
TYPE Original Research
PUBLISHED 02 February 2024
DOI 10.3389/frobt.2024.1341689

OPEN ACCESS

EDITED BY

Wai-keung Fung,
Cardiff Metropolitan University,
United Kingdom

REVIEWED BY

Alwin Poulose,
Indian Institute of Science Education and
Research, India
Dmytro Chumachenko,
University of Waterloo, Canada
Viacheslav Kovtun,
Polish Academy of Sciences, Poland

*CORRESPONDENCE

Lesia Mochurad,
lesia.i.mochurad@lpnu.ua

RECEIVED 20 November 2023
ACCEPTED 16 January 2024
PUBLISHED 02 February 2024

CITATION

Mochurad L (2024), Implementation and
analysis of a parallel kalman filter algorithm for
lidar localization based on CUDA technology.
Front. Robot. AI 11:1341689.
doi: 10.3389/frobt.2024.1341689

COPYRIGHT

© 2024 Mochurad. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Implementation and analysis of a
parallel kalman filter algorithm
for lidar localization based on
CUDA technology

Lesia Mochurad*

Department of Artificial Intelligence, Lviv Polytechnic National University, Lviv, Ukraine

Introduction: Navigation satellite systems can fail to work or work incorrectly
in a number of conditions: signal shadowing, electromagnetic interference,
atmospheric conditions, and technical problems. All of these factors can
significantly affect the localization accuracy of autonomous driving systems.
This emphasizes the need for other localization technologies, such as Lidar.

Methods: The use of the Kalman filter in combination with Lidar can be very
effective in various applications due to the synergy of their capabilities. The
Kalman filter can improve the accuracy of lidar measurements by taking into
account the noise and inaccuracies present in the measurements.

Results: In this paper, we propose a parallel Kalman algorithm in three-
dimensional space to speed up the computational speed of Lidar localization.
At the same time, the initial localization accuracy of the latter is preserved. A
distinctive feature of the proposed approach is that the Kalman localization
algorithm itself is parallelized, rather than the process of building a map for
navigation. The proposed algorithm allows us to obtain the result 3.8 times faster
without compromising the localization accuracy, which was 3% for both cases,
making it effective for real-time decision-making.

Discussion: The reliability of this result is confirmed by a preliminary theoretical
estimate of the acceleration rate based on Ambdahl’s law. Accelerating the
Kalman filter with CUDA for Lidar localization can be of significant practical
value, especially in real-time and in conditionswhere large amounts of data from
Lidar sensors need to be processed.

KEYWORDS

extended kalman filter, lidar, CUDA technology, real-time systems, acceleration

1 Introduction

Lidar, or light and range detection, is a method of remote sensing (Tian et al., 2021)
that uses light in the form of pulsed lasers to measure distances to objects. It has become
an integral technology in various industries, including autonomous vehicles (Elhousni and
Huang, 2020), robotics (Mochurad et al., 2023a), and environmentalmonitoring (Guo et al.,
2020).

Lidar systems consist of three main components:

1. Laser transmitter: This component generates short pulses of laser light (usually in the
infrared) that are directed at objects in the environment.

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1341689
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1341689&domain=pdf&date_stamp=2024-01-30
mailto:lesia.i.mochurad@lpnu.ua
mailto:lesia.i.mochurad@lpnu.ua
https://doi.org/10.3389/frobt.2024.1341689
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1341689/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1341689/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1341689/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1341689/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mochurad 10.3389/frobt.2024.1341689

2. Detector: The detector receives reflected light pulses from
objects and converts them into an electrical signal.

3. Data processing system: The data processing system calculates
the distance to objects using the time elapsed between the
transmission of the pulse and the receipt of the reflected signal.
Using the known angles and orientation of the Lidar system,
the coordinates of the reflected points in three-dimensional
space can be determined.

Lidar can be:

1. Static Lidar: Used to scan static objects from a fixed position.
This is often used in surveying and mapping to create three-
dimensional models of the landscape and infrastructure.

2. Mobile Lidar: Used to collect data when the Lidar system is on
a moving object, such as a car, drone, or airplane. Mobile Lidar
provides fast data collection over large areas andwide coverage.
It is used in industries such as aerial surveying, infrastructure
monitoring, and autonomous vehicles in particular.

However, Lidar has some disadvantages, such as high cost,
relatively large size and weight, and sensitivity to weather conditions
such as rain or fog. Some of these disadvantages can be compensated
for by combining Lidar with other technologies and developing new,
more compact and cost-effective Lidar systems.

One of the key applications of lidar is localization, which
involves estimating the position and orientation of an object in
the environment using data from a lidar sensor (Marck et al.,
2013). Localization is extremely important for autonomous vehicles
(Lu et al., 2022), where it is necessary to determine the position
of the vehicle for safe and efficient operation. Optimization
of navigation algorithms and methods can contribute to
environmental and economic development, as autonomous vehicles
can reduce fuel costs and ensure efficient use of infrastructure
(Varsi et al., 2021).

Improving the navigation algorithms of autonomous cars can
accelerate the development of smart cities, where autonomous
vehicles play an important role in creating integrated and efficient
transportation solutions (Phang et al., 2021; Wang et al., 2022).

Lidar’s localization speed is an important factor for real-
time applications (Liu et al., 2023), especially for applications
such as autonomous driving (Luo et al., 2019) where timely
decision making is essential. Traditional localization methods
such as the Extended Kalman Filter (EKF) (Zhang, 2019)
and the iterative closest point algorithm (ICP) (Zhang et al.,
2022), can be computationally expensive and do not meet the
requirements of real-time applications (Dabbiru et al., 2020;
Shymanskyi et al., 2022).

As it is known (Garland et al., 2008), the CUDA parallel
computing platform was developed by NVIDIA, which can
significantly accelerate various applications, including Lidar
localization. CUDA allows developers to use the massively parallel
architecture of modern GPUs, which allows them to process large
amounts of Lidar data faster.

The relevance of the conducted research can be considered from
the following perspectives:

• Development of autonomous vehicles: With the active growth
of the autonomous vehicle industry, the development of

new and improvement of existing navigation methods are
becoming increasingly relevant. Autonomous vehicles require
high accuracy in localization and stable operation of navigation
algorithms for safe and efficient movement.

• Improved traffic safety: Enhancing the localization methods of
autonomous vehicles will contribute to ensuring a high level of
safety for passengers, pedestrians, and other road users, thereby
reducing the risk of accidents and collisions on the roads.

• Environmental sustainability and cost-effectiveness: Optimizing
navigation algorithms and methods can contribute to both
environmental and economic development, as autonomous
vehicles have the potential to reduce fuel costs and ensure
efficient use of infrastructure.

• Application in various fields: Improvement of navigation
algorithms can have a positive impact on various sectors,
including logistics, automated warehouses, and robotics,
where high-precision localization and navigation are critically
important for efficient operations.

