilitation.

The rest of the paper is structured as follows: Section 2 presents
the reviews already published to better highlight which is the novelty
of this specific contribution to the scientific literature. Section 3
presents the methodology implemented to carry out the review of
the scientific literature. Section 4 details the results of the review. In
particular, the AI-based solutions exploited in exoskeleton-assisted
gait are analyzed in depth. Section 5 discusses themajor outcomes of
the literature analysis providing advantages, limitations, and future
vision of this research topic. Lastly, Section 6 summarizes the paper’s
contribution and Appendix 1 lists all the acronyms used in the text.

2 Current review

In recent years, the field of robot-aided rehabilitation has
attracted considerable attention, resulting in a proliferation of
scholarly works. The existing body of literature encompasses several
comprehensive reviews delving into the application of exoskeletons
in lower-limb rehabilitation (Prakash et al., 2018; Khera and Kumar,
2020; Mu et al., 2021; Harris et al., 2022). However, this review
distinguishes itself by uniquely focusing on the integration of
advanced Artificial Intelligence (AI) methodologies within this
domain, presenting a novel and innovative contribution.

Khera and Kumar (2020) meticulously explore the role of
machine learning in gait analysis, identifying Support Vector
Machine (SVM) as a prominent classifier based on their analysis
of 43 distinct studies. Similarly, Mu et al. (2021) delves into the
application of AI in rehabilitation, specifically concentrating on
objective assessment methods. Their investigation encompasses
various AI-driven parameters, such as trajectory error features,
joint angles, joint angular velocities, and surface Electromyography
(sEMG) signal features, laying a foundation for our emphasis on
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advanced AI techniques. Prakash et al. (2018)’s extensive survey
comprehensively covers gait analysis across diverse domains,
presenting various machine-learning approaches alongside
associated datasets. While informative, this survey sets the
stage for our unique contribution, which integrates cutting-edge
AI methodologies. Lastly, Harris et al. (2022)’s recent survey
explores the application of AI to human gait, identifying six
key areas of focus. While valuable, their work underscores the
evolving landscape, leaving room for novel insights, particularly
in the convergence of AI methodologies with lower-limb
rehabilitation.

In essence, our review’s distinctive emphasis on the integration
of advanced AI methods within the context of exoskeleton-
assisted lower-limb robot-aided rehabilitation positions it as a
unique contribution to the existing literature. By championing
this innovative approach, our review offers fresh perspectives and
insights that hold the potential to steer future advancements in this
critical field.

3 Methods

A comprehensive literature search, updated until October
2023, was conducted across Google Scholar, Scopus, and Web
of Science databases. The search utilized keywords and their
combinations, including (Lower-Limb∗ ) AND (Robot∗ OR
Exoskeleton) AND (Artificial Intelligence OR Machine Learning OR
Deep Learning). Remarkably, our preliminary literature analysis
underscored a notable recurrence of specific algorithms, revealing
that Reinforcement Learning (RL), Support Vector Machine
(SVM), Neural Network (NN), and Decision Tree (DT) stood
as the exclusive focal points. This initial scrutiny served as the
foundation for our subsequent investigation, providing a clear
direction for the inclusion of these predominant algorithms in our
review. Consequently, more specific searches were performed using
combinations like (Lower-Limb∗ ) AND (Robot∗ OR Exoskeleton)
AND (Reinforcement Learning OR Neural Network∗ OR Support
Vector Machine∗ OR Decision Tree∗ ) to refine the focus of
the research.

Figure 1 presents the PRISMA flowchart constructed to
highlight the review process. The inclusion criteria for this review
are summarized as follows

• The study should be published between 2000 and 2023.
• The study should be published in reputable journals or

international conferences employing a peer-review process.
This stringent selection ensures the validity and reliability of the
works considered for inclusion in the analysis.
• The study should report a novel algorithm tested in simulation

environments, as well as involve participants ranging from
healthy subjects to those with lower-limb motor disabilities,
such as spinal cord injuries and/or stroke.
• The study should focus on the application of AI-

based methodologies for exoskeleton-assisted lower-limb
rehabilitation, explicitly declaring the presented algorithm
elucidating the specific conditions necessary for replicating the
training process, and implementing the proposed approach.
The input features, the hyperparameters, and the working

conditions of the presented approach should be clearly stated
to consider the study eligible.

Among the resulting literature works, 40 papers have been
selected blue after removing duplicates and applying the inclusion
criteria. The studies obtained from the literature analysis can be
described by analyzing theAI algorithm implemented in each study.

4 AI approaches for exoskeleton-
assisted rehabilitation of the lower
limb

Figure 2 reports the schematic representation of the main
functional blocks of a lower-limb exoskeleton for rehabilitation
that can exploit AI methodologies. In this schematic overview,
the central focus is on the exoskeleton user, around whom a
comprehensive set of data is gathered from both the robotic system
and multimodal patient monitoring. This influx of information is
then directed into two pivotal modules: LC and ID. The former
aims at discerning high-level parameters related to walking, such
as step-phase and terrain characteristics, while the latter focuses
on identifying the user’s intention to initiate walking. The outputs
from thesemodules converge into the trajectory generation system, a
critical component tasked with predicting the joint angles necessary
for the exoskeleton to generate a walking pattern customized
to the individual’s anthropometric dimensions. Ultimately, the
culmination of this predictive information guides the RC module,
which takes charge of the actual actuation system. By leveraging the
current configuration of the robot and aligning it with the desired
movement, this control module plays a pivotal role in executing
and optimizing the exoskeleton’s response to ensure a seamlessly
tailored and adaptive walking experience for the user. The modules
depicted in this block diagram can be implemented using traditional
approaches or innovative methodologies based on AI, which is the
central focus of this review.

Tables 1–3 presents a comprehensive overview of the research
papers reviewed in this paper. Each row includes paper references,
objectives, features, models, performance, subjects (H: healthy,
P: pathological), robots, and different application scenarios. In
particular, we include four main scenarios, which are RC, LC,
ID, and HJTP. By structuring the information in this manner, the
table offers a comprehensive overview of the included papers and
their content. The table is ordered with respect to methodologies
and year, and it is divided into four sections as this section does.
Indeed, the 37 papers reviewed here are grouped into four categories
according to the AI methodology adopted, namely, Reinforcement
Learning (RL), Neural Networks (NN), Support Vector Machine
(SVM), and Decision Tree (DT). In Table 1, “non-robot” means
that the proposed AI algorithm was fully designed and validated
in a simulation environment without any validation into a real
exoskeletal platform.

4.1 Reinforcement learning

Reinforcement learning (RL) is a category of AI used for training
an intelligent agent to perform tasks or achieve goals in a specific
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FIGURE 1
Flowchart of the search and inclusion process.

FIGURE 2
Scheme of the main functional blocks of a lower-limb exoskeleton for rehabilitation that can exploit AI methodologies.

environment by maximizing the expected cumulative reward. It has
three main components: the action space, the state space, and the
reward, indeed the agent moves around the state space by taking
an action, and the one that maximizes the reward is the favorite
(Kaelbling et al., 1996).

In Bingjing et al. (2019), the authors propose a method for
controlling a lower limb exoskeleton. The goal is to assist patients in

a way that is safe, effective, and tailored to the individual patient’s
needs. The exoskeleton assists both lower-limbs, each with two
rotational degrees of freedom. The exoskeletal robot is driven by
a pneumatic proportional servo system, which allows for accurate
motion control. To enable effective human-robot interaction, the
authors adopt an adaptive admittance model. Admittance control
is a method used to regulate the interaction between a robot and
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TABLE 1 AI-based solutions implemented for exoskeleton-assisted lower-limb robot-aided rehabilitation.

