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On the design of deep
learning-based control
algorithms for visually guided
UAVs engaged in power tower
inspection tasks
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This paper focuses on the design of Convolution Neural Networks to visually
guide an autonomous Unmanned Aerial Vehicle required to inspect power
towers. The network is required to precisely segment images taken by a camera
mounted on a UAV in order to allow a motion module to generate collision-free
and inspection-relevant manoeuvres of the UAV along different types of towers.
The images segmentation process is particularly challenging not only because
of the different structures of the towers but also because of the enormous
variability of the background, which can vary from the uniform blue of the sky
to the multi-colour complexity of a rural, forest, or urban area. To be able to
train networks that are robust enough to deal with the task variability, without
incurring into a labour-intensive and costly annotation process of physical-
world images, we have carried out a comparative study in which we evaluate
the performances of networks trained either with synthetic images (i.e., the
synthetic dataset), physical-world images (i.e., the physical-world dataset), or
a combination of these two types of images (i.e., the hybrid dataset). The
network used is an attention-based U-NET. The synthetic images are created
using photogrammetry, to accurately model power towers, and simulated
environments modelling a UAV during inspection of different power towers in
different settings. Our findings reveal that the network trained on the hybrid
dataset outperforms the networks trained with the synthetic and the physical-
world image datasets. Most notably, the networks trained with the hybrid dataset
demonstrates a superior performance onmultiples evaluation metrics related to
the image-segmentation task. This suggests that, the combination of synthetic
and physical-world images represents the best trade-off to minimise the costs
related to capturing and annotating physical-world images, and to maximise the
task performances. Moreover, the results of our study demonstrate the potential
of photogrammetry in creating effective training datasets to design networks to
automate the precise movement of visually-guided UAVs.
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1 Introduction

The development of Unmanned Aerial Vehicles (UAVs) and their large scale
commercialisation offer new solutions to those tasks that pose significant risks to humans
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(Hallermann and Morgenthal, 2013; Reagan et al., 2018;
Albani et al., 2019). One of these tasks is the inspection of
power towers, traditionally carried out by humans climbing the
tower’s reticular structure to great heights with special inspection
equipment. This task makes technicians subject to risks of falls, and
to injuries caused by contact with the high-voltage components.
UAVs can be used to avoid to expose personnel to these risks by
directly replacing humans in the inspection of the towers as well as of
the electrical components (Baik and Valenzuela, 2019; Maître et al.,
2022).

Beyond safety, the cost-effectiveness of UAVs deployment is a
significant advantage because UAVs reduce the direct and indirect
costs associated with maintenance operations of the electricity
transmission network. For example, inspection-by-human methods
might necessitate temporary shutdowns of the power system. The
shutdown, while reducing the risks of injury, it increases the
disruption to customers. UAVs can instead operate with minimal
or no significant impact on power transmission and distribution
to customers (e.g., no preventive shutdown). Moreover, UAVs
enable frequent and thorough inspections without the same level of
resource investment, leading to a more regular maintenance cycle
and an earlier detection of potential issues, ultimately extending the
lifespan of infrastructure and ensuring consistent power delivery
to consumers.

In terms of operational efficiency, UAVs offer unprecedented
speed and convenience. A UAV can potentially inspect a target
area faster than what it would take a ground crew to inspect it
“manually”. This efficiency translates into quicker turnaround time
for diagnostics, allowing formore agile responses to emerging issues.
Additionally, the ability to inspect multiple towers in a single flight
session streamlines the maintenance process, further driving down
operational costs. If equipped with high-resolution sensors, UAVs
can capture detailed imagery and data, which, when analysed with
dedicated algorithms, can lead to rapid diagnostics of structural
integrity and to the evaluation of the risks of failure of the high-
voltage components. This can reduce the likelihood of occurrence
of error in data collection and analysis.

Nowadays, the companies that make use of UAVs for power
tower inspection, tend to teleoperate the unmanned aerial vehicles.
This requires that the vehicle remains within the human-controller’s
view which defines the desired flying trajectories of the vehicle
around the tower while avoiding collisions. When the UAVs is not
fully teleoperated, it is “programmed” to execute a predefined path
plan with a waypoint system, where the UAV is first guided to
the designated power tower, and then it moves along the designed
trajectory (De Filippis et al., 2012; Ergezer and Leblebicioglu, 2013;
Roberge et al., 2013; Lin and Saripalli, 2017; Aggarwal and Kumar,
2020). During the inspection, the UAV may use proximity sensors
such as LiDAR, sonar, and radar to assess the environment
and to avoid obstacles (Jordan et al., 2018). Path planning might
also integrate the drone’s camera as a sensor to detect specific
objects requiring attention or avoidance. Whether carried out by
teleoperated UAVs or by UAVs programmed to execute a specific
path around the tower, the inspection is generally divided into two
distinctive phase: the data collection, which happenswhile theUAVs
flies around the structure, and the data analysis, which is carried out
“offline” after all data has been collected.