• Advancement of artificial intelligence technologies: The use of
artificial intelligence methods, such as machine learning and
computer vision, enables the creation of more accurate and
adaptive navigation systems that can autonomously improve
over time during operation.

• Application of parallel computing:The use of parallel computing
significantly enhances the speed of algorithms and ensures
more efficient processing of large volumes of data received from
the sensors of autonomous vehicles.

• Integration with other transportation systems: Improving the
navigation system of autonomous vehicles can facilitate
integration with other transportation systems, such as
intelligent road networks and public transportation systems.

• Development of smart cities: Enhancing the navigation
algorithms of autonomous vehicles can expedite the
development of smart cities, where autonomous transport
plays a crucial role in creating integrated and efficient
transportation solutions.

• Ensuring transportation accessibility: Improving the accuracy of
autonomous vehicle localization can help ensure transportation
accessibility for individuals with disabilities, the elderly, and
other population groups for whom independent car operation
may be difficult or impossible.

• Enhancing the competitiveness of automakers: The
development and optimization of navigation algorithms can
help automakers increase their competitiveness in the market
by offering consumers autonomous vehicles with high precision
in localization and navigation. This can contribute to the
advancement of autonomous transport and the widespread
adoption of these technologies among a broad range of users.

The results of this research can have a positive impact on
road safety, cost-effectiveness, environmental sustainability, and
transportation accessibility. Additionally, they can contribute to the
development of smart cities, integration of transportation systems,
and the enhancement of competitiveness for automakers.

The relevance of employing parallel computing in the context of
autonomous car navigation becomes evident when considering the
following factors:

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1341689
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mochurad 10.3389/frobt.2024.1341689

1. Large Data Volumes (Huang and Cao, 2021): Autonomous
vehicles accumulate substantial data from diverse sensors like
lidars, radars, and cameras. Swift processing of this data is
crucial for appropriate responses to varied situations. Parallel
computing enables simultaneous data processing, enhancing
the efficiency of the navigation system.

2. Algorithmic Speed (Varsi et al., 2020): The swift execution of
navigation tasks such as localization, route planning, and
obstacle detection is imperative for autonomous cars. Parallel
computing facilitates the distribution of tasks across numerous
processors or cores, resulting in rapid responses and reduced
information processing durations.

3. Energy Efficiency (Bi et al., 2020): Through optimal allocation
of computing resources, parallel computing contributes to
more energy-efficient navigation algorithms. This aspect is
particularly significant for electric and hybrid vehicles with
limited energy resources.

4. Compatibility with Distributed Systems (Amin et al., 2019):
Parallel computing can be leveraged to create distributed
data processing systems. Different segments of navigation
algorithms can be executed on diverse devices or nodes
within the computing network, optimizing overall system
performance, reliability, and scalability.

5. Real-Time Assurance (Mochurad and Shchur, 2021): Given
the necessity for autonomous vehicles to respond to traffic
situations in real-time, parallel computing plays a crucial role
in ensuring swift execution of algorithms. This is essential for
maintaining safe and efficient traffic conditions.

6. Adaptability to Various Computing Resources (Huang and
Cao, 2021): Parallel computing is applicable across different
computing platforms, including CPUs, GPUs, and specialized
accelerators like FPGAs and ASICs. This adaptability allows
navigation algorithms to be tailored to the available resources,
optimizing their overall efficiency.

The article analyzes the literature on the topic of the study. This
was done with a view to highlighting the main advantages and
disadvantages of the current state of the issue under consideration.
In the paper (Montañez et al., 2023), the authors employed an
extended Kalman filter for the detection of moving objects. The
effectiveness of the EKF was assessed using a dataset that includes
location information obtained from LiDAR and a radar sensor for
an object moving along a trajectory with abrupt changes.

In (Koide et al., 2021) presents an approach that creates a
globally consistent 3D map structure based on the loss factor during
a real-time GPU-accelerated mapping process. Data is obtained
from a 3D Lidar and maps are constructed based on it. The GPU
is used to speed up the mapping algorithm during map creation.

In the research (Shreyas Madhav and Rajesh Kanna, 2021),
an advanced Lidar 3D SLAM algorithm is introduced for
autonomous aerial robots. The alignment process involves the
extraction of Fast Point Feature Histogram (FPFH) descriptors,
subsequently refined through iterative nearest point registration
(NPR). The ultimate trajectory estimation undergoes 3D pose graph
optimization to reduce potential overall drift. Simulated results
demonstrate a noteworthy 26% decrease in execution time when
employing the parallelized algorithm with 4 CPUs compared to its
serial counterpart.

In (Jang et al., 2022), the authors detail an algorithm that
employs GPU parallel processing to enhance the existing ND map
matching process. This optimization resulted in a remarkable 48-
fold acceleration while preserving accuracy.

The integration of a semantic image with low-resolution 3D
Lidar point clouds and the generation of dense semantic depthmaps
are addressed in (Lou et al., 2023). Utilizing visual odometry, the
method selects functional ORB points with depth information to
enhance positional accuracy. During unmanned vehicle positioning,
parallel threads are employed to aggregate 3D semantic point clouds.

In the paper (Chiang et al., 2023), the authors leverage
Lidar as the primary auxiliary sensor, proposing a Lidar-based
simultaneous localization and mapping (SLAM) approach for
positioning, navigation, and synchronization. Furthermore, point
cloud registration is executed through a three-dimensional normal
distribution transform (NDT).The initial Lidar position assumption
for Lidar-based SLAM is derived from two sources: one being
a differential global navigation satellite system (GNSS) solution,
and the other being an inertial navigation system (INS) and an
integrated GNSS solution created using an extended Kalman filter
with added motion constraints, including zero velocity update and
nonholonomic constraint.

An improved NDT algorithm and its FPGA implementation
were presented in (Deng et al., 2021). The authors achieved the
acceleration of the search operation by using a new data structure
called OAVS, which is non-recursive and efficient. The optimized
semantic NDT algorithm based on OAVS significantly reduced the
number of search operations by eliminating unnecessary queries.
Additionally, the proposed streaming FPGA accelerator architecture
for SEO-NDT improved real-time performance and ensured energy
efficiency. When compared to advanced embedded CPU and GPU
processors, the FPGA implementation provided up to 35.85x and
2.44x performance acceleration, respectively.

In (Dong et al., 2021) authors used this method in such
a way that it performs all calculations directly on the range
images created using 3D LiDAR scans, which avoids explicit
processing of the 3D point cloud and quickly selects the poles
for each scan.

As indicated in (Mendez Maldonado et al., 2021), the authors
developed a hybrid convolutional neural network (CNN) by directly
applying a Markovian grid-based localization approach on the
GPU. This CNN is capable of simultaneously handling image-based
localization and odometry-based probability propagation within a
single neural network. The detailed description of the Markovian
approach can be found in (Kovtun et al., 2023a).