Paper Objective Feature Model Performance Subjects Robot Applications

Reinforcement Learning

Bingjing et al.
(2019)

Human-robot
interactive
control

Joint angle and
human forces

SARSA Err:0.2 rad 1H CARR robot RC

Khan et al.
(2019)

Compliance
control of a
robotic walk
assist device

Joint position
angle and
velocity

Qlearning ≤ Err:0.08 rad Sim Sim RC

Xu et al. (2020) RL for robotic
mirror therapy

Motion
Trajectory

Q-network Err: 1.05 rad 5P (paretic leg) Research
prototype

RC

Luo et al. (2021) RC of lower
exoskeleton for
squat assistance

Joint position,
velocity and
centre of pressure

Proximal policy
optimization

Err:0.05 rad Sim Sim RC

Peng et al. (2021) RC for
lower-limb
rehabilitation
exoskeleton

Joint angle actor-critic
neural network

Err:0.1 rad Sim Sim RC

Rose et al. (2022) deep-RL for
exoskeleton gait
control

Force and
position

deep q-learning Err:0.01 rad Sim Sim RC

Luo et al. (2023) deep-RL control
of lower-limb
rehabilitation
exoskeleton

Joint angle,
velocity

deep q-learning Err:0.1 rad 1H, 3P (Different
neuromuscular
disabilities)

Research
prototype

RC

Neural Networks

Lim et al. (2010) Gait parameter
prediction

Cadence, stride
length, walking
speed

NN: MLP deviation of
0.03%

50H Non-robot LC

Luu et al. (2011) Waveforms
planning

Anthropometric
data

NN: MLP 0.98 a 15H Non-robot HJTP

the environment, i.e., the patient. The admittance model used in
this study is adaptive so that it can adjust its parameters based on
the patient’s needs and performance. The authors design an adaptive
law for the admittance parameters using a sigmoid function and an
RL algorithm. The agent is the exoskeleton, and the environment
is the patient. By using RL to optimize the admittance parameters,
the authors obtained individualized parameters that are suitable for
each patient’s specific needs. Joint angle error and human-robot
contact force are selected to form the state space, the action is
selected among four possibilities that correspond to up, down, left,
and right movements. The ϵ-greedy policies are applied to the on-
policy method, meaning that with a probability of 0.5 the maximal
estimated action value is chosen. The experiment was conducted to
verify the feasibility of the interactive control systemwith the hip and
knee joint angle data in the Clinical Gait Analysis (CGA) database
as reference trajectories and is conducted on the prototype of a gait
rehabilitation training exoskeleton. The database is established by
capturing a large number of motion information of normal people
while walking by the 3-D Motion Capture System of Northern

Digital Technologies Inc. The system has been tested on 1 healthy
subject with an error of 0.2 rad (radiant) (Bingjing et al., 2019).

The proposed scheme in Khan et al. (2019) is an optimal
adaptive compliance control for a robotic walk assist device. The
approach is based on bio-inspired RL and is completely dynamic-
model-free. The scheme uses joint position and velocity feedback, as
well as sensed joint torque applied by the user during walking, for
compliance control. In particular, the RL system has a state vector
containing hip and knee joint angular position and velocities and
the action is selected via an actor-critic system. The effectiveness
of the controller is tested through simulations using an exoskeleton
walk-assisting device model, returning angular error ≤ 0.08 rad for
both the tested DoFs. In particular, is used RWAD developed in the
SimMechanics toolbox (Matlab/Simulink).

Xu et al. (2020) proposed a master-slave exoskeletal system for
mirror therapy to transfer therapeutic training from the patient’s
functional limb to the impaired limb using a wearable robot in
Xu et al. (2020). The IL mimics the action prescribed by the FL with
the assistance of the exoskeleton, stimulating and strengthening
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TABLE 2 Continue of AI-based solutions implemented for exoskeleton-assisted lower-limb robot-aided rehabilitation.

Paper Objective Feature Model Performance Subjects Robot Applications

Jung et al. (2015) Gait phase
classification

Human forces NN: MLP 0.98 a 7H ROBIN-H1
Exoskelton

LC

Liu et al. (2016) Knee joints
modelling

Hip, knee angle NN:Long-short
term memory

≤ Err:0.30 rad 20H SIAT-Exoskelton HJTP

Błażkiewicz and
Wit (2018)

Joint angle
simulation

Ankle, knee and
hip angle

NN: MLP 0.94 a 34H Non-robot HJTP

Yang et al. (2019) NN controller for
Lower-limb
Rehabilitation
Exos

Emg NN: Radial basis
function

Err: ≤ 1⋅ 10–3 rad Sim Sim RC

Xiong et al.
(2019)

Joint moment
prediction

Emg and joint
angles

NN:Elastic 0.96 a 8H Non-robot HJTP

Yingxu et al.
(2019)

Control of
Lower-Limb
Rehabilitation
exos

Hip knee and
joint torque and
speed

NN: MLP Err:0.90 rad Sim Research
prototype

RC

Fereydooni et al.
(2020)

Control of
lower-limb
exoskeleton

sEMG NN: wavelet 0.01 m 4H Research-
prototype

RC

Shi et al. (2020) Trajectory
tracking

Hip knee and
ankle angle

NN: MLP Err: ≤:0.02 rad Sim Research-
prototype

RC

Zhou et al. (2020) Individual gait
generation

Hip,knee, ankle
position and
force

NN: recurrent
NN

Err: ≤ 0.16 rad 137H Non-Robot HJTP

Tang et al. (2021) Evaluation of
postoperative
rehabilitation of
patients

Angular velocity NN: recurrent
NN

1 a 36H Non-robot LC

Wang et al.
(2021b)

Data
augmentation
and trajectory
prediction

Hip and knee
angle

NN: GAN 0.88 a 5H Non-robot RC

Lin and Sie
(2023)

NN controller for
lower-limb
robotic

Hip and knee
angle

NN: MLP Err:0.03 rad 10H Research-
prototype

RC

Support Vector Machine

Ceseracciu et al.
(2010)

SVM
classification of
locomotion using
emg

Emg SVM 0.95 a 3H Non-robot LC

Shen et al. (2013) Motion intent
recognition for
wearable lower
device

Hip and Knee
position

SVM 0.96 a 1H Research
prototype

ID

the injured muscles through repetitive exercise. The RL approach
was used in the human-robot interaction control to enhance
rehabilitation efficacy and guarantee safety. The study incorporated
multi-channel sensed information, including the motion trajectory,

muscle activation (expressed via skin surface electromyography
signals), and the user’s emotion (shown as facial expressions),
into the learning algorithm. The RL approach was realized by the
normalized advantage functions algorithm. Furthermore, the study
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TABLE 3 Continue of AI-based solutions implemented for exoskeleton-assisted lower-limb robot-aided rehabilitation.

Paper Objective Feature Model Performance Subjects Robot Applications

Li et al. (2017) Gait recognition
of Lower-Limb
rehabilitation
robot

Horizontal
distances

SVM 0.95 3H Non-robot LC

Lin et al. (2017) Lower-Limb
rehabilitation

Emg SVM 0.99 a 8H Research
prototype

RC

Ziegler et al.
(2018)

Classification of
gait phases using
emg

Emg SVM 0.96 a 8H Non-robot LC

Wang et al.
(2019)

Human gait
recognition

feet pressure,
waist and calf
movement

SVM 0.965 a 5H Non-robot LC

Ma et al. (2019) Gait phase
classification

Hip and knee
angle

SVM 0.86 a 10H Research
prototype

LC

Guo et al. (2020) Control strategy
for lower-limb
rehabilitation

sEmg SVM 0.95 a 10H SIAT Exoskeleton ID

Ge et al. (2022) Lower-limb
movement
recognition

sEmg SVM 0.907 a 6H Non-robot LC

Decision Tree

Guo and Jiang
(2015)

Walking gait
identification

Force sensors,
knee angle,
angular velocity

Decision tree 0.99 a 1H Research-
prototype

LC

Ren et al. (2018) Patient-specific
gait training

Anthropometric
data

Decision Tree Err:0.08 rad 113H Research-
prototype

LC

Thongsook et al.
(2019)

Gait Phase
Recognition

Hip knee
position, walk
velocity

Decision tree and
NN and NARX

1, 0.987 and
0.948 a

1H Research-
prototype

LC

Imura et al.
(2021)

Stroke patient
identification

Age, sex and
stroke type

Decision tree 0.85 a 481P (stroke) Non-robot LC

He (2022) Control of
motion
rehabilitation
robot

Hip, knee and
ankle position

Decision Tree 0.997 a 10H Research-
prototype

RC

Zhang et al.
(2022)

Gait Deviation
Correction
method

CGA curves Decision Tree Err: ≤ 0.11 rad 15H Research-
prototype

RC

developed an exoskeleton with magnetorheological actuators, and
clinical experiments were conducted using the proposed system
to verify the performance of the framework. In particular, five
hemiplegic patients were enrolled in the experiments. During
the experiment, the patient exerts force on the intact limb to
drive the master robot, and the impaired limb tries to actuate its
own muscles to complete the gait task. In particular the classical
Q-learning, in continuous action spaces with deep neural
networks is used. Overall, the study demonstrated the potential of a

master-slave robotic system with RL to enhance the effectiveness
and safety of mirror therapy in lower extremity rehabilitation.
The incorporation of multi-channel sensed information and the
use of MR actuators in the exoskeleton design can also provide
valuable insights for developing more advanced rehabilitation
systems (Xu et al., 2020).

