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We introduce a novel approach to training data augmentation in
brain–computer interfaces (BCIs) using neural field theory (NFT) applied to EEG
data frommotor imagery tasks. BCIs often suffer from limited accuracy due to a
limited amount of training data. To address this, we leveraged a corticothalamic
NFT model to generate artificial EEG time series as supplemental training data.
We employed the BCI competition IV ‘2a’ dataset to evaluate this augmentation
technique. For each individual, we fitted the model to common spatial patterns
of each motor imagery class, jittered the fitted parameters, and generated
time series for data augmentation. Our method led to significant accuracy
improvements of over 2% in classifying the “total power” feature, but not in
the case of the “Higuchi fractal dimension” feature. This suggests that the fit
NFT model may more favorably represent one feature than the other. These
findings pave the way for further exploration of NFT-based data augmentation,
highlighting the benefits of biophysically accurate artificial data.
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1 Introduction

Brain–computer interfaces (BCIs) allow computer and robotic applications
to be controlled directly by thoughts (Värbu et al., 2022; Ma et al., 2023). Their
widespread use has significantly contributed to aiding individuals with mobility
difficulties, artificial limb users, and those affected by paralysis in regaining their
motor functions (Mane et al., 2020). BCIs hold particular significance for individuals
unable to utilize traditional communication methods, who find themselves entirely

Abbreviations: BCI, Brain–computer interface; CNN, Convolutional neural network; CSP, Common
spatial pattern; CTM, Corticothalamic NFT model; CV, Cross-validation; DA, Data augmentation;
EEG, Electroencephalography; HFD, Higuchi fractal dimension; MI, Motor imagery; NFT, Neural field
theory; SES-BCI, Surrounding exploring BCI system; SSVEP, Steady-state visual evoked potentials; TP,
Total power.
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locked in due to conditions such as amyotrophic lateral sclerosis,
stroke, or traumatic brain injury (Artzi and Shriki, 2018;
Nguyen et al., 2018; Willett et al., 2021). Notably, BCI applications
extend beyond healthcare, with developments seen in the gaming
and defense industries, as well as in the realm of neuro-wellness,
catering to cognitive or physical enhancement (Chen et al., 2016).

A typical BCI system consists of several components: a brain-
signal acquisition device, such as an electroencephalography (EEG)
headset (Värbu et al., 2022), a software module that processes
the signals, extracting features and classifying them based on
different motor intentions or semantic meanings, and an output
device like a monitor, robotic arm, or drone. To produce
relevant and distinctive brain signals, users follow mission-specific
paradigms, such as motor imagery (MI) (Rahman and Joadder,
2017; Zhang et al., 2021; Hurst and Boe, 2022) or steady-state
visual evoked potentials (SSVEPs) (Zhu et al., 2010; Liu et al., 2022).
During the training phase, EEG epochs are gathered, aligning with
various conditions of a given paradigm’s trials. From these collected
epochs, features are extracted and subsequently classified based on
their respective conditions. In the operational use of a BCI system,
EEG epochs undergo similar stages but are translated into device
control commands.

Along with our research, we developed a BCI system for
controlling a camera-equipped drone using EEG signals (see
Figure 1). It employs both MI and SSVEP simultaneously, creating
a hybrid BCI. Within the MI paradigm, we capture EEG patterns
associated with imagining body movements, while in SSVEP, we
detect patterns arising from looking at flickering stimuli. This
approach expands the command repertoire for drone navigation to
six distinct actions (fly up, down, left, right, forward, backward),
whereas a single paradigm typically offers only two to three
conditions with reliable classification accuracy.

The system serves as a surrounding explorer (termed here
as “SES-BCI”) for individuals with limited mobility. In a typical
scenario, the user comfortably remains in his room, piloting the
drone both inside and outside of the house, while simultaneously
viewing a live video stream. This setup enables real-time awareness
of events, like identifying visitors at the door. For individuals who
have completely lost their motor abilities, such a system stands as
the sole viable option. This system was not only an integration
platform for our developed techniques but also a constant source of
inspiration throughout our study.

Collecting data for BCI training presents significant challenges.
To achieve reliable classification results, a substantial amount of
diverse and representative brain signal data is essential. For example,
within the MI paradigm, users are often tasked with remaining
still and repeatedly imagining different limb movements at least
50 times per limb. Considering an 8-s duration for each MI trial
(see Figure 2 for an example) and incorporating four different
limbs, the cumulative time required nears 27 min. This process
can be strenuous, particularly for individuals with health concerns.
However, reducing the number of trials to shorten training sessions
might compromise classification accuracy.

Moreover, long-term BCI utilization necessitates daily
calibration sessions due to the non-stationarity of brain signals. MI-
related brain activity can undergo shifts due to improvements in MI
proficiency, or general factors like fatigue or pain. Consequently,
portions of the initial training session need to be repeated at

the onset of each day when employing the BCI system. This
iterative calibration is vital to sustain optimal performance and
adapt to the brain’s fluctuating signals (Nicolas-Alonso et al., 2015;
Huang et al., 2021).

Training data augmentation (DA) emerges as a potential
solution to address these challenges (He et al., 2021; Rommel et al.,
2022). The fundamental concept involves conducting a short
training session and subsequently adding artificial EEG epochs with
similar basic characteristics and some variations. By introducing
these augmented epochs, the characteristics of the epochs extend
across a broader spectrum of potential values. Consequently, this
augmentation elevates the diversity within the training data, thereby
contributing to heightened classification accuracy.