We believe that, the UAVs technology could be exploited in an
alternative and potentiallymore efficient way by providingUAVs the
means to autonomously navigate (instead of being teleoperated or
programmed to move) around the power tower. A first advantage
is that, an autonomous UAVs can develop more informative (from
the inspection perspective) flying trajectories, since it can directly
control itsmovements using the readings ofmultiple sensors directly
mounted of vehicle, which provide a perspective on the structure
that is precluded to a human controller based on the ground.
Moreover, an autonomous UAVs, if equipped with the required
technology, can integrate the data collection and the data analysis
phase into a single process in which the UAVs movements are
determined by the result of the “online” data analysis. This can
improve the system efficiency by allocating time and resources only
to those parts of the tower that are in needs of in-depth inspection.

This paper aims to contribute to the development of the
technology to automate the inspection task of power towers by
UAVs, by designing and evaluating methods to exploit camera-
based technologies to automate the detection of the tower reticular
structure. In the next Section, we illustrate how and why we
think this technological innovation can be achieved by exploiting
a methodological toolkit made of state-of-the-art solutions already
available to researchers.

2 Background

The capability to precisely detect and position the tower in a
local (i.e., UAV based) framework of reference can be considered a
necessary precondition to allow UAVs to develop obstacle-free and
potentially informative trajectories as mentioned above. Visually-
guided UAVs equipped with state-of-the-art image segmentation
algorithms, such as convolution neural networks (hereafter, CNNs),
could position themselves relative to the power tower to maximise
the quality of the data collection and data analysis process, while
avoiding issues such as overexposure, or blurriness of the image
that could interfere with the navigation and data collection task
(Maître et al., 2022).

However, designing the technology to provide visually-guided
UAVs that perceive the surrounding environment with CNNs-based
technology that provides the visual acuity necessary to perform
the inspection task poses unique difficulties (see Jordan et al., 2018;
Lei et al., 2020). First of all, the use of some of the state-of-the-
art algorithms for image segmentation, such as CNNs (Girshick,
2015; Badrinarayanan et al., 2017; Bello et al., 2019; Fan et al., 2021;
Qin et al., 2022) demands an embedded computing platform to
speed up the image-segmentation process. The computational
demands of this type of platforms can adversely affect the UAVs’
flight capabilities since the more substantial the computational load,
the more limited the UAVs flight endurance becomes. An effective
balance between computational power and flight efficiency is crucial
to ensure an UAV completes its inspection task without the need of
technical breaks (e.g., to recharge batteries).

Moreover, contrary to other domains such as self-driving cars,
where CNNs can be relatively easily trained to detect the road signs
(see Shustanov and Yakimov, 2017; Zhang et al., 2020), the lane
marking (see Yang et al., 2019), or other elements of urban and non-
urban visual scenes (see Maqueda et al., 2018; Ouyang et al., 2020),
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in the domain of UAVs for power tower inspection task there is
an issue with the training of the CNNs-based technology. This is
due to multiple factors including: i) the difficulty to train CNNs to
detect the reticular structure of a tower without confusing it with
other similar elements in the scenes such as branches, antenna, etc.
(Maître et al., 2022); ii) the difficulties related to the collection of a
sufficiently large body of images to train robust CNNs capable of
copying with the complexity and variability of conditions in which
a UAVs are required to operate; (Johnson and Khoshgoftaar, 2019;
Shorten and Khoshgoftaar, 2019); iii) the difficulty to test and to
validate new technical solutions and algorithms while avoiding the
risks of damaging both the UAVs and the electricity structures, due
to the fact that towers are often located in remote and difficult to
access locations.

In order to overcome the negative influence of the above
mentioned factors, we show that it is possible to design
computationally light CNNs that, when trained with a combination
of physical-world and synthetic images can be extremely effective
in distinguishing power towers from background in a variety of
scenarios. The type of CNN we use in this study is referred to
U-NET (Ronneberger et al., 2015a), a neural network originally
developed for biomedical applications, which excels in tasks
requiring precise localisation, such as tumour detection in
radiology images (Ronneberger et al., 2015a; Siddique et al., 2021).
Beyond healthcare, U-Net has been successfully employed in
other tasks including satellite imagery analysis and agricultural
monitoring (see Wei et al., 2019; Su et al., 2021; Wagner et al., 2019;
Freudenberg et al., 2019; Ivanovsky et al., 2019, for example).