The study Luo et al. (2021) proposed a new motion controller
for a lower extremity rehabilitation exoskeleton using RL. The
exoskeleton is designed for collaborative squatting exercises and
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equipped with ankle actuation on both sagittal and front planes
and multiple foot force sensors to estimate the center of pressure, a
critical indicator of system balance. The proposed controller takes
advantage of CoP information by incorporating it into the state
input of the control policy network and adding it to the reward
during learning to maintain a well-balanced system state during
motions. To improve the robustness of the controller, the study also
used dynamics randomization and adversary force perturbations,
including large human interaction forces during training. The
effectiveness of the learning controller was evaluated through
numerical experiments with different settings to understand
if the learning process can generate feasible control policies
to control the exoskeleton to perform well-balanced squatting
motions if the learned control policies are robust enough under
large random external perturbation and to sustain stable motions
when subjected to uncertain human-exoskeleton interaction forces
from a disabled human operator. The study demonstrated the
potential of RL-based motion controllers for lower extremity
rehabilitation exoskeletons, particularly in terms of efficiency,
stability, and robustness. The proposed controller’s ability to
incorporate CoP information and handle large human interaction
forces during training can be valuable in real-world rehabilitation
settings, where maintaining balance and stability is critical
(Luo et al., 2021).

The paper Peng et al. (2021) proposed an innovative approach
for adaptive control of lower-limb exoskeletons. The proposed
approach combines policy iteration, RL, and event-triggering
mechanisms to achieve online learning and adaptation while
reducing the number of control updates. In particular, an adaptive
online learning structure, namely, Actor-Critic Neural Network,
is exploited in the Event-triggered Optimal Control framework,
The proposed EtOC is then verified on numerical simulation,
and tested of a real lower-limb rehabilitation exoskeleton with a
final error of 0.1 rad. Overall, the proposed approach presents a
promising direction for adaptive control of lower-limb rehabilitation
exoskeleton robots (Peng et al., 2021).

The paper Rose et al. (2022) proposed a new event-triggered
control strategy based on RL and policy iteration for a lower-
limb rehabilitation exoskeleton. The proposed approach integrates
an event-triggering mechanism and a novel event-triggered tuning
law with an actor-critic neural network for online learning and
adaptation. The experimental results show that the proposed
method reduces the number of control updates while maintaining
a guaranteed control performance compared to traditional time-
triggered control methods. The experiment has been simulated with
an error of 0.01 rad These methods can potentially enhance the
adaptability and efficiency of control systems while reducing the
computational burden and energy consumption (Rose et al., 2022).

In Luo et al. (2023), the authors proposed a deep RL-based
robust controller for a lower-limb rehabilitation exoskeleton. The
controller is trained using a decoupled offline human-exoskeleton
simulation training with three independent networks. The goal
is to provide reliable walking assistance against various and
uncertain human-exoskeleton interaction forces. The controller acts
on a stream of the LLRE’s proprioceptive signals, including joint
kinematic states, and predicts real-time position control targets
for the actuated joints. To handle uncertain human interaction
forces, the control policy is trained intentionally with an integrated

human musculoskeletal model and realistic human-exoskeleton
interaction forces. Additionally, domain randomization is employed
during training to increase the robustness of the control policy to
different human conditions, with different neuromuscular disorders.
The trained controller provides reliable walking assistance to
patients with different degrees of neuromuscular disorders without
any control parameter tuning. The system has been tested on 3
pathological subjects and 1 healthy with a final error of 0.1 rad
(Luo et al., 2023).

To wrap up we can say that Reinforcement learning has gained
attention in the exoskeleton-assisted rehabilitation field thanks to
its ability to learn optimal control strategies through the interaction
with the environment by committing errors and receiving a reward
based on its entity and to solve problems that with classical
analytical methods would be hard to solve. We saw how deep
reinforcement learning is still poorly investigated even if in other
fields has been shown to surpass classical reinforcement learning.
In particular deep reinforcement learning provides a new solution
for rehabilitation robot trajectory planning and control strategies
with a high accuracy (Wang et al., 2021a). Given the high quantity
of algorithms available the choice strictly depends on the given
problem (Arulkumaran et al., 2017).

4.2 Neural networks

Neural networks are a subset of machine learning and are at the
heart of deep learning algorithms, they are comprised of node layers,
containing an input layer, one or more hidden layers, and an output
layer. Each node is connected to another and associated weight and
threshold. If the output of any individual node is above the specified
threshold value, that node is activated, sending data to the next layer
of the network, otherwise, no data is passed along the next layer
(LeCun et al., 2015).

This paper Lim et al. (2010) discusses the use of an MLP to
predict natural gait parameters for an individual based on their age,
gender, body height, and body weight. The MLP is trained to output
a suitable walking speed and cadence for the given subject. The
study evaluates the efficiency and accuracy of the MLP in predicting
the desired outputs for two different setups. In the first setup, the
MLP is trained specifically for slow walking speed conditions. In the
second setup, the MLP is trained for both slow and normal walking
speed conditions.The input features of themodel are cadence, stride
length, and walking speed. The model has been tested on 50 healthy
subjects. The proposed approach was capable of returning accurate
prediction with a deviation of 0.03%. The study demonstrates the
potential of using MLP for predicting natural gait parameters for an
individual, which can be useful in fields such as rehabilitation and
sports science (Lim et al., 2010).

In Luu et al. (2011), the authors present a new model for
generating joint angle waveforms of the lower-limb during walking
using gait parameters and lower-limb anthropometric data as
input. The locomotion data is captured using a motion capture
system with passive markers, and the waveforms of lower-limb
joint angles are calculated from the experimental data. The
waveforms are then decomposed into Fourier coefficients, which
allows for easier waveform analysis. They designed an MLP
to predict the Fourier coefficient vectors for specific subjects
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and desired gait parameters. Assessment parameters such as
correlation coefficient, mean absolute deviation, and threshold
absolute deviation are calculated to examine the quality of the
MLP prediction. The constructed waveforms from predicted
Fourier coefficient vectors are compared with the actual waveforms
calculated from experimental data using the assessment parameters
mentioned above. The results show that the constructed waveforms
closely match the experimental waveforms based on the assessment
parameter outcomes, demonstrating the potential of using MLP to
accurately predict joint angle waveforms of the lower-limbs during
walking, in particular, the system has been tested on 15 healthy
subjects with an accuracy of 0.98. This can be useful in fields
such as biomechanics and rehabilitation where understanding and
optimizing human movement is important.

The paper Jung et al. (2015) proposed a method for gait phase
classification in lower-limb exoskeleton robots, using sensor signals
from foot sensors with force sensing registers, as well as the
orientation of each lower-limb segment and the angular velocities
of the joints. The authors investigated MLP and NARX. During
the experiment, the subject wore the ROBIN-H1 exoskeleton and
walked on a treadmill following specific rules. The performance
of the proposed classifiers was evaluated using offline and online
evaluations based on four criteria: Classification Success Rate,
Max Continuous Error Width, Mean and Standard Deviation, and
Number of unstable regions. The results showed that the NARX-
based method exhibited satisfactory performance in replacing foot
sensors as a means of classifying gait phases. The feature used as
input is human forces. The system has been tested on 7 healthy
subjects with an accuracy of 0.98. The results suggest that this
approach could lead to more accurate and reliable gait phase
classification, which could be useful for improving the performance
and safety of exoskeletons (Jung et al., 2015).