Previous research has explored diverse methods of augmenting
MI EEG time series. Gubert et al. (2020) expanded the common
spectral spatial patterns approach to augment data within a
two-condition MI task, resulting in a notable 5% increase in
average classification accuracy (Gubert et al., 2020). Lee et al. (2021)
employed ensemble empirical mode decomposition to augment
a 2-condition MI training set, achieving an impressive over
8% enhancement in classification accuracy (Lee et al., 2021).
Conversely, Zhang et al. (2018) introduced Gaussian noise into
the EEG signal within the frequency domain to augment a 4-
condition MI training set, leading to a more modest improvement
of just 2.3% (Zhang et al., 2018). Additionally, the rise of deep
learning in the past decade has provided valuable tools for
DA. Methods integrating generative adversarial networks and
autoencoders demonstrated accuracy improvements exceeding 10%
(Zhang et al., 2020; Fahimi et al., 2021). However, notably, none of
these approaches have utilized a physiological model to generate
EEG data–a direction that remains unexplored in the realm of EEG
DA methodologies.

The utilization of a physiologically-inspired model for EEG
DA offers several distinct advantages. Firstly, it guarantees that the
output signals will look like realistic EEG signals. Secondly, it allows
for control over the output by manipulating model parameters,
enabling the alteration of the signal. Each parameter corresponds to
a physiological attribute, e.g., “peak-frequency-location” parameter,
ensuring that modifying a parameter yields a precise effect on the
output signal (see Figure 3C). Moreover, employing a physiological
model ensures that any modified signal remains within the bounds
of physiological ranges. When a model mirrors physiological
constraints, the distributions of the characteristics within the output
signal closely resemble those found in actual physiological data.
For example, the distribution of peak frequency locations is non
uniform, and a linear change in their control parameter causes an
exponential shift in their location.

In this study, we employ a physiological model based on a
corticothalamic system, grounded in the neural field theory (NFT)
(Robinson et al., 2005; Deco et al., 2008), to augment MI EEG
data. NFT is a robust framework widely used to model diverse
brain activities, spanning from sleep stages (Rowe et al., 2004;
Fulcher et al., 2008; Abeysuriya et al., 2015) (see Figure 4), through
epileptic seizures (Breakspear et al., 2006; Nevado-Holgado et al.,
2012), and up to abnormalities induced by tumors (O’Connor
and Robinson, 2005). Moreover, it has the capacity to capture
and replicate these phenomena through EEG data (O’Connor and
Robinson, 2004). In the realm of BCI, NFT has been applied
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FIGURE 1
SES-BCI: The setup includes a DJI-Tello drone, Wearable Sensing DSI-24 EEG headset, personal computer, and an optional virtual reality headset. This
system simultaneously executes MI and SSVEP paradigms. EEG signals undergo processing to generate navigation commands for the drone. The
drone’s video feed presented to the user includes embedded flickering arrows in the corners, acting as stimuli for SSVEPs. In this setup, the SSVEP
paradigm is responsible for forward and backward navigation commands, while the MI paradigm is associated with right, left, up, and down navigation
commands. (This figure includes a hospital background image by Pikisuperstar from Freepik).

FIGURE 2
The paradigm sequence utilized in the “2a” dataset from BCI competition IV (Tangermann et al., 2012). We used an EEG segment from t = 2.5 to t = 5 s
of each epoch for MI classification.
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FIGURE 3
Experimental (inter-epoch average), fitted and simulated power
spectra of a right-hand MI CSP source signal between 8 and 30 Hz.
Simulated spectra are presented for two distinct parameter values. (A)
A reduction in the synaptic decay-time constant α diminishes the total
spectral power, especially affecting the high frequencies. (B) A
decrease in the cortical damping γ results in a decline in the EEG
resonant frequency alpha and its peak shift towards the lower
frequencies, along with a slight flattening of the beta peak. (C) A
decrease in the corticothalamic propagation delay t0 leads to a shift of
the EEG resonant frequencies alpha and beta peaks towards higher
frequencies. (A–C).

to model event-related potentials (Rennie et al., 2002; Kerr et al.,
2008; Mukta et al., 2019) and SSVEPs (Roberts and Robinson, 2012;
Alinejad et al., 2020), but its application in motor imagery has
remained unexplored until now.

To generate artificial EEG signals for MI training data
augmentation, we fitted the corticothalamic NFT model (CTM)
(Robinson et al., 2002; Robinson et al., 2005; Kerr et al., 2008;
Abeysuriya et al., 2015) to MI EEG data obtained from a short
training session. We introduced variability in the generated signals

by jittering the model parameters. To assess the efficacy of our DA
method, we conducted evaluations on the widely used ‘2a’ dataset
from BCI Competition IV (Tangermann et al., 2012). The results
reveal an increase in accuracy across several scenarios following
the implementation of our proposed DA method, emphasizing its
viability and promising potential.

2 Materials and methods

2.1 Neural field theory

Neural-field modeling (Robinson et al., 2001b; Robinson et al.,
2004; Robinson et al., 2005) stands as a tool for constructing
physiologically-inspired brain models capable of predicting various
multiscale measures of brain activity. This approach captures a
continuum of corticothalamic activity by simulating the local
dynamics in each population and employing wave equations to
describe the propagation between these populations (O’Connor
and Robinson, 2004). The model’s parameters encompass various
biophysically meaningful quantities, such as synaptic strengths,
excitatory and inhibitory gains, propagation delays, synaptic and
dendritic time constants, and axonal ranges. NFT represents a
bottom-up approach to whole-brain modeling, which involves
averaging over microstructure to derive mean-field equations.

The corticothalamic NFT model, as introduced by
Robinson et al. (2002) and widely adopted thereafter
(Robinson et al., 2002; Robinson et al., 2005; Kerr et al., 2008;
Abeysuriya et al., 2015), effectively simulates spatiotemporal EEG
signals and their spectra. Moreover, in the common case of
spatially uniform steady-state activity, it allows for the analytical
computation of the power spectrum of the model (Robinson et al.,
2005; van Albada et al., 2010). Therefore, NFT provides a practical
way for fitting EEG spectra and simulating time series data
(Abeysuriya et al., 2015; Sanz-Leon et al., 2018). In this study, we
employ the CTM in its original form, leveraging these inherent
capabilities.