In (Sun et al., 2020) a new data structure with a spatial
partitioning method was presented, which can be successfully built
even for large volumes of point clouds. Based on this structure, a
KNN search algorithm was developed that works effectively when
the distribution of points is uneven. This innovative structure is
implemented on both an FPGA accelerator and a GPU.

In the following paper (Xie et al., 2022), introduces a lightweight
convolutional neural network (CNN) framework designed for the
semantic segmentation of a projection-based LiDAR point cloud.
This framework comprises only 1.9 million parameters, marking an
87% reduction compared to leading-edge networks. The evaluation
on a GPU revealed a processing time of 38.5 milliseconds per

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1341689
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mochurad 10.3389/frobt.2024.1341689

frame and an achieved result of 47.9% mIoU on the Semantic-
KITTI dataset. Moreover, the proposed CNN is tailored for FPGAs
using the NVDLA architecture, demonstrating a 2.74x speedup
compared to a GPU-based implementation and a noteworthy 46x
improvement in energy efficiency.

In (Mochurad and Kryvinska, 2021) a parallel parallelization
algorithm is proposed to solve the problem of determining
the current position of a lidar in 2D based on OpenMP
technology. The authors also indicated prospects for further
research: 1) optimization of the computing process based on
CUDA technology using GPUs; 2) consideration of a more complex
spatial domain.

The researchers in (Mochurad et al., 2023b) introduced a
parallel algorithm employing CUDA technologies to establish the
2D position of a lidar through the Particle Filter algorithm.
Despite achieving a considerable speedup with this technology,
it might appear that their findings challenge the hypothesis
presented in our study. Nonetheless, this is not the case, as
our investigation focuses on a distinct algorithm, addressing
the issue of 3D localization and extending beyond closed-room
localization.

In the study (Xu et al., 2022), the use of measurement
uncertainty estimation is identified as an effective method for
tracking a vehicle, based on LiDAR detectors. The authors propose
an extended Kalman filter framework, consisting of two main
components: the first is capable of assessing the statistics of
measurement noises dependent on the state to detect LiDARobjects,
while the second generates multi-hypothesis measurements based
on the trajectory of the identified vehicle.

The shift from traditional automobiles to autonomous
ones encompasses the integration and enhancement of diverse
technologies and computerized algorithms. An integral aspect
influencing the efficacy of autonomous vehicles is their localization,
along with perception, route planning, and control, where the
precision and effectiveness of localization assume a pivotal role
in autonomous driving. About (Poulose et al., 2022), the paper
underscores the significance of the localization challenge in
autonomous vehicles and elucidates its map-based realization
employing point cloud matching. The authors introduce a
localization system leveraging the Robot Operating System
(ROS) in conjunction with Autoware. The empirical findings
demonstrate that a map-centric localization system utilizing 3D
lidar scanning delivers adequately precise real-time localization
for autonomous driving within a university campus setting. The
paper provides an exhaustive account of the methodologies for
crafting point cloud maps and vehicle localization, along with
a systematic guide for implementing a map-based system for
autonomous driving.

In cities, there are many regions where the global navigation
satellite system does not work, where localization of autonomous
driving remains a problem. Various methods have been previously
proposed to improve the localization accuracy by using accurate
distance measurements obtained from Lidar sensors and for the
speed of map construction. This study proposes a parallelized 3D
Kalman algorithm using CUDA to accelerate the computational
speed of Lidar localization while maintaining the original lidar
localization accuracy. Unlike previous papers that parallelize the

map construction, this approach parallelizes theKalman localization
algorithm itself.

The aim of this study is to propose a parallel algorithm based on
CUDA technology to accelerate lidar localization in 3D space.

The main contribution of this article can be
summarized as follows:

1. Anew localization algorithm is proposed that uses the Kalman
filter and CUDA technology to accelerate the computational
speed of Lidar localization in 3D;

2. A theoretical estimate of the acceleration based on Ambdahl’s
law was calculated;

3. A comparison of the sequential Kalman algorithm and the
parallel implementation for different sizes of datasets is carried
out, and quantitative estimates of the advantages obtained over
existing studies are given;

4. The localization error is determined, and it is found that
the proposed algorithm allowed to obtain a speedup of
3.8 times without reducing the localization error, which
amounted to 3%.

The rest of this article is organized as follows: Chapter 2
describes the proposed parallel localization algorithm, analyzes
the computational complexity presents a new theoretical estimate
of the speedup based on Ambdahl’s law, and presents the
steps of implementing the proposed algorithm using CUDA
technology. Chapter 3 describes the environment used for testing
and presents the relevant results of numerical experiments.
Conclusions and prospects for further research are shown in the
last chapter.

2 Materials and methods

The Kalman filter, discussed in (Wo and Biswal, 2023),
serves as a powerful recursive tool for estimating the internal
state of linear dynamic systems by analyzing a series of noisy
measurements. Its application extends across various domains,
encompassing engineering, economics, radar, computer vision,
and the estimation of structural macroeconomic models. This
filter holds significance as a fundamental component in control
theory and the development of control systems. In conjunction
with the linear-quadratic regulator (LQR), the Kalman filter
addresses the challenges posed by linear-quadratic Gaussian
(LQG) control problems. Collectively, the Kalman filter, LQR,
and LQG controller represent essential solutions to core issues
in control theory.

As noted by the authors of (Meng et al., 2023), Kalman
filtering is an optimal recursive numerical computing
algorithm characterized by the efficiency of program
memory use, speed, and suitability for real-time data
processing programs.

It is based on a mathematical model of the system and uses the
principles of Kalman filtering to combine the predicted state with
actual measurements to obtain the best estimate of the system’s state.
It has two main steps: prediction and correction. The prediction
step uses mathematical models of the system and the previous
state estimation to make a forecast of the future state of the
system. In the correction step, the predicted state is updated to

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2024.1341689
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mochurad 10.3389/frobt.2024.1341689

FIGURE 1
Flowchart of the multivariate Kalman filter algorithm.

take into account new measurements that are reduced by noise
and incompleteness. The state estimation uses information such
as the state vector and covariance matrix to provide an optimal
estimate andminimal prediction error.This is achieved byweighting
the prediction and new measurements based on their accuracy
and uncertainty.

Kalman filters are constructed upon time-discretized linear
dynamical systems, which are represented as Markov chains, as
outlined in (Kovtun et al., 2023b). These chains are built on linear
operators subject to errors, which may include Gaussian noise. The
system’s state is expressed as a vector of real numbers. At each
discrete time increment (clock cycle), a linear operator is applied
to the state, generating a new state that incorporates some noise
and, if available, information from the system control. Subsequently,
another linear operator, combined with additional noise, is applied
to the true (“hidden”) state to produce the observed outputs. While
the Kalman filter shares similarities with the hidden Markov model,
a key distinction lies in the fact that the hidden state variables in the
Kalman filter assume values in a continuous space, contrasting with
the discrete state space of the hidden Markov model. Notably, there
exists a robust duality between the equations of theKalman filter and
the hidden Markov model.