The paper Liu et al. (2016) proposes a method called Deep
Rehabilitation Gait Learning (DRGL) for modeling the knee joints
of lower-limb exoskeletons. The method leverages Long-Short Term
Memory (LSTM) to learn the inherent spatial-temporal correlations
of gait features. With DRGL, abnormal knee joint trajectories can be
predicted and corrected based on the wearer’s other joints, without
requiring complex kinematic and dynamic models for the human
body and exoskeleton. The main advantage of DRGL is that the
new recovery gait pattern is not only in accordance with the healthy
walking gait but also includes the wearer’s own gait profile. To prove
the effectiveness of DRGL, the authors obtained a new recovery
gait from DRGL based on “pathological gait,” which was obtained
by having a healthy subject imitate knee injury. The experiments
demonstrated that the subject could walk normally with the SIAT
lower-limb exoskeleton in the new recovery gait pattern generated
by DRGL. The system has been tested on 20 healthy subjects. The
proposed neural architecture is capable of reconstructing human
trajectories with an angular error ≤ 0.30 rad and capturing the key
gait features with high consistency. This suggests that DRGL is a
promising method for improving gait rehabilitation using lower-
limb exoskeletons. Overall, the paper presents a novel approach for
gait rehabilitation using deep learning techniques. The proposed
DRGL method could have important implications for the design
and development of lower-limb exoskeletons that can help patients
recover from knee injuries or other conditions affecting their gait
(Liu et al., 2016).

The paper Błażkiewicz and Wit (2018) aimed at developing a
neural network that accurately simulates the changes in the angle
of the ankle, knee, and hip joints during the gait cycle, and to use
it to simulate the impact of a restricted range of ankle and hip
joint angle changes on the progression of the knee joint angle. The
study involved 34 young healthy students, and gait kinematics data
were collected using the Vicon system, which was then analyzed
with an MLP. The results showed that the developed MLP was
able to accurately simulate the progression of joint angles of lower-
limb motion with an accuracy of 0.94, and its simulation of the
impact of restricted ankle and hip joint angular ranges on the
knee joint indicated that the braking phase is critical. The study
highlights the potential of NNs as a useful research method in
clinical biomechanics and suggests that further research in this
vein could expand our understanding of compensatory functions
in the lower-limbs. The findings could be useful in the design
and development of lower-limb exoskeletons and other assistive
devices, as well as in the rehabilitation of patients with lower-
limb injuries or conditions affecting their gait (Błażkiewicz and
Wit, 2018).

The paper Yang et al. (2019) presents two control schemes for
exoskeletons to conduct trajectory tracking tasks in the presence
of unmodeled dynamics of the exoskeleton, interaction between
human and exoskeleton, and additional disturbances. The first
controller presented is purely NN-based (Radial basis function
NN), and adopts a combined error factor (CEF) to enhance human
safety by improving transient response. The CEF consists of the
weighted sum of tracking error and its derivative. The second
controller is developed based on a combined scheme of repetitive
learning control (RLC) and radial basis function NN, where the
add-on RLC is used to learn periodic uncertainties that contribute
to the repetitive motion of the exoskeleton leg. The stabilities of
the controllers are proved rigorously in a Lyapunov way. The study
highlights that while the pure NN controller can deal with periodic
and non-periodic uncertainties simultaneously, the main feature
of exoskeleton motion during rehabilitation therapy, namely, the
repetitiveness, is fully ignored, and this could degrade the tracking
performance. The proposed control method is shown to achieve a
significant control effect with remarkable transient performance in
comparison to the other methods used in the simulation. The input
data used was EMG and the system has been simulated achieving
an error ≤ ⋅10–3 rad. Overall, the study demonstrates the potential
of NN-based control methods for improving the performance and
safety of lower-limb exoskeletons in rehabilitation therapy. The
results could be useful in the design and development of advanced
control strategies for assistive devices in rehabilitation and other
applications (Yang et al., 2019).

The paper Xiong et al. (2019) presents a novel method for
predicting joint moments using a small number of input variables
selected by Elastic Net and MLP. The method is tested on
experimental data collected from healthy subjects running on a
treadmill at different speeds. The results show that the method
can accurately predict joint moments with only 5-6 EMG signals
as input, with a normalized root-mean-square error (NRMSE)
lower than 7.89% and a cross-correlation coefficient (p) between
the predicted joint moment and multibody dynamics moment.
This method can effectively reduce the input variables required
for joint moment prediction, which may facilitate real-time gait
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analysis and exoskeleton robot control in motor rehabilitation
(Xiong et al., 2019).

This paper Yingxu et al. (2019) describes a study on the
application of a bionic control method based on a Central
Pattern Generator (CPG) to control the lower-limb exoskeleton for
rehabilitation purposes. The authors improved the Hopf oscillator
using the Dynamic Hebbian Learning algorithm and built a CPG
oscillator network to generate gait signals to control the lower-
limb exoskeleton. The study aimed at improving the performance
and adaptability of the exoskeleton by matching it with the control
signals produced by the human body during motion cycles. It
included wearing tests on patients, and the results obtained by the
simulation experiments of gait curves of different motion modes
showed that the CPG bionic control exoskeleton could effectively
control the lower-limb exoskeleton and perform rehabilitation
exercises. The system has been simulated, the input data was
hip, knee, and joint torque plus speed the final angle error was
0.90 rad. The study provides valuable insights into the application
of CPG-based control methods for exoskeleton rehabilitation
and highlights the potential for improving the performance
and adaptability of lower-limb exoskeletons for rehabilitation
purposes (Yingxu et al., 2019).

The paper Fereydooni et al. (2020) proposes an intelligent
control method for a lower-limb exoskeleton using sEMG and
human force-based dual closed-loop control strategy. The method
aims to adaptively control the exoskeleton to better function
in the rehabilitation field. The proposed approach has several
contributions. First, it uses a wavelet neural network (WNN)
to obtain the desired trajectory of patients based on the sEMG
signal. Second, it modifies the reference trajectory by the variable
impedance controller (VIC) based on the sEMG and human force.
Third, it uses a model reference adaptive controller (MRAC) with
parameter updating laws based on the Lyapunov stability theory
to force the exoskeleton to track the reference trajectory. The
experiment results show that the proposed approach efficiently
decreases the trajectory tracking error and adapts the reference
trajectory to synchronize with the patients’ motion intention. The
model reference controller can outstandingly force the exoskeleton
to track the reference trajectory. The final system has been tested
on 4 healthy subjects with an error ≤ 0.01 m. The proposed
method is expandable to other applications in the rehabilitation
field and has the potential for designing an intelligent control for
rehabilitation purposes.

The paper Shi et al. (2020) dealt with the recovery of a
patient’s limb and is driven to follow a planned trajectory during
rehabilitation training. The accuracy of trajectory tracking is
essential for effective rehabilitation training. PID control is a
conventional method for trajectory tracking, but due to the
dynamic model uncertainties and lack of good adjustment ability,
it may not be sufficient. Therefore, the authors combined RBF
neural network and PID control to improve the accuracy of
trajectory tracking. The Magnetorheological (MR) damper and
motor for actuation. The control is simulated in Simulink, and
the trajectory tracking errors under PID control and RBF-
PID control are compared. The results obtained through the
simulation experiment show that RBF-PID control has better
anti-interference performance, which improves the flexibility of
movement, real-time, and stability of trajectory tracking during

the therapy. The system has been simulated with a final error
of 0.02 rad.

The paper Zhou et al. (2020) proposed an individualized gait
pattern generation method based on a recurrent neural network
(RNN) for creating a function mapping from body parameters and
gait parameters to a gait pattern. The proposed method is trained
on the largest gait data set of this kind, which consists of 4,425
gait patterns from 137 healthy subjects (Zhou et al., 2020). The
RNN is proficient in series modeling and can generate gait patterns
at continuously varying walking speeds and stride lengths. The
proposed model’s experimental results indicate that it reduces the
errors in ankle, knee, and hip measurements by 12.83%, 20.95%,
and 28.25%, respectively, compared to the previous state-of-the-art
methods, in particular with a generalized regression neural network
(Luu et al., 2014) and a gaussian process regression (Yun et al.,
2014). It has significant implications for personalized rehabilitation
training, including designing customized rehabilitation programs,
identifying patients at risk of falls, and assessing the effectiveness
of the rehabilitation program. The paper’s findings demonstrate the
potential of using RNNs for gait pattern generation in rehabilitation
(Zhou et al., 2020).