Within the framework of the CTM, four distinct neural
populations are involved, with key connectivities, illustrated
schematically in Figure 5. These populations comprise excitatory (e)
and inhibitory (i) cortical neurons, thalamic relay nuclei neurons
(s), thalamic reticular nucleus neurons (r), and sensory inputs (n).
Each of these populations has a soma potential Va(r, t)[V] that
is influenced by contributions ϕb from presynaptic populations,
and generates outgoing neural activity ϕa(r, t). (Here and further,
the sub-indexes a and b refer to generic populations, which, for
example, could be r and e.) The neural field ϕ(r, t)[s−1] represents
a spatiotemporal neural activity propagating among populations
when averaged across scales of approximately 0.1 mm.

The dendritic spatiotemporal potential Vab[V] is linked to the
input ϕb through Eq. 1. The parameter νab = sabNab[V ⋅ s] represents
the strength of the connection from populations b to a, where Nab
is the mean number of synapses per neuron a from neurons of
type b, and sab[V ⋅ s] is the mean time-integrated strength of soma
response per incoming spike. The parameter τab[s] refers to the one-
way corticothalamic time delay, and Da(t) is a differential operator,
as described in Eq. 2. Here, 1/α and 1/β denote the characteristic
decay time and rise time, respectively, of the soma response within
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FIGURE 4
On the left panels: model generated time-series of (A) eyes-open resting state, (B) eyes-closed resting state, (C) sleep-stage 2 and (D) sleep-stage 4.
On the right panels: corresponding time series from human subjects (Penfield and Jasper, 1954; Nunez, 1995; Robinson et al., 2005).

the corticothalamic system.

Da (t)Vab (r, t) = νabϕb (r, t− τab) (1)

Da (t) =
1
αβ

d2

dt2
+( 1

α
+ 1
β
) d
dt
+ 1 (2)

The soma potential Va is determined as the sum of its dendrite
potentials, as outlined in Eq. 3. This potential undergoes some
smoothing effects attributed to synaptodendritic dynamics and
soma capacitance. Furthermore, the population generates spikes at
a mean firing rate Qa[s

−1], which is related to the soma potential
through a sigmoid function S(Va) (relative to the resting state), as
shown in Eq. 4. In this equation, Qmax denotes the maximum firing
rate, while θ and σ′ ⋅ π/√3 correspond to the mean and the standard
deviation, respectively, of the firing threshold voltage.

Va (r, t) = ∑
b
Vab (r, t) (3)

Qa = S(Va) =
Qmax

1+ e−(Va−θ)/σ′
(4)

The field ϕa approximately follows a dampedwave equationwith
a source term Qa, as detailed in Eq. 5, delineating its propagation
along the axon. The differential operator Da(r, t) is defined

in Eq. 6, where va[m ⋅ s−1] represents the propagation velocity,
ra[m] denotes the mean range, and γa = va/ra[s−1] signifies the
damping rate.

Da (r, t)ϕa (r, t) = Qa (r, t) (5)

Da (r, t) =
1
γ2
a

∂2

∂t2
+ 2
γa

∂
∂t
+ 1− r2a∇2 (6)

In this model, only re is large enough to induce notable
propagation effects. Consequently, the fields of other populations
can be approximated as ϕa(r, t) = S[Va(r, t)]. Additionally, we
assume that the only non-zero time delays between populations
are τes, τis, τse, and τre = t0/2, where t0 is the total time it takes
to traverse the corticothalamic loop. It is important to note that
Eq. 5 encompasses the corticocortical time delays, as the wave
equation inherently accounts for delays arising from propagation
across the cortex. To further simplify the model, we assume random
intracortical connectivity, leading to Nib = Neb for all b (Braitenberg
and Schüz, 1998). This assumption implies that the connection
strengths are also symmetric, resulting in νee = νie, νei = νii, and
νes = νis (Robinson et al., 2005; Abeysuriya et al., 2015). Numerical
integration (Sanz-Leon et al., 2018) or, when feasible, analytical
integration (Robinson et al., 1997; Robinson et al., 2001a) of NFT
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FIGURE 5
CTM diagram: the neural populations shown are cortical excitatory, e,
and inhibitory, i, thalamic reticular nucleus, r, and thalamic relay
nuclei, s. The parameter νab quantifies the strength of the connection
from population b to population a. Excitatory connections are
indicated by pointed arrowheads, while inhibitory connections are
denoted by round arrowheads.

equations produces a spatiotemporal activity signal that propagates
across the cortical surface. For instance, to solve Eq. 1 we can
integrate ϕb with an impulse response kernel L(t) (Eq. 8) over
time.

Vab (r, t) = ∫
t

−∞
L(t− t′)νabϕab (r, t

′ − τab) dt′ (7)

L (t) = Θ (t) ⋅
{{
{{
{

αβ
β− α
(e−αt − e−βt) ,α ≠ β

α2te−αt ,α = β
(8)

Θ (t) is the Heaviside step function

2.2 CTM EEG power spectrum

In scenarios of spatially uniform steady-state activity, it is
possible to analytically compute the power spectrum of the model,
eliminating the necessity for numerical integration. The steady
state is attained by setting all time and space derivatives to zero.
Employing the first term of the Taylor expansion enables a linear
approximation of all potential perturbations from the steady state.
Applying a Fourier transform to the model equations under these
conditions yields Eq. 9 for the dendritic component and Eq. 10 for
the axonal component. Within these equations, ω = 2πf denotes
the angular frequency, k = 2π/λ signifies the wave vector (λ is
the wavelength), and V (0)a represents the steady-state potential
(Abeysuriya et al., 2015).