• Foresight stage

TheKalman filtermodel postulates that the actual state at a given
time point k is deduced from the state at k− 1, as illustrated Figure 1:

Xkp = AXk−1 +Buk +wk

where.

Ak is a state transition model applied to the previous state xk−1;
Bk is a model of control effects applied to the control vector uk;
wk is the noise of the process, which is assumed to have a

multivariate normal distribution with zeromean and covarianceQk.
The covariance of the predicted Pk state is calculated using the

following formula:

Pkp = APk−1A
T +Qk .

• Refinement stage

At a point in time k observation (or measurement) Yk of the
present state Xk is made in accordance with

Yk = CXkm +Zk

where C is the observation model that maps the true state space to
the observed space, and Zk is the observation noise, assumed to be
Gaussian white noise with zero mean and covariance Rk.

Next, the covariance of innovations (deviation) is calculated
Sk which is then used to calculate the optimal Kalman
transfer coefficient:

Sk =HkPk|k−1H
T
k +Rk

Kk = Pk|k−1HT
kS
−1
k

After that, we calculate the updated state estimate and its
covariance:

Xk = Xkp +K[Y  − HXkp ]

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2024.1341689
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mochurad 10.3389/frobt.2024.1341689

TABLE 1 Execution time, s.

Number of points GPU CPU

10 1.074 0.334

50 1.589 1.568

100 2.695 2.957

500 6.350 15.227

1,000 8.295 29.450

2000 16.253 58.511

5,000 38.609 146.716

10,000 77.652 295.801

Pk = (I − KH)Pkp

The initial state and noise vectors at each cycle {x0,w1,wk, v1. vk}
are assumed to be mutually independent.

2.1 The proposed parallel algorithm
description

CUDA was used to parallelize the Kalman algorithm. Since all
the operations in the Kalman algorithm are vector operations, i.e.,
transformations and other calculations are performed by matrix
operations, it was decided to speed up their execution by moving
them toCUDA.Thus, we have two subtasks: the prediction stage and
the refinement stage. We created corresponding execution kernels
for them. Next, we present an overview of the CUDA-based Kalman
algorithm system:

1. Input Data:

• The algorithm takes input data related to the prediction
and refinement stages. This may include state predictions,
covariance estimates, and other relevant information
for each point.

2. Prediction Stage Kernel:

• CUDA kernel specifically designed for the
prediction stage.

• Parameters: gridSize = (point_num, 1), blockSize =
(Predict_Size, Predict_Size).

• Each thread processes a point, calculates state prediction
Xkp , and covariance Pk using the transition matrix A.

• Execution involves parallel matrix operations for
multiple points.

3. Synchronization (Prediction Stage):

• Threads are synchronized after completing calculations
for the current step.

FIGURE 2
Visualization of the execution time of the proposed algorithm on GPU
using CUDA and on the CPU.

• Ensures all threads have updated values of assumptions
and covariances for the next steps.

4. Refinement Stage Kernel:

• CUDA kernel dedicated to the refinement stage.
• Parameters: gridSize = (point_num, 1), blockSize =

(Predict_Size, Predict_Size).
• Each thread processes a point, calculates deviation

covariance Sk, optimal Kalman transfer coefficient Kk,
updates assumptions Xk, and covariance Pk.

• Execution involves parallel matrix operations for
multiple points.

5. Matrix Inversion (Refinement Stage):

• As part of calculating Kk, matrix inversion is required.
• All threads are synchronized to perform matrix inversion

collectively.
• After inversion, parallel calculations resume.

6. Synchronization (Refinement Stage):

• Threads are synchronized again after calculating each
update element.

• Ensures consistent updated values before moving to the
next step of the algorithm iteration.

7. Output Data:

• The algorithm produces updated assumptions and
covariances after both prediction and refinement stages.

This presents an overview of the CUDA-based Kalman
algorithm system and provides an overview of how the CUDA-
based Kalman algorithm processes input data, performs parallelized
matrix operations, and synchronizes threads at critical points to
maintain consistency in the calculations.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1341689
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mochurad 10.3389/frobt.2024.1341689

TABLE 2 Acceleration of the parallel Kalman algorithm when using CUDA relative to CPU.

Number of points 10 50 100 500 1,000 2000 5,000 10,000

S 0.310 0.986 1.097 2.397 3.550 3.600 3.800 3.809

FIGURE 3
Acceleration of the parallel Kalman filter algorithm.

2.2 Analysis of computational complexity
and theoretical estimation of speedup

The complexity of the Kalman algorithm:

O(n2.4
z + n2

x),

where n2
x follows from the manipulation of the matrices by the

dimension nx x nx, а n2.4
z to the power of 2.4 due to the inversion

of the matrix nz x nz.
Therefore, in the context of parallelization usingCUDA, the time

complexity will be equivalent to the algorithm’s complexity divided
by the number of threads, with the exception of matrix inversion, as
it involves synchronization.

O(n2.4
z +

n2
x

N
),

where N is the number of threads.
Since the Kalman algorithm consists of matrix operations, it

was fully parallelized, but the matrix inversion is performed in
synchronous mode. The data reading operations can be neglected,
so for the first Amdahl’s law (Anshu, 2019), the value of the
sequential part (α) for the Kalman filter position and velocity
prediction problem can be assigned the ratio of the complexity of
the parallelized matrix operations to all other operations, namely,:

α =
n2.4
z

n2.4
z + 6n2

x
≈ 73,72

289.72
≈ 0.26

Then the theoretical acceleration is as follows:

Sp =
1

α+ 1−α
p

= 1
0,26+ 1−0,26

640

≈ 3.9,

where α is the fraction of the sequential algorithm, p is the
number of cores.

2.3 Implementation of the proposed
algorithm

CUDA was used to parallelize the Kalman algorithm. Since
the Kalman algorithm consists of matrix operations, it was fully
parallelized. That is, all matrix operations from the prediction
and update stages were encapsulated in two corresponding
processing kernels on the GPU memory. This way, we got a
kernel for predictions and updates, which made it possible to
speed up the matrix operations of the algorithm itself, i.e., the
algorithm itself.

Since the algorithm is iterative, after all the cores have
completed the operation of one pass, synchronization was
established to avoid possible situations of resource races or access to
uncalculated values.

To use CUDA, we built two processing functions for each of the
stages. The function of the prediction stage is performed as follows:

1. Thread indexing: The tx and ty variables store the index of the
thread in the block, and bx stores the block index.

2. Allocation of shared memory: By using the __shared__
keyword, a shared memory location is declared for the
temp array with the size of the covariance matrix used for
intermediate results.