The paper Tang et al. (2021) proposed an RNN for rehabilitation
evaluation. This method extracts gait characteristic parameters of
patients with different ages, disease types, and disease courses by
learning existing clinical gait data. The algorithm uses repeated data
iteration to simulate the corresponding gait parameters of patients
on 36 healthy subjects. Experiments show that the trained ANN
algorithm has a high accuracy rate when compared to human raters
for most of the data (82.2%, Cohen’s I kappa = 0.743). The algorithm
also has a strong correlation with improved Ashworth scores as
assessed by human raters (r = 0.825).

The paper Wang et al. (2021b) proposes a two-stage attention
model placed inside an LSTMs-based encoder-decoder architecture
for predicting human gait trajectories using a combination of real
and synthetic gait data. The authors use a Generative Adversarial
Network (GAN) with temporal Convolutional Neural Network
CNNs to generate synthetic human gait data (ratio 4:1 synthetic
vs. real data that retains the dynamics of real gait data. They
collected real human gait data from five healthy subjects using a
NOKOV optical motion capture platform. The authors compare
the performance of their GAN model with a traditional LSTM
model and found that the attention mechanism (MLP) had a higher
capacity for learning dependencies between historical gait data to
accurately predict the current values of the hip joint angles and
knee joint angles in the gait trajectory. The results obtained by the
collection of five healthy subjects’ gait data indicate that GANs-
based data augmentation can synthesize realistic-looking at multi-
dimensional human gait data. The predicted gait trajectories based
on the historical gait data can be used for gait trajectory tracking
strategies. This paper demonstrates the potential of using synthetic
data to augment real data and improve the performance of machine
learningmodels for humanmotion analysis tasks.The final accuracy
is about 0.88 (Wang et al., 2021b).

This study Lin and Sie (2023) focuses on the development of a
lower-limb exoskeleton for rehabilitation purposes, using artificial
neural networks to improve its control system. Firstly, the authors
testes the proposed lower-limb robotic exoskeleton robot (LLRER)
using a PID control with an iterative learning controller. However,
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they found that the knee part of the LLRER, which uses PAM
actuation, does not perform very well due to nonlinearity. To
compensate for this nonlinearity, the researchers used an MLP
control based on the inverse model trained in advance. They
also used particle swarm optimization (PSO) to optimize the PID
parameters based on the MLP architecture. The results show that
the MLP with PID control (PSO tuned) performs the best among
the three controllers. The average Mean Absolute Error (MAE) of
the left knee joint is 0.03 rad and the average MAE of the right knee
joint is 0.024 rad, tested on 10 healthy subjects. During rehabilitation
tests, the controller of MLP with PID control was found to be
suitable, and its versatility for different walking gaits was verified
during human tests. The researchers found that the establishment
of the inverse model does not need to use complex mathematical
formulas and parameters for modeling, making it more accessible.
Additionally, the use of PSO to search for the optimal parameters
of the PID and the architecture diagram and control signal
given by the MLP compensation with the PID control effectively
reduced the error.

In conclusionwe sawhowNNcan address several tasks fromRC,
and LC toHJTP.Thanks to the ability to learn patterns from raw data
they are particularly useful for real-life applications. The choice of
theNNarchitecture and dimension strictly depends on the problems
(Hunter et al., 2012) often is easier to test several architectures
developed based on theoretical knowledge of the problem and
choose the best performing one (Warrier and Amuru, 2020). Lastly,
it is worth observing that a big dataset is needed to properly train
the NN and obtain good accuracy.

4.3 Support vector machines

This section presents the application of SVM to exoskeleton-
assisted lower-limb robot-aided rehabilitation. SVM is a supervised
learning method used for both classification and regression. The
name came from the data points called support vectors that
are closer to the hyperplane and influence the position and
orientation of the boundary in the feature space. Using these support
vectors, it is possible to maximize the margin of the classifier
(Gunn et al., 1998).

In Ceseracciu et al. (2010), the authors explore the use of
an SVM for identifying locomotion intentions from surface
electromyography (sEMG) data. The study uses a phase-dependent
approach, which is based on foot contact and foot push-off events,
to contextualize muscle activation signals. The study demonstrates
good accuracy on experimental data from three healthy subjects.
The classification accuracy is also tested for different subsets of
EMG features and muscles, to identify the minimal setup required
for the control of an EMG-based exoskeleton for rehabilitation
purposes. The study shows that SVM can be used to accurately
identify locomotion intentions from sEMG data. The phase-
dependent approach used in this study helps to contextualize
muscle activation signals, which improves the accuracy of the
classification. The system has been validated on 3 healthy subjects
with an accuracy of 0.95 The study also highlights the importance
of selecting the optimal subset of EMG features and muscles
for the control of EMG-based exoskeletons for rehabilitation
purposes (Ceseracciu et al., 2010).

The paper Shen et al. (2013) proposed a motion intent
recognition method to control a wearable lower extremity assistive
device intended to aid stroke patients during activities of daily
living or rehabilitation. The primary goal is to identify the user’s
intended motion based on sensor readings from the limb attached
to the assistive device to execute the right control actions to
effectively aid the user in his intended action. To this end, the
study collected a database of 1 healthy subject performing various
motion tasks. The features of the signals are extracted, and Principal
Component Analysis is performed to reduce the number of
dimensions. Using the transformed signal, a multi-class SVM with
a Radial Basis function kernel is trained to classify the different
motion patterns. A Nelder-Mead optimization algorithm is used
to select the appropriate parameters for the SVM. An offline
classification result of a healthy subject performing a series of
motion tasks while wearing the LEAD shows that the proposed
method can effectively recognize different motion intents of the
user. The test results show that the SVM can correctly classify
each motion pattern with an average accuracy equal to 0.9580
%± 0.04%. The study demonstrates the potential of using motion
intent recognition methods to control wearable assistive devices
intended to aid stroke patients during ADL or rehabilitation. The
proposed method can effectively recognize different motion intents
of the user, and the high accuracy rate of the SVM classification
suggests that this approach may have practical applications in real-
world settings.

The paper Wu et al. (2016) proposed two machine learning
models for predicting gait phases from spatial and spatiotemporal
perspectives using joint angle data collected from four goniometers
and plantar pressure distribution data from three force-sensitive
resistors. The two models are SVM optimized by particle swarm
optimization algorithm and nonlinear autoregressive models with
external inputs. The results of the experiment show that both
models are capable of predicting gait phases, butNARXoutperforms
SVM in terms of accuracy since it utilizes FSR data to correct
the wrong predictions. The system has been validated on 10
healthy subjects with an angular accuracy of 0.087 rad The
authors suggest that it is better to predict gait phases based
on both space and time dimensions simultaneously. The paper
presents an interesting approach to predicting gait phases using
machine learning techniques and demonstrates the effectiveness
of incorporating spatiotemporal features in the prediction process
(Wu et al., 2016).

Thepaper Li et al. (2017) discusses the use of aKinect sensor and
a lower-limb exoskeleton to provide targeted rehabilitation training.
The Kinect sensor is positioned in front of the robotic exoskeleton
and is used to acquire horizontal distance data from markers placed
on the patient’s body during the rehabilitation training. This data
is used to identify different patients using an SVM. By identifying
different patients, the system can provide personalized and targeted
rehabilitation training to each patient based on their specific needs.
This approach is more effective than a one-size-fits-all approach as
it takes into account individual differences in gait and movement
patterns. The system has been validated on 3 healthy subjects with
an accuracy of 0.95. Overall, the paper demonstrates the potential
of combining technology, such as the Kinect sensor along with
exoskeletons to improve the effectiveness of rehabilitation training
and provide personalized care to patients.
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The paper Lin et al. (2017) proposes a real-time
electromyography-triggered controller for a pneumatic artificial
muscle-actuated lower-limb exoskeleton. The proposed controller
is designed to make the rehabilitation task controllable by the
patient’s movement intention. To this good, the EMG signals of
the patient’s muscle are captured and identified using the discrete
wavelet transformation technique to acquire the feature vectors
of the EMG signals. The optimal multicomponents of features
are chosen based on the experimental results, and SVMs are
studied to improve the classification performance. To implement
the closed-loop control system for the rehabilitation robot with
the movement-intention trigger control, they also used the MyRIO
controller. This system allows the patient’s movement intention to
be accurately identified by EMG feature extraction, ensuring the
safety and performance of the proposed system. The system has
been tested on 8 healthy subjects with a final accuracy of 0.99.
Overall, the paper demonstrates the potential of using EMG-
triggered control for a lower-limb exoskeleton, which can help
provide personalized care to patients by enabling the exoskeleton
to respond to the patient’s movement intention in real time
(Lin et al., 2017).