Dendritic equations in the frequency domain:

Vab (k,ω) = νabϕb (k,ω)L (ω)e
iωτab (9)

L (ω) = (1− iω
α
)
−1
(1− iω

β
)
−1

Axonal equations in the frequency domain:

Da (k,ω) ⋅ϕa (k,ω) = ρaVa (k,ω) (10)

Da (k,ω) = k2r 2
a +(1−

iω
γa
)

2

ρa =
dS(V(0)a )

dVa

Using Eq. 3, we can write Eq. 10 as:

Da (k,ω) ⋅ϕa (k,ω) = ρa∑
b
Vab (k,ω) = ∑

b
Jabϕb (k,ω) (11)

Jab = ρaνabL (ω)e
iωτab = GabL (ω)eiωτab

Then we can represent the interactions among the different
populations within the CTM in matrix form:

[[[[[[[

[

De 0 0 0

0 Di 0 0

0 0 Dr 0

0 0 0 Ds

]]]]]]]

]

⋅

[[[[[[[

[

ϕe
ϕi
ϕr
ϕs

]]]]]]]

]

=

[[[[[[[

[

Jee Jei 0 Jes
Jie Jii 0 Jis
Jre 0 0 Jrs
Jse 0 Jsr 0

]]]]]]]

]

⋅

[[[[[[[

[

ϕe
ϕi
ϕr
ϕs

]]]]]]]

]

+

[[[[[[[

[

0

0

0

Jsnϕn

]]]]]]]

]

(12)

Eq. 12 can also be written in a compact form, when J⋆ϕ⋆ is the
external input to the CTM:

Dϕ = Jϕ+ J⋆ϕ⋆ (13)

By solving Eq. 12, considering all the previously mentioned
assumptions regarding Da, νab, and τab, we can derive Eq. 14. In
this context, the quantities Gese = GesGse, Gesre = GesGsrGre, and
Gsrs = GsrGrs correspond to the overall gains for the excitatory
corticothalamic, inhibitory corticothalamic, and intrathalamic
loops, respectively. The firing rate of sensory inputs to the thalamus,
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FIGURE 6
Power topoplots of CSPs fitted to MI EEG epochs. The fitting process aims to enhance the differentiation between right-hand and left-hand MI
conditions.

ϕn, is approximated by white noise. Without loss of generality, ϕn(ω)
can be set to 1, while only Gsn is subject to variation.

ϕe (k,ω) =
GesGsnL

2e
iωt0
2

(1−GsrsL
2)(1−GeiL)(k2r2e + q2r2e)

ϕn (k,ω) (14)

q2r2e = (1−
iω
γe
)

2
− 1

1−GeiL
{LGee +

[L2Gese + L
3Gesre]e

iωt0

1− L2Gsrs
}

The excitatory field ϕe is considered a good approximation
of scalp EEG signals (Abeysuriya et al., 2015). The EEG power
spectrum P(ω) (Eq. 15) is calculated by integration of |ϕe(k,ω)|2

over k when the cortex is approximated as a rectangular sheet of
size Lx × Ly. When considering periodic boundary conditions, this
integral transitions into a summation over spatial modes with a
discrete k. The filter function F(k) serves as an approximation of
the low-pass spatial filtering that occurs due to volume conduction
through the cerebrospinal fluid, skull, and scalp.

P (ω) =
∞

∑
m=−∞

∞

∑
n=−∞
|ϕe (kx,ky,ω) |

2F (k)ΔkxΔky (15)

kx =
2πm
Lx
,ky =

2πn
Ly
,k = √k2

x + k2
y

F (k) = e−k
2/k2

0

2.3 MI EEG signal processing and feature
extraction

During the MI paradigm, subjects engage in imagery of
specific limb movements, inducing activity modulation within their
motor cortex (Rahman and Joadder, 2017; Hurst and Boe, 2022).
One method to detect MI-related activity within EEG signals is
through the application of common spatial patterns (CSPs). This
supervised technique decomposes EEG signals into distinct sources,
where each source exhibits high variability for a particular MI
condition and low variability for others (Koles et al., 1990). An
example of CSP topoplots fitted to distinguish between right-
hand and left-hand MI can be seen in Figure 6. We set the
number of CSPs to 2 ⋅ ⌈1+ #conditions/2⌉ following an empirical
exploration of classification accuracy, noting that the accuracy

exhibited marginal improvements beyond a certain number of
CSPs. Moreover, employing a limited number of CSPs helps prevent
overfitting and expedites the DA process. Before applying the CSP
technique, the EEG data underwent band-pass filtering within the
spectral range of 8–30 Hz. This frequency range is known to capture
the characteristic spectral patterns associated with MI.

Two features, total power (TP) and Higuchi fractal dimension
(HFD) (Higuchi, 1988) were computed from each CSP in every
epoch using the mne-features toolbox (Schiratti et al., 2018). These
features were chosen for two primary reasons. First, they are
commonly employed in MI classification and demonstrate effective
discrimination within our data. Second, they are computed using
distinct methodologies: TP involves summing the signal power and
can be derived from the spectrum (see Eq. 16), while HFD identifies
patterns within the samples and is derived from the time series, as
described below.During the evaluation ofDAperformance (see next
section), each feature is individually employed to understand how
augmentation depends on feature characteristics.

The total power of signal X can be calculated from the time
series X(n) or its discrete Fourier transform X̂(l) using the following
expression, while N and T are the lengths of X(n) and X̂(l),
respectively:

TP = 1
N
∑
n
X2 (n) = 1

T
∑
l
|X̂ (l)|2 (16)

The Higuchi fractal dimension of X(n) is calculated through the
following steps:

1. Create new time series Xn
m by dividing the original time series

into non-overlapping segments.