3. State prediction: each thread calculates the predicted state xk′

for a particular point using the formula x′k = A ∙ xk−1 where
the required range of matrices is selected for each specific
point. This calculation is performed only by the first thread
in each block (if (tx < 1)), and the results are stored in the
new_predictD array.

4. Prediction of covariance: Each thread computes the predicted
covariance matrix Pk

′ for a particular matrix element using
the following formula P′k = A ∙ Pk−1 ∙A

T +Q. The intermediate
result is stored in the shared array temp.

5. Update covariance:The intermediate results stored in temp are
multiplied by AT each individual element in its own stream.
To each element of the final result is added the corresponding
element of the matrices Q i. These calculations are performed
in the condition (if (bx<point_num) to avoid a possible access
attempt outside the allocatedmemory.The result is saved to the
new_covD array.

6. Synchronization of threads: The __syncthreads() function
ensures that all threads in a block complete their calculations
and synchronize them before continuing execution.

The refinement function is performed according to the
algorithm described below:

1. Indexing of threads: The tx and ty variables store the indexes
of threads within the same block, bx stores the block number.

2. Allocation of shared memory: The __shared__ code word
declares sharedmemory for the arrays temp, temp2, temp3,K ,

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1341689
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mochurad 10.3389/frobt.2024.1341689

FIGURE 4
Comparison of average GPU acceleration for different datasets.

temp4, and temp5 for intermediate calculations and the value
of the Kalman coefficient.

3. Calculations. H ∙ Pk: Each thread computes one specific
element of the product of two matrices H ∙ Pk using the
required set of values. The result of each thread is stored in a
shared array temp.

4. Calculations. H ∙ PkH
T +R: Streams compute a specific single

element of the result of an operation H ∙ PkHT +R formula
using the value already found H ∙ Pk on the previous one. The
result is stored in the shared array temp2.

5. Calculations. PkH
T: Each thread computes one specific

element of the result of the product PkHT. The result is stored
in the shared array temp3.

6. Synchronization and search for the inverse matrix:The threads
are synchronized so that all previous operations have finished
their calculations and the subsequent execution is with a
fully filled temp2 array. To find (H ∙ PkHT +R)−1 the already
calculated value of the matrix is taken and the value of the
inverse is searched for on its basis in sequential mode. The
result of the inverse matrix search is stored in temp2_inv.

7. Calculation K: Threads calculate one specific element of the
Kalman transfer coefficientmatrix using the calculation results
stored in temp3 and temp2_inv.The result is saved to a shared
array K .

8. Calculations. zk −H ∙ xk′: Each thread computes one specific
difference element zk −H ∙ xk′. The result is stored in temp4.

9. Calculations. xk: Threads compute one value of the refined
prediction of the next state at a time xk by adding the
product of K by zk −H ∙ xk

′ stored in temp4, to the initial state
prediction.

10. Calculations. I−K ∙H: Threads compute one specific element
of the matrix I−K ∙H. The result is stored in temp5.

11. Calculations. Pk: The threads compute the updated covariance
matrix Pk by multiplying I−K ∙H stored in temp5, with the
initial value of the covariance matrix P.

12. Synchronization of threads: The __syncthreads() function
ensures that all threads in a block complete their calculations
and synchronize them before continuing execution.

So,Algorithm 1 described implementing the proposed algorithm.

3 Results

For the study, a random three-dimensional space of values was
generated (Top Streamers on Twitch, 2023) since the object of study
is the speed of the algorithm. Random values were generated taking
into account the contribution of measurement error and had a
nonlinear characteristic.

The tests were conducted on a system with the following
characteristics:

3.1 System

CPU: core i5-8500H.
RAM: DDR4 2,667 MHz 24 Gb.
GPU: NVIDIA GeForce GTX 1050.
GPU RAM: GDDR5 8192 MB.
CUDA Cores: 640.

3.2 Memory interface: 256-bit

GPU Interface: PCI Express x8 Gen3.
As a result of applying the approach proposed in this paper, the

execution times of the parallelized algorithm using CUDA and the
algorithm implemented on the CPU are presented in Table 1.

For visualization, the data in Table 1 are presented in Figure 2.
According to the results shown in the table, for a small number of
points, up to 50, the single-threaded CPU algorithm performs the

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2024.1341689
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mochurad 10.3389/frobt.2024.1341689

 //Initialization of constant variables

and matrices

 //const Predict, Measure, PredictSize, CovSize,

MeasureSize

 //H, HT, A, AT, Q, R, I

 function ele_multi (A, B, Awidth, Bwidth,

tx, ty):

  P, k = 0, 0

  for k = 0 to Awidth: P + = A [ty*Awidth + k]*B

[k*Bwidth + tx]

  return P

 function inv_cpu (a_i, c_o, n):

  d = 0, n = 3

  for i = 0 to 3: d + = a_i [0*3 + i]*(a_i [1*n +

((i + 1) % 3)]*a_i [2*n + ((i + 2) % 3)] - a_i

[1*n + ((i + 2) % 3)]*a_i [2*n + ((i + 1) % 3)])

  if d: for i = 0 to 3: for j = 0 to 3: c_o [i*n +

j] = ((a_i [((j + 1) % 3)*n + ((i + 1) % 3)]*a_i

[((j + 2) % 3)*n + ((i + 2) % 3)]) - (a_i [((j +

1) % 3)*n + ((i + 2) % 3)]*a_i [((j + 2) % 3)*n +

((i + 1) % 3)]))/d

 function PredictKernel (predictD, covD,

new_predictD, new_covD, point_num):

  for bx = 0 to point_num:

  for tx = 0 to Predict: new_predictD

[bx*PredictSize + tx] = ele_multi (A, predictD +

bx*PredictSize, Predict, 1, tx, 0), temp [0][tx] =

ele_multi (A, covD + bx*CovSize, Predict, Predict,

tx, 0)

  __syncthreads ()

  new_covD [bx*CovSize + tx] = ele_multi (temp,

AT, Predict, Predict, tx, 0) + Q [tx],

  __syncthreads ()

  function UpdateKernel (dataD, predictD, covD,

new_predictD, new_covD, point_num, ite_num):

  for bx = 0 to point_num:

   for ty = 0 to Measure: temp [ty][0] = ele_multi

(H, covD + bx*CovSize, Predict, Predict, 0, ty)

   __syncthreads ()

   for ty = 0 to Measure: for tx = 0 to Measure:

temp2 [ty][tx] = ele_multi (temp, HT, Predict,

Measure, tx, ty)

   __syncthreads ()

   for tx = 0 to Measure: temp3 [0][tx] =

ele_multi (covD + bx*CovSize, HT, Predict,

Measure, tx, 0)

   __syncthreads ()

   for ty = 0 to 2: for tx = 0 to 1: temp2_inv

[ty*Measure + tx] = ele_multi (temp2_inv_f, temp3,

Measure, Measure, tx, ty)

   __syncthreads ()

   for ty = 0 to Measure: temp4 [ty] = dataD

[MeasureSize*bx + ty] - ele_multi (H, predictD +

bx*PredictSize, Predict, 1, 0, ty)

   if tx = = 0: new_predictD [bx*PredictSize +0] =

predictD [bx*PredictSize +0] + ele_multi (K,

temp4, Measure, 1, 0, 0)

   temp5 [0][0] = I [0][0] - ele_multi (K, H,

Measure, Predict, 0, 0), __syncthreads ()

   new_covD [bx*PredictSize + tx] = ele_multi

(temp5, covD + bx*CovSize, Predict, Predict, tx,

0)

Algorithm 1. Parallelized the Kalman algorithm.