The paper Ziegler et al. (2018) proposes a method for classifying
the stance phase and swing phase during healthy human gait
based on the muscle activity in both legs using SVM. The paper
introduces a novel EMG feature calculated from the bilateral EMG
signals ofmuscle pairs, showing promising results with classification
accuracies of up to 0.96% tested on 8 healthy subjects. In particular,
all used motion data were taken from the HuMoD database which
is an open-source human motion dynamic database (Wojtusch
and von Stryk, 2015). The proposed method could potentially have
practical applications in the design of rehabilitation devices or
assistive technologies that are intended to aid individuals with gait
impairments. The use of SVMs in this study suggests that this
approach may be effective for other classification tasks in the field of
rehabilitation, and the introduction of the novel EMG feature may
inspire further research into the development of new features for
classification tasks.

The paper Wang et al. (2019) describes the development of
a multi-sensor fusion gait recognition system for accurately
controlling exoskeleton movement. The system acquires plantar
pressure and acceleration signals of human legs, and in the
experiment, the pressure signals of both feet and movement data
of the waist left thigh, left calf, right thigh, and right calf of five
test subjects were collected. The test lasted 3 min and consisted of
standing, going up the stairs, going down the stairs, going up and
down the slope, and walking on level ground. The study investigated
six different gaits, including standing, level walking, going up the
stairs, going down the stairs, going down the slope, and going down
the slope. The authors demonstrated that the SVM outperformed
Multilayer perceptron (MLP), and radial basis function (RBF)
neural networksmodels.The study also analyzed the different sliding
window sizes of the SVM algorithm. The results showed that the
SVM algorithm had the highest recognition rate with an average
recognition accuracy equal to 0.965%, tested on a total of 5H
subjects. The accurate recognition of human gait provides a good
theoretical basis for the design of a control strategy for a lower-limb
exoskeleton. The study’s findings could have potential applications
in the development of assistive devices for people with mobility

impairments and in the design of exoskeletons for industrial and
military use.

The study Ma et al. (2019) aims to improve gait phase
classification in an exoskeleton using only the angle of hip and
knee joints by introducing a kernel recursive least square algorithm
to build a classification model that considers the adaptation of
unique gait features. Additionally, an assist torque predictor based
on the KRLS algorithm is also developed. The study compares the
performance of the KRLS model with two other commonly used
gait recognition methods, MLP and SVM, using gait data collected
from 10 healthy volunteers wearing the exoskeleton. The results
show that the KRLS classification accuracy is on average 3% higher
than MLP and SVM, with a testing average accuracy of 0.86%. The
KRLS algorithm also performs twice as well as MLP in assisting
torque prediction experiments. Furthermore, the KRLS algorithm
is demonstrated to be stable, robust, and able to generalize well
to different datasets. The study suggests that the KRLS algorithm
is a promising method for improving gait phase classification and
assisting torque prediction in exoskeletal robots (Ma et al., 2019).

In Guo et al. (2020) the use of SVM in this application is based
on its ability to classify and recognize patterns in complex datasets,
such as the sEMG signals collected from the surface of human
muscles. The proposed method involves the collection of sEMG
signals from the human body during differentmotion postures, such
as walking, standing, or sitting. These signals are then processed
and analyzed using an SVM classifier to recognize the intended
motion posture of the wearer. The output of the SVM classifier
is then used to plan the moving gait of the exoskeleton, and the
decoding intention signal controls gait switching. To ensure the
stability of the planned gait during movement, the researchers also
analyzed the stability of the exoskeleton during the execution of
different motion postures. The experimental results showed that
the SVM-based method of decoding sEMG signals for human
motion intention and controlling exoskeleton gait switching had
good accuracy and real-time performance. The system has been
tested on 10H subjects with an accuracy of 0.95 The application
of SVM to lower-limb exoskeleton has significant potential for
aiding in the rehabilitation of patients. By using sEMG signals to
identify human motion intentions and control the exoskeleton’s
movement, patients can complete rehabilitation trainingmore safely
and quickly. Additionally, the use of SVM in this application
may have implications for other fields that require the real-time
recognition and classification of complex datasets (Guo et al., 2020).

The paper Ge et al. (2022) describes an experiment for lower
extremity action recognition using sEMG signals. The experiment
was designed based on the principle of human lower extremity
force generation, and the aim was to classify five common lower
extremity actions Natural walking, sitting, standing up, and going
up, and down the stairs.). In particular, the subject performed
specific movements, and a set of raw sEMG data was collected.
The authors extracted the sEMG time-domain feature used to train
an SVM classifier. The results of the experiment showed that the
SVM classifier achieved an average accuracy rate equal to 0.9066%
evaluated from 6 healthy subjects, which verified the effectiveness
of the experimental design. Overall, the paper presents a novel
approach to lower extremity action recognition using sEMG signals
and demonstrates the effectiveness of using time-domain features
and an SVM classifier. The results of the experiments will have
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potential applications in fields such as rehabilitation, sports training,
and human-machine interaction (Ge et al., 2022).

To conclude, even if SVM is an old technique it is still used for
a high range of tasks like RC, LC, and ID. Thanks to its ability to
perform well in high-dimensional space with an excellent accuracy
it remains a valid competitor (Mayoraz and Alpaydin, 1999). The
long training time makes it difficult to use on big datasets and for
the non-linear separation the choice of the kernel is not always easy
(Karamizadeh et al., 2014; Ma and Guo, 2014).

4.4 Decision tree

A DT is a non-parametric supervised learning algorithm, used
both for classification and regression tasks. It is characterized by a
hierarchical, tree structure, which consists of a root node, branches,
internal nodes, and leaf nodes (Charbuty and Abdulazeez, 2021).

The paper Guo and Jiang (2015) presents a method for
identifying the sub-phases of gait in human-machine coordinated
motion using an exoskeleton. The authors introduce a sensor layout
that includes shoe pressure sensors, knee encoders, and thigh and
calf gyroscopes to measure the contact force of the foot, knee
joint angle, and angular velocity. To differentiate between human
lower-limb motion and human-machine coordinated motion, the
authors divide the sub-phases of the gait cycle: double standing,
right leg swing, and left leg stance, double stance with the
right leg front and left leg back, right leg stance and left leg
swing, and double stance with the left leg front and right leg
back. The authors use a C4.5 decision tree algorithm to fuse
the sensor information blue and through classification identify
the sub-phases of the gait cycle. Based on simulation results,
the proposed algorithm guarantees identification accuracy. The
experimental results performed on 1 healthy subject verify the gait
division and identificationmethod.The input features are force knee
angle and angular velocity and the final accuracy is about 0.99.
Moreover, the authors suggest that the proposed method can make
hydraulic cylinders retract ahead of time and improve the maximal
walking velocity when the exoskeleton follows the person’s motion
(Guo and Jiang, 2015).

The paper Ren et al. (2018) proposed a method based on
anthropometric features for predicting patient-specific gait
trajectories. The authors noted that human gait pattern are closely
related to anthropometric features, but this relationship has not
been well-researched. The proposed method uses the Fourier series
to fit gait trajectories and represent gait patterns by the obtained
Fourier coefficients. The authors use human age, gender, and 12
body parameters (Age, Height, Mass, Gender, Thigh length, Calf
length, Bi-trochanteric width, Bi-iliac width, ASIS breath, Knee
diameter, Foot length, Malleolus height, Malleolus width, Foot
breadth) to design the gait prediction model. To make the method
applicable to lower-limb exoskeletons, the anthropometric features
are selected using an optimization method based on the minimal-
redundancy-maximal-relevance criterion. The relationship between
the selected features and human gaits is modeled using a random
forest predicting patient-specific gait trajectories. The system has
been validated on data collected in a previous study (Yun et al.,
2014) from 113 healthy subjects (Luu et al., 2014) achieving an
error of 0.08 rad.