Xn
m = {X (m) ,X (m+ n) ,X (m+ 2n) ,…,X (m+ pn)} , (m = 1…n) (17)

p = ⌊(N−m)/n⌋

2. Compute the length Lm(n) of each Xn
m.

Lm (n) =
N− 1
n2 ⋅

1
p

p

∑
i=1
|X (m+ in) −X (m+ (i− 1)n)| (18)

3. Calculate the average length L(n) = ⟨Lm(n)⟩m.
4. Fit a linear model to log2[L(n)] as a function of log2(n). The

slope parameter of the linear model is an estimate of the HFD.
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Finally, a linear discriminant analysis (LDA) (Tharwat et al.,
2017) was applied to these feature values to classify the MI
conditions. Linear discriminant analysis is frequently utilized for
classifying CSP-based features due to its ability to leverage feature
variance for classification purposes. The classification accuracy
was determined as an average of the true positive rates for each
condition:

Ac = 1
#conditions

⋅∑
i
(

# trials classi fied as conditioni
#trials

| trial ∈ conditioni)

(19)

2.4 Motor imagery data augmentation

2.4.1 NFT-based augmentation
The DA process for MI training takes place at the level of

CSP sources instead of directly augmenting the EEG channel
time series. This strategy was chosen over augmenting the EEG
channel time series directly for two primary reasons. Firstly,
strong correlations exist among numerous EEG channels, leading
to significant redundancy in augmented data and potentially
suppressing the manifestation of less common low-power activity.
However, by employing CSP decomposition, similar activities are
grouped together, and distinct spatial sources are assigned to
distinct activity patterns. Secondly, by augmenting at the CSP level,
the process becomes more efficient and practical compared to
augmenting individual channels. Augmenting four to six CSPs is
notably faster and more manageable than augmenting 22 channels
separately.

Each subject’s epochs were grouped according to their respective
condition. Subsequently, the power spectra of CSP source signals
for each epoch were computed via a fast Fourier transform and
then averaged across epochs. The CTM was fitted to each average
power spectrum (see the “CTM EEG Power Spectrum” paragraph)
utilizing the Markov Chain Monte Carlo algorithm implemented
in the braintrak toolbox (Abeysuriya and Robinson, 2016). In line
with previous studies, we chose to fit the following parameters:
connection gains, Gij, corticothalamic delay t0, and the synaptic
decay and rise time constants α,β (Abeysuriya et al., 2015). Artificial
time series were then generated from the fitted model, employing
theNFTsim toolbox (Sanz-Leon et al., 2018). An example of average
experimental spectra, fitted analytical spectra, and spectra of the
simulated time series associated with left-hand MI CSP and right-
handMICSP can be seen in Figure 7.The continuous simulated CSP
source signals were segmented into epochs, rendering them suitable
for subsequent classifier training.

The augmentation process included an optional stage where
a few of the fitted parameters, either collectively or separately,
underwent jittering before the signal generation phase. This step
was implemented to introduce additional variability into the
generated data. The aim was to enhance the inherent variability
of the generated signals, stemming from the sensory inputs to
the thalamic relay nuclei ϕn that drive the CTM with white
noise. Specifically, jittering was applied to modify the parameters
α (synaptic decay-time constant [s−1]), γ (cortical damping [s−1]),
and t0 (corticothalamic delay [s]). However, other parameters of the

FIGURE 7
Experimental inter-epoch average EEG power spectrum, analytical
power spectrum of a fitted CTM, and a power spectrum calculated
from time series simulated by a fitted CTM. Shown are the left-hand
MI CSP (A) and the corresponding right-hand MI CSP (B).

fitted model, such as cortical loop gains, were intentionally excluded
from the jittering process. This cautious approach was adopted to
prevent potential bifurcations within the CTM that could result in a
significantly different spectrum.

Jittering of parameters was achieved by adding Gaussian-
distributed values N(0,1.5 ⋅ σtypical) to the fitted parameters
and drawing new values 10 ⋅ (augmentationfactor) times
during the signal generation stage. The standard deviation
σtypical was set based on previous research findings:
σtypical(α) = 14,σtypical(γ) = 25,σtypical(t0) = 0.003 (Rowe et al., 2004).
These standard deviation values were increased only by a factor of
1.5 to ensure that they remained within typical parameter ranges
and avoided excessive deviation.

2.4.2 Noise-based augmentation
Wecompared ourDAmethod to a naive augmentation approach

that involves noise introduction into feature values. For each MI
condition, we calculated the mean μfeat and the covariance matrix
Sfeat of the features. Subsequently, new feature values were drawn
from a Gaussian distribution N(μfeat ,1.5 ⋅ Sfeat).

2.5 Performance evaluation

2.5.1 The “2a” dataset
To benchmark DA performance against a well-known

benchmark, we tested it using dataset ‘2a’ from BCI Competition
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FIGURE 8
Workflow of MI data augmentation performance evaluation procedure. The process involves creating a small dataset and assessing accuracy using
inverse CV, where one fold is reserved for training and the others for testing. The MI pipeline consists of EEG epoch preprocessing, CSP decomposition,
feature extraction, and classification. The NFT-based data augmentation process generates artificial CSP time series using a CTM (Robinson et al.,
2002; Robinson et al., 2005; Kerr et al., 2008; Abeysuriya et al., 2015) fitted to the CSP time series from the MI pipeline.

IV. This dataset comprises recordings from nine subjects engaged
in MI tasks involving the right hand, left hand, feet, and tongue.
The experiment was repeated on two consecutive days. However,
given that our research did not focus on BCI stationarity, we chose
to treat each day’s data as if it came from a different subject, thereby
resulting in a total of 18 distinct subjects for analysis. Each subject
provided a total of 288 epochs (72 epochs per condition). However,
our evaluation focused solely on the two-condition set, specifically
the right/left handMI tasks. Each epoch had a duration of 6 seconds,
with the imagery cue onset at t = 2 s (t = 0marks the beginning of the
epoch; see Figure 2). We, therefore, considered the interval between
t = 2.5 and t = 5 s as theMI period. Epochs that weremarked as “bad”
were ignored. The EEG data was sampled at 250 Hz and comprised
22 channels positioned on the scalp following the international
10–20 EEG system (Tangermann et al., 2012).

2.5.2 Training, augmentation, and validation sets
To create a small training set, we randomly partitioned the

training epochs into three subsets and employed an inverse 3-
fold cross-validation (CV); namely, we used 33% for training
and 67% for validation. In the typical augmentation scenario, we
augmented the training data by a factor of 2, topping up the
total training data to 100%. We calculated the accuracy rates of
the following sets: the initial 100% of the epochs employing a
regular 7-fold CV (86% for training, 14% for validation), the small
set using an inverse CV (33% for training, 67% for validation),
and the small set combined with the augmented set involving
inverse CV (33%+ 33% ⋅ [augmentationfactor] for training, 67% for
validation). These rates were compared against each other, verifying
any accuracy improvements for statistical significance with a paired
Student’s t-test across subjects. The entire process is illustrated in
Figure 8.