TABLE 3 Localization error.

Number of points Localization error, %

GPU CPU

10 3.156481147 3.121895142

50 3.26348609 3.341513087

100 2.829944308 2.818013953

500 2.726926206 2.721352679

1,000 3.087015553 3.086803368

2000 2.995234731 3.058086489

5,000 3.067066336 3.161766167

same number of operations faster, because there are not enough
points to optimally load the GPU and the time spent by CUDA on
memory allocation is longer than the time of computation.

Based on the data in Table 1, the value of the resulting
acceleration S which is shown in Table 2.

The results in Table 2 show that the speedup reaches its
threshold under the given conditions by 3.8. The reliability of this
result, obtained based on numerical experiments of the software
implementation of the proposed algorithm, is confirmed by the
previously obtained theoretical estimate of the speedup, which
should be equal to 3.9. Thus, there is a speedup after 500 points, but
before that the algorithm is slower than the traditional one. These
results are also visualized in Figure 3. As you can see, the algorithm
gets close to the maximum speedup from 1,000 to 5,000 points. And
then it slowly rises.

Thus, the software implementation of the proposed algorithm
made it possible to process object location data up to 3.8 times
faster. This acceleration, in turn, makes it possible to build real-time
systems that require fast localization processing. Such systems can
be autonomous vehicles or car pilot assistance systems, where the
fastest possible processing of frequently received data on position in
space and environment is required. The high speed of data flow is
optimally suited for processing on CUDA.

In order to compare the sequential Kalman algorithm and the
parallel implementation, tests and measurements were performed
for different sizes of item datasets. These data were averaged and
presented in a report for further analysis. Based on the results of
the tests of the sequential and parallel Kalman algorithms, a graph

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2024.1341689
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mochurad 10.3389/frobt.2024.1341689

comparing the average acceleration over different ranges of the
number of points was constructed, which is shown in Figure 4.

According to Figure 4, we can conclude that it is more efficient
to delegate localization using the Kalman algorithm to a larger GPU,
from 500 points. As we can see from the averaged results, the use
of CUDA on average gives an increase in execution speed of about
2.4 times. While when using the optimal set, it is 3.7 times faster.
It can also be seen that using only suboptimal sets leads to losses
in execution speed, as due to the previously described features of the
algorithm and technology, the acceleration is only 80% of the typical
CPU sequential algorithm.

As a result, we obtained a variation of the Kalman algorithm
for localization in 3D space. The proposed approach is appropriate
only for systems with a high load of data flow for localization, which
will speed up localization by 3.8 times. It may be inappropriate
to use it instead of the traditional approach when there are long
delays between newdata acquisitions, as the execution speedwill not
increase. Accuracy for both variations of the localization algorithm
is shown in Table 3. As can be seen from the results, the quality of
localization is almost identical for both algorithms. According to the
results, both implementations have an average localization error of
3%, which indicates a shift from the real position by no more than
3% from the original position.

Thus, the proposed algorithm allows us to obtain a solution 3.8
times fasterwithout reducing the localization error, which is effective
in real-time decision making.

The results obtained were compared with the previous results
obtained by other authors. For example, in (Jonsson, 2012), the
author obtained a speedup of 1.5 for the number of points of
500–10000, while in our work this result was improved by 60%.
Also, compared to (Osman et al., 2021), we managed to improve the
speedup by about 90%. In (Sheikhpour and Atia, 2022), the authors
managed to speed up the processing time of a parallel algorithm by
41% compared to a conventional sequential implementation, while
we managed to do it by 73%.

4 Conclusion

In this paper, we developed a parallelized version of the Kalman
algorithm in 3D using CUDA to accelerate the computational
speed of Lidar localization. Localization using Lidar is relevant for
autonomous driving in regions where the global navigation satellite
system does not work.The result is a software product that processes
object location data faster and can be used for real-time systems,
such as autonomous vehicles or car pilot assistance systems, where
frequently received data on position and environment need to be
processed as quickly as possible. High data rates are optimally suited
for CUDA processing.

We tested and measured the efficiency of the sequential Kalman
algorithm and the parallel implementation on different sizes of lidar
position datasets. It turned out that the use ofCUDA ismore efficient
on larger datasets, from 500 points. On average, using CUDA gives
an increase in execution speed of about 2.4 times, while on the
optimal set – 3.8 times. Using CUDA on suboptimal sets can lead
to losses in execution speed, since due to the peculiarities of the
algorithm and acceleration technology, the execution speed is only
80% of the sequential version. This can be explained by the fact that

CUDA allows you to calculate many points in parallel at the same
time, which reduces the execution time of the algorithm.

In general, the use of CUDA can significantly increase the
efficiency of the Kalman algorithm, because in real conditions, it
is necessary to constantly process the data coming from the lidar.
Nowadays, there are many CUDA-enabled edge devices, which
confirms the relevance of the presented algorithm and this study.

Prospects for further research include the possibility of
extending the proposed algorithm to the case of 2D LIDAR data
and analyzing the proposed algorithm based on SLAM technology
(Zhu et al., 2009).

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary material.

Author contributions

LM: Conceptualization, Data curation, Formal Analysis,
Funding acquisition, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Validation,
Visualization, Writing–original draft, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article.This research
was funded by National Research Foundation of Ukraine project
number 2023.03/0029.

Acknowledgments

The author thank the reviewers for the relevant comments
that helped to present the paper better. The National Research
Foundation of Ukraine funds this study from the state budget of
Ukraine within the project No 2023.03/0029.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2024.1341689
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mochurad 10.3389/frobt.2024.1341689

References

Amin, F., Abbasi, R., Rehman, A., and Choi, G. S. (2019). An advanced algorithm
for higher network navigation in social internet of things using small-world networks.
Sensors 19 (2007), 2007. doi:10.3390/s19092007

Anshu, K. (2019). An analytical study of Amdahl’s and Gustafson’s law. Available at:
https://ssrn.com/abstract=3435202.