The paper Thongsook et al. (2019) compares the performance
of three algorithms for recognizing three different gait phases of a
passive lower limp exoskeleton: C4.5 decision tree,MLP, andNARX.
The gait phases are stance, swing, and push, and the algorithms
use two IMU sensors on the hip and knee joint position and two
FSR sensors in a self-made shoe to provide four inputs. Test data
containing the pressure of shoes contacting the ground, knee angles,
and knee angular velocities is collected at different walking speeds,
and the experimental results show the classification success rate
of each algorithm when trained with different pattern sizes. The
system final accuracy is equal to 1 for C4.5, 0.98 for MLP, and
0.948 for NARX, tested on 1 healthy subject The experiments help
to determine the most suitable algorithm for recognizing different
gait phases in real-time applications (Thongsook et al., 2019).

Thework Imura et al. (2021) aimed at identifying the factors that
affect home discharge after stroke inpatient rehabilitation, including
both functional and environmental factors, using the machine
learning method. The authors note that while the importance of
environmental factors for stroke patients to achieve home discharge
has been discussed, there are limited studies on the application
of the decision tree with various functional and environmental
variables to identify stroke patients with a high possibility of home
discharge. To address this gap, the authors collected a private
dataset including information on 481 stroke patients’ functional
status and environmental factors, such as living arrangements and
social support, and used the three classification and regression tree
(CART) models to identify the factors that predict home discharge
with a final accuracy of 0.85. The results showed that functional
factors, such as motor function and cognitive function, were the
most important predictors, followed by environmental factors, such
as living arrangements and social support (Imura et al., 2021).

The paper He (2022) proposes a motion control system for
lower-limb exoskeleton for postoperative rehabilitation training,
which is based on human posture information. The system
has several functions, such as active/passive training mode
control, movement posture and EMG signal acquisition, WiFi
communication, and safety protection. The training process is
recognized and analyzed using random forest and linear regression.
The experimental results performed on 10 healthy subjects show
that the random forest algorithm has better performance in motion
recognition than the linear regression algorithm with an accuracy
of 0.997. The features used in the system are hip knee and ankle
positions. The developed control and monitoring system can be
controlled by Android and can realize the intelligent analysis of
the training process through the monitoring signals in the training
process (He, 2022).

The gait deviation correction method proposed in Zhang et al.
(2022) aims to decrease the deviation of the wearer’s gait when
using a lower-limb exoskeleton. By using the clinical gait analysis
curve as a reference trajectory and incorporating body feature
parameters, the gait correction model modifies the input trajectory
of the exoskeleton to reduce gait deviations. In particular, the gait
deviation correction method is based on the XGboost algorithm a
commonly used algorithm in the industry due to its highly efficient
implementation of the gradient boosting algorithm. To train the
algorithm CGA curves have been used. The results performed on
15 healthy subjects showed that the correction led to closer gait
trajectories to the reference curve by reducing the error at 0.11 rad,
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TABLE 4 Overview of the works analyzed in this review grouped by application of the AI-based algorithm.

Robot control (RC) Locomotion
classification (LC)

Intention detection
(ID)

Human joints
trajectory prediction
(HJTP)

Reinforcement Learning Khan et al. (2019); Xu et al.
(2020); Gao et al. (2020);
Luo et al. (2021); Peng et al.
(2021); Rose et al. (2022);
Luo et al. (2023)

Support Vector Machine Lin et al. (2017) Ceseracciu et al. (2010);
Wu et al. (2016); Li et al.
(2017); Ziegler et al. (2018);
Wang et al. (2019); Ma et al.
(2019); Ge et al. (2022)

Shen et al. (2013); Guo et al.
(2020)

Neural Network Yang et al. (2019); Yingxu et al.
(2019); Fereydooni et al.
(2020); Shi et al. (2020);
Wang et al. (2021b); Lin and
Sie (2023)

Lim et al. (2010); Jung et al.
(2015); Tang et al. (2021);
Thongsook et al. (2019)

Luu et al. (2011); Liu et al.
(2016); Błażkiewicz and Wit
(2018); Xiong et al. (2019);
Zhou et al. (2020); Wang et al.
(2021b)

Decision Tree He (2022); Zhang et al. (2022) Guo and Jiang (2015);
Ren et al. (2018);
Thongsook et al. (2019);
Imura et al. (2021)

suggesting potential benefits in the subsequent training efficacy
(Zhang et al., 2022).

DT has been involved in two different tasks RC and LC. Thanks
to their transparency even if is an old model it remains one of
the most used and competitive. Thanks to the ability to treat
categorical data they are particularly suitable for distinguishing
between different locomotion types (Badesa et al., 2014). Usually,
less amount of data is needed to train DT with respect to other
techniques (Colledanchise and Ögren, 2018).

5 Discussion

The author deemed the results of the literature analysis reliable,
as 60% of the papers originated from scientific journals with a
peer-review process, while the remaining 40% were sourced from
international conferences with peer-reviewed proceedings. Notably,
all papers underwent a thorough revision process, further bolstering
the validity of the findings.

Table 4 reports the paper presented in this review grouped by
applications and AI algorithm implemented.

Analyzing the table by column we notice that in the area of RC,
researchers have extensively explored RL and NN. RL has garnered
significant attention, as evidenced by a substantial number of
research papers. RL’s popularity can be attributed to its unique ability
to enable exoskeletons to learn optimal control strategies through
interactions with their environment. By receiving feedback in the
form of rewards or penalties, RL algorithms iteratively improve their
decision-making processes, leading to adaptable and robust control
in complex and dynamic tasks. On the other hand, NNs have also
been applied in the context of RC, albeit to a lesser extent compared
to RL. These models are known for their capacity to approximate

complex functions and effectively learn from high-dimensional data
(Lin and Sie, 2023). When applied to RC tasks, NNs can capture
intricate patterns and relationships in sensor data or articulation
configurations, facilitating more nuanced and sophisticated control
strategies. BothRL andNNshave showcased promising results in the
field of RC. The choice of which algorithm to employ often depends
on the specific requirements of the control task, with RL being
favored in scenarios that necessitate adaptive learning and dynamic
decision-making, while NNs are effective when dealing with high-
dimensional sensor data and intricate control mappings. Overall,
the combination of these two techniques showcases the ongoing
advancements in using AI to enhance and refine exoskeleton control
capabilities.

In the field of LC, researchers have employed three machine-
learning techniques: SVM, NN, and DT. Among these techniques,
SVM (Lin et al., 2017) has been particularly used for pneumatic
locomotion. SVM’s use in this domain is limited. Still, it remains
relevant due to its ability to effectively classify data in binary setting,
and thanks to the “kernel trick” it is possible also to classify elements
that originally aren’t linearly separable. Conversely, NN exhibits a
more diverse range of applications in LC (Lin and Sie, 2023). NNs
are well-suited for those tasks as they learn intricate relationships
between input signals and locomotion types. By training on vast
datasets, NNs can capture complex patterns and variations in human
movement, leading to accurate and robust classification results.
DTs, while less explored in the LC domain, are still represented by
He (2022); Zhang et al. (2022). They offer interpretability, allowing
researchers to gain insights into the decision-making process of
the model. Additionally, DTs can effectively handle categorical
data, making them suitable for classification tasks with discrete
outcomes, such as distinguishing between different locomotion
types. The three machine learning techniques used in LC each
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offer unique advantages: SVM for its effectiveness in handling non-
linear classification tasks, NN for its ability to capture complex
patterns, andDT for its interpretability and suitability for categorical
data. The combination of these techniques showcases the diversity
of approaches researchers employ to address the challenges of
locomotion classification and further advance the field.