3 Results

Here, we present the outcomes of the proposed DA approach
applied to the ‘2a’ dataset. We experimented with various

augmentation strategies defined by distinct augmentation factors
and jittered parameters. We observed that the majority of the NFT-
driven strategies significantly improved TP feature classification
accuracy, while the noise-based DA did not exhibit notable
enhancements. Notably, the augmented set’s classification accuracy
consistently surpassed that of the small set, but failed to reach
the level of the full set accuracy. Intriguingly, no enhancement
was noted in HFD feature classification across the various DA
strategies. Moreover, we noticed that MI proficiency plays a key
role in DA success, with subjects who initially demonstrated
plausible classification accuracy more likely to benefit from DA
enhancements.

While analyzing the results, we excluded subjects whose MI
classification accuracy fell below chance level to ensure that the DA
was applied to separable data. Additionally, we excluded subjects
who did not display a reduction in accuracy with the small set
since we wanted to show how DA compensates for the epochs
deducted from the full set. In other words, subjects were filtered out
according to the following criteria: fullsetAc ≤ 0.5, smallsetAc ≤ 0.5,
and smallsetAc > fullsetAc. Consequently, out of the 18 subjects in
the dataset, 14 subjects in TP feature classification and 11 subjects in
HFD remained eligible for DA assessment.

Table 1 showcases the classification accuracy results for TP
features across various augmentation strategies. The inter-subject
average for the full (100%) training set accuracy was 0.75,
while the small (33%) training set accuracy (denoted further
as “baseline”) achieved 0.71. Notably, the augmentation strategy
using NFT with a factor of 2 (67%) demonstrated a significant
improvement in accuracy (ΔAc = 0.01,p < 0.05). However, the
improvements from other strategies were statistically insignificant.
Figure 10A depicts original and augmented TP feature values.
The augmentation process introduced diversity into feature values
without compromising the linear discrimination between left- and
right-hand MI trials.

The exclusion of subjects with low MI proficiency is a common
practice in BCI training. To investigate its impact on accuracy
improvements with other DA strategies, we defined MI proficiency

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2024.1362735
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Polyakov et al. 10.3389/frobt.2024.1362735

TABLE 1 Performance evaluation results for various data augmentation strategies. The table presents validation set accuracy Ac and the accuracy
improvement ΔAc obtained for TP feature classification.

DA strategy Augmented set Ac Small set ΔAc = Ac−0.715 Full set ΔAc = Ac−0.751

small (33%) + 33% NFT 0.726 0.011, p = 0.06 −0.025, p = 0.011

small (33%) + 67% NFT 0.725 0.01, p = 0.043 −0.026, p = 0.004

small (33%) + 167% NFT 0.723 0.008, p = 0.173 −0.028, p = 0.004

small (33%) + 33% NFT jitter [t0] 0.721 0.006, p = 0.179 −0.03, p = 0.002

small (33%) + 67% NFT jitter [t0] 0.72 0.005, p = 0.385 −0.031, p = 0.001

small (33%) + 167% NFT jitter [t0] 0.717 0.002, p = 0.763 −0.034, p = 0.0006

small (33%) + 67% noise 0.719 0.004, p = 0.711 −0.032, p = 0.029

FIGURE 9
Classification accuracy of the TP feature for the full dataset, the small dataset, and the augmented small dataset using different DA strategies. The
classification was conducted on validation sets for subjects with high MI proficiency. Noticeably, NFT-based DA approaches show statistically
significant improvements in Ac, whereas noise-based DA does not yield significant enhancements.

based on the subject’s baseline accuracy. Through a grid search,
we identified that setting an MI proficiency threshold of Ac ≥ 0.67
resulted in the highest number of successful DA strategies.

The findings for the TP feature classification among subjects
with high MI proficiency are summarized in Figure 9 and
Table 2. NFT-based DA using augmentation factors of 1 (33%),
2 (67%), and 5 (167%) presented significant improvements over
the baseline, showcasing the most substantial improvement of
ΔAc = 0.022,p < 0.05. Notably, smaller augmentation factors led
to higher accuracy improvements. Besides, the introduction of
parameter jittering appeared to negatively impact augmentation
performance, except for jittering of t0, which exhibited an
improvement, but was still lower than the improvement observed in

DA without any jittering. It is worth mentioning that MI amateurs
with Ac < 0.67 did not demonstrate significant improvement above
the baseline for any of the DA strategies. Although noise-based DA
exhibited some improvement, it was not statistically significant. The
results in Figure 9 and Table 2 are based on 7 out of 14 subjects,
as the others demonstrated a proficiency below 0.67. The high
proficiency group’s baseline accuracy was 0.84, while the full set
accuracy was 0.88.

As previously mentioned, HFD feature classification did not
exhibit sensitivity to any DA strategy, indicating that all augmented
set accuracies remained around the baseline, regardless of the Ac
threshold. It can be seen in Figure 10B that the DA procedure did
not introduce diversity to feature values, but instead created features
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TABLE 2 Performance evaluation results for various data augmentation strategies, as conducted on subjects with high MI proficiency. The table
presents validation set accuracy Ac and the accuracy improvement ΔAc obtained for TP feature classification.