Bi, H., Shang, W.-L., and Chen, Y. (2020). Cooperative and energy-efficient
strategies in emergency navigation using edge computing. IEEE Access 8, 54441–54455.
doi:10.1109/access.2020.2982120

Chiang, K., Chiu, Y., Srinara, S., and Tsai, M. (2023). Performance of LiDAR-SLAM-
based PNT with initial poses based on NDT scan matching algorithm. Satell. Navig. 4
(3), 3. doi:10.1186/s43020-022-00092-0

Dabbiru, L., Goodin, C., Scherrer, N., and Carruth, D. (2020). LiDAR data
segmentation in off-road environment using convolutional neural networks (CNN).
SAE Tech. Pap. Ser. 2 (6), 3288–3292. pg. 3288. doi:10.4271/2020-01-0696

Deng, Q., Sun, H., Chen, F., Shu, Y., Wang, H., and Ha, Y. (2021). An
optimized FPGA-based real-time NDT for 3D-LiDAR localization in smart vehicles.
IEEE Trans. Circuits Syst. II Express Briefs 68, 3167–3171. doi:10.1109/tcsii.2021.
3095764

Dong, H., Chen, X., and Stachniss, C. (2021). “Online range image-based Pole
extractor for long-term LiDAR localization in urban environments,” in 2021 European
conference on mobile robots (ECMR), 1–6.

Elhousni, M., and Huang, X. (2020). “A survey on 3d lidar localization for
autonomous vehicles,” in 2020 IEEE intelligent vehicles symposium (IV) (IEEE),
1879–1884.

Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J., Morton, S.,
et al. (2008). Parallel computing experiences with CUDA. IEEE Micro 28 (4), 13–27.
doi:10.1109/mm.2008.57

Guo, Q., Su, Y., Hu, T., Guan, H., Jin, S., Zhang, J., et al. (2020). Lidar boosts 3D
ecological observations and modelings: a review and perspective. IEEE Geoscience
Remote Sens. Mag. 9 (26), 232–257. doi:10.1109/mgrs.2020.3032713

Huang, K., and Cao, J. (2021). Parallel differential evolutionary Particle filtering
algorithm based on the CUDA unfolding cycle. Wirel. Commun. Mob. Comput. 2021,
1–12. doi:10.1155/2021/1999154

Jang, K. W., Jeong, W. J., and Kang, Y. (2022). Development of a GPU-accelerated
NDT localization algorithm for GNSS-denied urban areas. Sensors 22 (1913), 1913.
doi:10.3390/s22051913

Jonsson, P. (2012). “Parallelization of the Kalman filter for multi-output systems on
multicore platforms (Dissertation)”. Accessed https://urn.kb.se/resolve?urn=urn:nbn:se:
uu:diva-205553.

Koide, M., Yokozuka, M., Oishi, S., and Banno, A. (2021). Globally consistent 3D
LiDAR mapping with GPU-accelerated GICP matching cost factors. IEEE Robotics
Automation Lett. 6 (4), 8591–8598. doi:10.1109/lra.2021.3113043

Kovtun, V., Altameem, T., Al-Maitah, M., and Kempa, W. (2023a). The
Markov concept of the energy efficiency assessment of the edge computing
infrastructure peripheral server functioning over time. Electronics 12 (20), 4320.
doi:10.3390/electronics12204320

Kovtun, V., Izonin, I., and Gregus, M. (2023b). The functional safety assessment of
cyber-physical system operation process described by Markov chain. Sci. Rep. 12, 7089.
doi:10.1038/s41598-022-11193-w

Liu, X., Wei, W., Li, Y., Gao, Y., Xiao, Z., and Lin, G. (2023). Trajectory prediction
and visual localization of snake robot based on BiLSTM neural network. Appl. Intell.
53, 27790–27807. doi:10.1007/s10489-023-04897-7

Lou, L., Li, Y., Zhang, Q., and Wei, H. (2023). SLAM and 3D semantic reconstruction
based on the fusion of lidar and monocular vision. Sensors 23 (1502), 1502.
doi:10.3390/s23031502

Lu, Y., Ma, H., Smart, E., and Yu, H. (2022). Real-time performance-focused
localization techniques for autonomous vehicle: a review. Trans. Intell. Transp. Sys. 23
(7), 6082–6100. doi:10.1109/tits.2021.3077800

Luo, Q., Cao, Y., Liu, J., and Benslimane, A. (2019). Localization and navigation in
autonomous driving: threats and countermeasures. IEEEWirel. Commun. 26 (4), 38–45.
doi:10.1109/mwc.2019.1800533

Marck, J. W., Mohamoud, A., vd Houwen, E., and van Heijster, R.
(2013). “Indoor radar SLAM A radar application for vision and gps
denied environments,” in Proceedings of the 43rd European microwave
conference (Nuremberg, Germany: EuMA, Louvain-la-Neuve), 1783–
1786.

MendezMaldonado,O. A., Hadfield, S., and Bowden, R. (2021). “Markov localization
using heatmap regression anddeep convolutional odometry,” in 2021 IEEE international
conference on robotics and automation (ICRA), 9638–9644.

Meng, Y., Chen, Z., Cheng, H., Wang, E., and Tan, B. (2023). An efficient
variable step solar maximum power point tracking algorithm. Energies 16, 1299.
doi:10.3390/en16031299

Mochurad, L., Hladun, Y., and Tkachenko, R. (2023a). An obstacle-finding approach
for autonomousmobile robots using 2DLiDARdata.BigDataCognitive Comput. 7 (43),
43. doi:10.3390/bdcc7010043

Mochurad, L., and Kryvinska, N. (2021). Parallelization of finding the current
coordinates of the lidar based on the genetic algorithm and OpenMP technology.
Symmetry 13 (666), 666. doi:10.3390/sym13040666

Mochurad, L., Matviiv, O.-V., Lema, H., and Vilhutska, R. (2023b). “CUDA-based
algorithm for lidar position determination in mobile robotics,” in Proceedings of the
modern machine learning technologies and data science workshop (Ukraine), 193–203.

Mochurad, L., and Shchur, G. (2021). “Parallelization of cryptographic algorithm
based on different parallel computing technologies,” in Proceedings of the symposium on
information technologies and applied Sciences (IT&AS 2021), 20–29. Bratislava, Slovak
Republic, ISSN 1613-0073.