In the domain of ID, researchers have predominantly employed
two primary machine learning techniques: RL and SVM. While
both methods have been utilized, RL has been explored in a more
limited number of papers (Guo et al., 2020; Imura et al., 2021).
On the other hand, SVM is involved in more tasks (Wu et al.,
2016; Ma et al., 2019). Intention detection plays a crucial role in
human-robot interaction, as it enables exoskeletons to interpret
human intentions and commands accurately. By employing RL
in ID, researchers aim to create intelligent and adaptable systems
that can learn from interactions with humans and optimize their
decision-making processes accordingly. RL allows exoskeletons to
understand human intentions through a continuous feedback loop,
enhancing the effectiveness of human-robot communication and
cooperation. Meanwhile, the higher representation of ID research
highlights its efficacy in addressing classification tasks related to
human intentions. SVM excels in binary classification, making
it a suitable choice for discerning various human commands
or intentions in real-time scenarios. Its ability to effectively
classify data based on feature vectors from sensors or inputs
further enhances its applicability in human-robot interaction.
Overall, the combination of RL and SVM in intention detection
research emphasizes the importance of developing accurate and
reliable methods for enabling seamless and intuitive human-robot
communication. As researchers continue to explore and refine these
machine-learning techniques, the potential for advancing human-
robot interaction and collaboration in various domains becomes
increasingly promising.

In the field of HJTP, NN stands out as the primary machine
learning technique employed, as indicated by the considerable
number of cited papers up to Wang et al. (2021b). The prevalence
of NNs in this domain is a testament to their remarkable
ability to capture complex spatiotemporal patterns in human joint
movements, making them particularly well-suited for trajectory
prediction tasks. NNs excel in learning from large datasets and
extracting meaningful representations from sequential data, which
is critical for predicting the continuous and dynamic nature of
human joint trajectories. By utilizing recurrent and convolutional
architectures, NNs can effectively model the dependencies and
interactions between joint positions over time, allowing them to
forecast future joint movements accurately. The utilization of NNs
in HJTP research signifies the growing recognition of their potential
to enhance human-robot interactions, rehabilitation processes, and
motion analysis. The ability to accurately predict human joint
trajectories contributes to safer and more efficient human-robot
collaboration, as the exoskeleton can anticipate and adapt to human
movements in real-time. Moreover, the advancement of Neural
Network architectures, such as LSTM networks and Transformer-
based models, has further strengthened their predictive capabilities,
enabling them to handle longer temporal dependencies and
capture finer-grained patterns in joint movements. As HJTP
continues to be a critical area of research, NN remains at the
forefront of innovation, driving advancements in human-robot

interaction, assistive robotics, and personalized rehabilitation. The
ongoing developments in NNs promise to revolutionize how
exoskeleton perceive and interact with human users, ultimately
enhancing the overall performance and safety of human-robot
collaborative tasks.

5.1 Conclusion and future direction

In synthesizing the key findings from our review, a prominent
pattern emerges across the diverse landscape of exoskeleton-assisted
lower-limb robot-aided rehabilitation. A prevalent observation
within the literature is the recurring need for algorithm extensive
validation on human subjects. While numerous promising solutions
have been developed, a significant proportion of these works
remain confined to simulation environments or solely validated
on healthy individuals. This crucial step towards the real-world
application of AI-driven rehabilitation solutions cannot be
underestimated, particularly when considering their translation
into clinical settings. The transition from a controlled experimental
environment to the complex and dynamic conditions of a
clinical context demands rigorous validation to ensure both the
efficacy and safety of AI-based algorithmic solutions. The gap
between simulation-based or healthy-subject validation and clinical
implementation underscores a critical concern. It emphasizes that
the bridge between research and practical clinical deployment
necessitates robust human-centered validation studies, ideally
involving individuals who are representative of the target patient
population.

Moreover, a notable gap within the current literature pertains to
the integration of human-centered technologies. While the research
landscape showcases a wealth of technological advancements, a
paucity exists in studies that holistically consider human opinions,
preferences, and expert insights. The involvement of medical
professionals, who hold a comprehensive understanding of patient
needs and clinical requirements, is particularly vital. A critical
challenge lies in ensuring that the developed AI technologies
align seamlesslywithmedical practitioners’ perspectives, workflows,
and patient care objectives. It becomes evident that not only
validation but also the comprehensive consideration of human
opinions and expert insights play pivotal roles. In the future
design process of AI devices and methodologies, it is imperative
to consistently prioritize the patient, who serves as the end-user
of the technology. Considering and incorporating user feedback
and assessing the impact that technology has on the individual is
central to the development of person-centered technologies. This
approach ensures that emerging technologies align closely with the
needs and experiences of the end-users, fostering a more effective
and user-friendly integration into healthcare practices.

Another important emerging point is that most of the existing
datasets are currently private, while we encourage researchers and
practitioners to make the data publicly available to sustain the
research progress. In this respect, interested readers can refer to
David et al. (2023) for a survey on the published datasets about
human locomotion that, however, only in a few cases are ready to
be used to train machine learning algorithms.

The survey of the works reported in the previous sections points
out unsupervised learning has not been explored. Its use may likely
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be further studied in robot-assisted walking to pre-train supervised
learning approaches (Erhan et al., 2010). Moreover, we notice that
only three papers exploit deep-RL (Rose et al., 2022; Luo et al.,
2023): we deem that investigating this learning paradigm is a
promising direction for research also because deep-RL has shown
its potential to outperform classical RL algorithms. For instance,
this happens in sequential tasks since deep-RL can benefit LSTM
architectures inside the RL paradigm (Li, 2017; Yu et al., 2020).

6 Conclusion

This paper presented a literature review on the use of artificial
intelligence in the context of lower-limb robot-aided rehabilitation.
This study identifieswhich algorithms aremainly used to address the
different aspects such as robot control, walking pattern classification,
motion interaction detection, and motion planning of the robotic
system. It is worth noting that the devices currently used in clinical
settings do not integrate AI algorithms into their functioning even
if the scientific literature reviewed here has demonstrated how these
methodologies may improve robot-assisted walking.

On the one side, this review also showed that someAI algorithms
are suitable for solving specific problems, e.g., RL is only used for
exoskeletal device control tasks, while other approaches are flexible
to different application domains. On the other side, the take-home
messages emphasize the need for the scientific community working
with lower-limb exoskeletons to push forward the integration of
AI methodologies in research programs and industrial applications.
Considering the ethical integration of AI in lower-limb robot-
aided rehabilitation demands a delicate balance between efficiency
gains and preserving employment opportunities for therapists.
Prioritizing patient safety through robust standards is imperative,
and human supervision in automated decision-making ensures
alignment with ethical standards. Transparency in AI algorithms,
especially in safety exoskeleton development, is essential for
building trust. Addressing algorithmic bias with human oversight is
crucial to prevent disparities in treatment outcomes among diverse
demographic groups. A collaborative, ethical approach is necessary
to navigate these challenges and prioritize patient wellbeing in the

evolving landscape of AI-driven healthcare (Durán and Jongsma,
2021; Kordzadeh and Ghasemaghaei, 2022; Morone et al., 2022).
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Glossary

ADP Approximate Dynamic Programming

AI Artificial Intelligence

CPG Central Pattern Generator

CGA Clinical Gait Analysis

CoP Center of Pressure

DRGL Deep Rehabilitation Gait Learning

DT Decision Tree

Emg Electromyography

GAN Generative Adversarial Network

H Healthy Prediction: HJTP

HJTP Human Joints Trajectory Prediction

ID Intention Detection

KG-QL Knowledge-guided Q-learning

KRLS Kernel Recursive Least Squares

LC Locomotion Classification

LLRER Lower-Limb Robotic Exoskeleton Robot

LSTM Long Short-Term Memory

MLP Multilayer Perceptron

MR Magnetorheological

MRAC Model Reference Adaptive Controller

NARX Nonlinear Autoregressive Exogenous Model

NRMSE Normalized Root-Mean-Square Error

NN Neural Network

P Pathological

PSO Particle Swarm Optimization

RBF Radial Basis Function

RC Robot Control

RL Reinforcement Learning

RNN Recurrent Neural Network

sEMG Surface Electromyography

Sim Simulated

SVM Support Vector Machine

VIC Variable Impedance Controller

WNN Wavelet Neural Network
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