DA strategy Augmented set Ac Small set ΔAc = Ac−0.836 Full set ΔAc = Ac−0.882

small (33%) + 33% NFT 0.858 0.022, p = 0.013 −0.024, p = 0.169

small (33%) + 67% NFT 0.857 0.021, p = 0.003 −0.025, p = 0.134

small (33%) + 167% NFT 0.853 0.017, p = 0.012 −0.029, p = 0.092

small (33%) + 33% NFT jitter [t0] 0.85 0.014, p = 0.003 −0.032, p = 0.06

small (33%) + 67% NFT jitter [t0] 0.85 0.014, p = 0.017 −0.032, p = 0.07

small (33%) + 167% NFT jitter [t0] 0.848 0.012, p = 0.102 −0.034, p = 0.041

small (33%) + 67% noise 0.847 0.011, p = 0.327 −0.035, p = 0.114

with stereotypical values falling outside the typical feature range.
Intriguingly, the HFD feature demonstrated a full set accuracy of
0.79 and a baseline accuracy of 0.75, surpassing that of the TP
feature. These observations suggest that the underlying cause lies
within the inherent nature of the HFD feature rather than other
contributing factors.

3.1 Spectral effect of parameter jittering

We investigated the impact of jittering α, γ, and t0 model
parameters on the power spectrum of the simulated output signal,
thereby characterizing the diversity within the augmented data.
Our analysis revealed that altering the synaptic decay-time constant
α significantly influenced the total spectral power, particularly in
higher frequencies, as depicted in Figure 3A. Decreasing the cortical
damping γ (as shown in Figure 3B) reduced the power of the EEG
resonant frequency alpha while shifting its peak towards the lower
frequencies. Furthermore, the corticothalamic delay t0 determined
the locations of the resonant frequencies within the alpha and beta
bands along the frequency axis, as observed in Figure 3C. These
findings align with previous research (Rowe et al., 2004).

4 Discussion

This study explored the potential of training an MI classifier
on a small set with augmented data, addressing the challenge
of obtaining large datasets. Leveraging a computational model of
the cortico-thalamic system (Robinson et al., 2002; Robinson et al.,
2005; Kerr et al., 2008; Abeysuriya et al., 2015), we augmented EEG
time series of MI epochs, leading to enhancements in classification
accuracy across different DA strategies and augmentation factors.
However, while the proposed DA method notably enhanced TP
feature classification accuracy, it did not demonstrate similar
improvements for the HFD feature. This observation suggests
that the fitted CTM represents one feature more effectively
than the other.

We believe that the model encountered challenges in accurately
representing time-series-based features, particularlyHFD.TheCTM

fitting process is based on spectra, adjusting model parameters
until the analytical power spectrum matches the experimental
one, as depicted in Figure 7. According to the Parseval theorem,
the total energy remains identical whether calculated in the time
or frequency domain. Consequently, the TP can be considered
a spectra-based feature, as presented in Eq. 16. Since the fitting
process is based on spectra, the TP of the simulated signals closely
resembles that of the experimental ones. However, HFD relies
on both phase and amplitude information from signal samples
in the time domain. Unfortunately, during the fitting process,
all phase information is lost, leading to a significant discrepancy
between the HFD calculated from the simulated signals and the
experimental ones.

Another notable aspect is the correlation between the success
of NFT-based DA and the proficiency in MI. Specifically, when
analyzing TP features among subjects with high MI proficiency
(Ac ≥ 0.67), many DA strategies presented a significant accuracy
improvement compared to the baseline. This observation suggests
that our DA technique might have limited applicability among
subjects with lower MI proficiency. It is common practice to exclude
such subjects, as MI is a challenging task, and approximately 30% of
the population fails to perform it completely (Alkoby et al., 2018).
In these cases, for instance, the expected CSPs fail to manifest over
the motor cortex (Ahn et al., 2018). Consequently, if a CSP time
series poorly represents an MI condition, the augmented CSP time
series would likely exhibit the same inadequacy and fail to contribute
effectively to the classification process.

An alternative explanation could be attributed to the effect of
diversity introduced by DA. When similar CSP time series generate
comparable features with low discriminative power between MI
conditions, it leads to poor classification accuracy. During the
augmentation phase, diversification occurs in the time series
produced by the fitted CTM. This variation among the generated
time series contributes to enhanced classification. Therefore, if the
initial time series are already quite similar, the introduced diversity
in the generated time series of different conditions may lead to
overlapping feature values, potentially worsening the classification.
In essence, higher baseline accuracy implies more divergence in the
time series and reduced overlap in the augmented features, thereby
facilitating more substantial diversity contributions.
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FIGURE 10
TP (A) and HFD (B) features extracted from CSPs of original and
augmented time series. The CSPs were augmented by a factor of 1,
employing an NFT model. The left- and right-hand MI trials maintain
linear separability.

Several other insights can be drawn from the data presented
in Table 1 and Table 2. Firstly, none of the DA strategies managed
to attain the full set accuracy, potentially due to the strictness of
the inverse CV approach employed. Alternatively, the ambitious
reduction of the training set by a factor of three might have
resulted in the insufficient representation of critical discriminative
CSP characteristics within the baseline set, which were averaged
out. This supposition is further supported by the observation that
higher augmentation factors correlated with decreased accuracy
improvement. This trend could indicate overfitting, a potential
consequence of magnifying average discriminative traits, while
overlooking more intricate ones. Furthermore, it is evident that
parameter jittering adversely affected the classification accuracy of

the augmented set. While only jittering t0 showed an accuracy rise
above the baseline, it remained lower compared to the accuracy
achieved without any jittering. This discrepancy might be attributed
to the TP feature’s sensitivity to substantial changes in the power
spectrum caused by alterations in t0, γ, or α, as previously
discussed.

4.1 Comparison with other augmentation
techniques

For both regular and professional subjects, the accuracy
improvement from the noise-based DA method did not reach
statistical significance. This technique operates under the
assumption that experimental features adhere to a normal
distribution, generating new features with increased variance.
However, this assumption may not consistently hold true.
Furthermore, the heightened variance introduced by this method
could potentially result in feature values outside of realistic ranges.
Each of these limitations might account for the ineffectiveness of
this noise-based DA approach.