Montañez, O. J., Suarez, M. J., and Fernandez, E. A. (2023). Application of data
sensor fusion using extended kalman filter algorithm for identification and tracking
of moving targets from LiDAR–radar data. Remote Sens. 15 (13), 3396. doi:10.3390/
rs15133396

Osman, H. H., Ismail, I. A., Morsy, E., and Hawidi, H. M. (2021). Implementing the
kalman filter algorithm in parallel form: denoising sound wave as a case study. Recent
Adv. comput. Sci. Commun. 14, 2828–2835. doi:10.2174/2666255813999200806161813

Phang, F. A., Pusppanathan, J., Nawi, N. D., Zulkifli, N. A., Zulkapri, I., Che Harun,
F. K., et al. (2021). Integrating drone technology in service learning for engineering
students. Int. J. Emerg. Technol. Learn. 16 (15), 78–90. doi:10.3991/ijet.v16i15.23673

Poulose, A., Baek, M., and Han, D. S. (2022). “Point cloud map generation and
localization for autonomous vehicles using 3D lidar scans,” in 2022 27th asia pacific
conference on communications (APCC) (Jeju Island, Korea), 336–341.

Sheikhpour, K. S., and Atia, M. (2022). A real-time CPU-GPU embedded
implementation of a tightly-coupled visual-inertial navigation system. IEEE Access 10,
86384–86394. doi:10.1109/access.2022.3199384

Shreyas Madhav, A. V., and Rajesh Kanna, B. (2021). “Parallel FPFH SLAM for aerial
vehicles,” in 2021 IEEE conference on norbert wiener in the 21st century (21CW), 1–4.

Shymanskyi, V., Sokolovskyy, I., Sokolovskyy, Y., and Bubnyak, T. (2022). “Variational
method for solving the time-fractal heat conduction problem in the Claydite-Block
construction,” in Advances in computer science for engineering and education, ICCSEEA
2022; lecture notes on data engineering and communications technologies (Cham,
Switzerland: Springer), 134, 97–106.

Sun, H., Liu, X., Deng, Q., Jiang, W., Luo, S., and Ha, Y. (2020). Efficient FPGA
implementation of K-Nearest-Neighbor search algorithm for 3D LIDAR localization
and mapping in smart vehicles. IEEE Trans. Circuits Syst. II Express Briefs 67 (9),
1644–1648. doi:10.1109/tcsii.2020.3013758

Tian, H., Chen, Y., Dai, J., Zhang, Z., and Zhu, X. (2021). “Unsupervised object
detection with lidar cues,” in 2021 IEEE/CVF conference on computer vision and pattern
recognition (CVPR), 5962–5972.

Top Streamers on Twitch (2023). Top Streamers on Twitch. Available at: https://www.
kaggle.com/datasets/aayushmishra1512/twitchdata (Accessed December 26, 2023).

Varsi, A., Taylor, J., Kekempanos, L., Pyzer Knapp, E., and Maskell, S. (2020). A
fast parallel Particle filter for shared memory systems. IEEE Signal Process. Lett. 27,
1570–1574. doi:10.1109/lsp.2020.3014035

Varsi, A., Taylory, J., Kekempanos, L., Pyzer Knapp, E., and Maskell, S. (2021). A
fast parallel Particle filter for shared memory systems. IEEE Signal Process. Lett. 27,
1570–1574. doi:10.1109/lsp.2020.3014035

Wang, P., Yang, J., Zhang, Y., Wang, Q., Sun, B., and Guo, D. (2022). Obstacle-
avoidance path-planning algorithm for autonomous vehicles based on B-spline
algorithm. World Electr. Veh. J. 13 (233), 233. doi:10.3390/wevj13120233

Wo, D.-J., and Biswal, A. (2023). Implementation and performance Analysis
of kalman filters with consistency validation. Mathematics 11 (521), 521.
doi:10.3390/math11030521

Xie, X., Bai, L., and Huang, X. (2022). Real-time LiDAR point cloud
semantic segmentation for autonomous driving. Electronics 11 (11), 11.
doi:10.3390/electronics11010011

Xu, L., Niu, R., and Blasch, E. P. (2022). “Uncertainty aware EKF: a tracking filter
learning LiDAR measurement uncertainty,” in 2022 25th international conference on
information fusion (FUSION) (Sweden: Linköping), 1–8.

Zhang, J., Yao, Y., and Deng, B. (2022). Fast and robust iterative closest
point. IEEE Trans. Pattern Analysis Mach. Intell. 44 (7), 3450–3466.
doi:10.1109/TPAMI.2021.3054619

Zhang, Q. (2019). Performance enhanced Kalman filter design for non-Gaussian
stochastic systems with data-based minimum entropy optimisation. AIMS Electron.
Electr. Eng. 3 (4), 382–396. doi:10.3934/electreng.2019.4.382

Zhu, J., Zheng, N., Yuan, Z., Zhang, Q., Zhang, X., and He, Y. (2009). “A SLAM
algorithm based on the central difference Kalman filter,” in 2009 IEEE intelligent vehicles
symposium (China: Xi’an), 123–128.

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2024.1341689
https://doi.org/10.3390/s19092007
https://ssrn.com/abstract=3435202
https://doi.org/10.1109/access.2020.2982120
https://doi.org/10.1186/s43020-022-00092-0
https://doi.org/10.4271/2020-01-0696
https://doi.org/10.1109/tcsii.2021.3095764
https://doi.org/10.1109/tcsii.2021.3095764
https://doi.org/10.1109/mm.2008.57
https://doi.org/10.1109/mgrs.2020.3032713
https://doi.org/10.1155/2021/1999154
https://doi.org/10.3390/s22051913
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-205553
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-205553
https://doi.org/10.1109/lra.2021.3113043
https://doi.org/10.3390/electronics12204320
https://doi.org/10.1038/s41598-022-11193-w
https://doi.org/10.1007/s10489-023-04897-7
https://doi.org/10.3390/s23031502
https://doi.org/10.1109/tits.2021.3077800
https://doi.org/10.1109/mwc.2019.1800533
https://doi.org/10.3390/en16031299
https://doi.org/10.3390/bdcc7010043
https://doi.org/10.3390/sym13040666
https://doi.org/10.3390/rs15133396
https://doi.org/10.3390/rs15133396
https://doi.org/10.2174/2666255813999200806161813
https://doi.org/10.3991/ijet.v16i15.23673
https://doi.org/10.1109/access.2022.3199384
https://doi.org/10.1109/tcsii.2020.3013758
https://www.kaggle.com/datasets/aayushmishra1512/twitchdata
https://www.kaggle.com/datasets/aayushmishra1512/twitchdata
https://doi.org/10.1109/lsp.2020.3014035
https://doi.org/10.1109/lsp.2020.3014035
https://doi.org/10.3390/wevj13120233
https://doi.org/10.3390/math11030521
https://doi.org/10.3390/electronics11010011
https://doi.org/10.1109/TPAMI.2021.3054619
https://doi.org/10.3934/electreng.2019.4.382
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 The proposed parallel algorithm description
	2.2 Analysis of computational complexity and theoretical estimation of speedup
	2.3 Implementation of the proposed algorithm

	3 Results
	3.1 System
	3.2 Memory interface: 256-bit

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