We also conducted a comparison with state-of-the-art MI DA
techniques, as summarized inTable 3. Although ourmethod showed
a lower improvement in classification accuracy compared to other
DA techniques, making a reliable comparison is challenging due
to differences in MI classification frameworks and DA evaluation
setups. For instance, while we employed a simple linear classifier to
classify a single feature, many other studies utilized convolutional
neural networks (CNNs), which typically yield higher baseline
accuracy and are more responsive to DA. Additionally, our testing
procedure involved inverse CV, which is more stringent compared
to regular CV or a single validation set used in other studies.
Furthermore, we augmented a small dataset, constituting 33% of
the full one, whereas other studies often augmented the full dataset
or a dataset reduced to only 50% of the full one in the best-case
scenario. Despite most of the other studies using the ‘2a’ dataset
for performance evaluation, these variations inmethodologiesmake
direct comparisons difficult.

It is worth noting that none of the mentioned DA techniques
incorporate a physiological model. In fact, the advantages of our
unique DA strategy are evident in the results. First, jittering was not
essential to introduce variability in the generated time series. Despite
fitting the model to an average spectrum across multiple epochs,
the generated epochs displayed enough variability to diversify the
training set. This capability arises from the CTM’s design, tailored
to simulate EEG signals embedded with physiologically grounded
noise. Secondly, when we did employ jittering, its extent was directly
controlled using themodel parameter t0. Altering axon-propagation
delay causes a shift in resonance peaks along the frequency axis,
consequently, impacting TP. Thus, employing the CTM allows for
informed adjustment of augmented data by tuning parameters
with a physiological meaning. Lastly, features extracted from NFT-
augmented time series exhibit a distribution similar to experimental
features, unlike those augmented with noise. This distinction arises
from CTM’s ability to generate time series embodying typical EEG
characteristics, encompassing features with realistic ranges and
distributions.
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4.2 Future directions

Moving forward, there are several avenues warranting further
exploration in the realm of NFT-based DA. To begin with, while
our investigation focused on TP and HFD features, the landscape
of MI classification boasts a multitude of other features like kurtosis,
sample entropy, and wavelet coefficients (Schiratti et al., 2018). It is
plausible that the CTM’s ability to represent each feature differs, and
not all features may be suitable for this augmentation technique.
Further research in this direction could elucidate how the model
encapsulates the distinct characteristics of each feature. Additionally,
it would be intriguing to explore the application of this DA approach
in an MI classification pipeline utilizing a deep-learning classifier
that directly classifies time series rather than features. On one hand,
DA might prove to be more efficient in this scenario, as deep-
learning classifiers are more prone to overfitting, a problem that DA
methods typically address. On the other hand, deciphering which
features of the data are represented in the neural network poses
a challenge, making it difficult to systematically analyze the DA
process within the NFT model and its outcomes.

Secondly, a deeper investigation into parameter jittering is
essential. Understanding the impact of jittering across different
NFT parameters and different features, to discern why certain
parameter jittering contributes to improvedDA,while others do not,
is critical. Moreover, delineating the optimal method for jittering
each parameter—adjusting the range and distribution of jittered
values–demands exploration.

Thirdly, there is potential in considering inter-epoch diversity
and intra-epoch non-stationarity. Instead of fitting a CTM to
the average of all subject epochs (per CSP, per MI condition),
segmenting epochs based on certain criteria and fitting the CTM to
subgroup averages might magnify the contribution of DA. Dividing
the MI period of the epoch into smaller segments and fitting the
CTM to each segment separately could be beneficial. For example, in
the ‘2a’ dataset, EEG signal characteristics may change considerably
during the MI period (from t = 2.5 to t = 5); thus, segmenting this
period could enhance augmentation performance by capturing these
alterations. Moreover, we can also fit and augment event-related
potentials that occur at the onset of motor imagery.

Finally, the scalability and adaptability of the augmentation
approach should be tested across a larger subject pool. Exploring its
adaptation for other BCI paradigms could also offer valuable insights
into its broader applicability.

The DA method we have developed is poised for integration
into various MI-based BCI systems to enhance classification
accuracy and shorten MI training sessions. In fact, we have already
successfully integrated it into the SES-BCI framework. Gathering
feedback from other developers regarding the integration process,
practical application, and the effectiveness of our DA method would
be invaluable for further refinement and wider application.

5 Summary and conclusion

In this study, we introduced a novel DA method leveraging NFT
for MI-based BCIs. Our approach utilized a CTM (Robinson et al.,
2002; Robinson et al., 2005; Kerr et al., 2008; Abeysuriya et al.,
2015) fitted to MI EEG epochs to generate artificial EEG epochs
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that amplified training-set diversity, thereby aiding improved MI
classification. Our aim was to address the challenge of limited
training data availability for MI classification. Along with this
research, we developed the SES-BCI, designed to assist individuals
with limited mobility in exploring their surroundings. Beyond its
role as an integration platform for our DA method, this system was
a continuous source of motivation throughout our study.

Several substantial findings emerged from this investigation.
While the DA method significantly improved the accuracy of
TP feature classification, it did not yield similar enhancements
for HFD feature classification. This discrepancy suggests that the
model is more adept at representing one feature over the other,
potentially due to the nature of the fitted CTM. Moreover, the
study observed a relation between MI proficiency and the efficacy of
DA. Subjects with higher baseline accuracy tended to benefit more
from the augmentation process, emphasizing the influence of initial
proficiency on DA success.

While this study’s focus was on TP and HFD features,
exploration of other MI-related features would offer a broader
understanding of how the CTM represents each feature.
Investigating different NFT parameters for jittering and
accounting for inter-epoch diversity could enhance the method’s
efficacy further.

In conclusion, this study demonstrates the promise of employing
physiologically-inspired computational models to augment EEG
time series in BCI paradigms. It underscores the need for a nuanced
understanding of model-feature relationships and the influence of
MI proficiency on augmentation effectiveness. This innovative DA
approach offers significant potential for advancing MI-BCI systems,
paving the way for continued research and development within the
field, ultimately enhancing the quality of life for individuals with
motor disabilities.
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