We train U-NETs with the support of synthetic images,
generated with a simulator that we designed to be accurate in
reproducing the characteristics of the different scenarios in which
power towers can be found. The development and the exploitation
of synthetic data for the training of neural networks is a practice in
use since a long time (Hinterstoisser et al., 2019; Nikolenko, 2021),
which concerns both processes to augment or modify physical-
world images and processes that create entirely simulated (i.e., non-
physical) images, referred to as synthetic images (Gupta et al., 2016;
Ros et al., 2016; de Melo et al., 2022). The use of synthetic images
facilitates the expansion of datasets with the possibility to control
the frequency of appearance of specific features or elements in the
scenes used for training and evaluation, in order to reduce the risks
of over-fitting (Hinterstoisser et al., 2019; Shorten andKhoshgoftaar,
2019).

We mentioned above that we develop synthetic images with a
simulator. Simulation environments are extensively used in many
research domains to speed-up and facilitate the design, the test,
and the validation process of software and hardware components.
Simulators are particularly popular in the domain of robotics,
where different techniques have been developed to limit the
performance loss while porting solutions from simulation onto the
physical hardware, due to inevitable differences between the model
and the physical world (see N.Jakobi et al., 1995; Miglino et al.,
1995; Scheper and Croon, 2017). In this study, we make use
of a combination of specific pieces of software to develop a
simulator that generates highly accurate model of power towers
to be integrated in a variety of highly realistic simulated scenes.
The results of our research work show that the synthetic images
generated with our simulator can undoubtedly help to speed up and

facilitate the training of robust state-of-the art image segmentation
algorithms such as computationally light CNNs. We show that the
U-Net trained with the support of synthetic images are capable
of distinguishing power towers from the background in physical-
world images taken by cameras mounted on UAVs while operating
the inspection task in different scenarios. Moreover, the simulator
we develop in this research work can also be used in the future
to test, and to validate different methodological solutions related
to the engineering of autonomous UAVs for the inspection of
power towers. By accelerating the data collection process and by
minimising the costs, the methodological toolkit illustrated in this
study is instrumental in developing an advanced autonomous UAV
system for micro-analysis of power towers across various natural
environments.

3 Methods

In this section, we describe the methods used to train a
Convolution Neural Network to autonomously identify in camera
images, power towers. The image segmentation process is meant to
contribute to automate the inspection of these important structural
elements of electricity grids by autonomous drones. In particular,
we describe the simulator used to generate synthetic images (see
Section 3.1), the image datasets used to train the network (see
Section 3.2), and the type of convolution neural network used to
segment the images (see Section 3.3).

3.1 The simulator

In this study, we use the AirSim simulator Shah et al. (2017) to
create scenarios that model both natural settings with power towers,
and the drone which operates in these settings to inspect the towers.
AirSim is a state-of-the-art digital library tailored for AI research. It
is designed to create highly realistic environments for different types
of autonomous vehicles, including cars and drones. AirSim employs
Unreal Engine 4 (available at https://www.unrealengine.com), a
powerful and versatile game engine renowned for its high-quality
graphics and complex simulations, that provides support to manage
the graphical aspects of a simulation, to create diverse scenarios, and
to address physics-related tasks. Additionally, AirSim integrates a
drone control system and a weather API, further augmenting the
engine’s effectiveness in offering a realistic and reliable simulated
environment. As far it concerns drones, AirSim allows to model the
flight dynamics aswell as to generate images from a cameramounted
on the drone.

In our simulated scenarios, power towers are located in the
following different types of setting.

• The Village: This setting introduces the complexity of built-
up areas, with structures that could obscure parts of the
towers, reflecting the intricacies of human settlements. The
village scenario also encompasses a wide variety of colours and
contrasts, from the reddish hues of brick walls to the diverse
palette of European roof tiling, enhancing the model’s ability
to process images with complex colour dynamics (see also
Figure 1A).
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FIGURE 1
Visualisation of different Photogrammetrically captured power towers integrated into Unreal Engine and AirSim simulator. The image in: (A) represents
the village setting; (B) showcases the cornfield setting with electrical facilities inside it; (C) represents the forest and mountainous environment; (D) the
cobblestone floor and dirt settings; (E) represents the high-contrast enclosure setting.

• The Cornfield: This setting depicts a vast agricultural expanse
with height variations posed by crops, representing challenges
similar to those found in extensive farmlands. This scenario
offers a relatively flat sight line compared to other environments,
providing a contrast in visual complexitywith power towers that
are integrated in uniform and less cluttered backgrounds (see
also Figure 1B).
• The Mountain/Forest: This setting is characterised by uneven
terrain and dense foliage, mimicking the obstructed views and
variable altitudes encountered in natural, undeveloped areas
(see also Figure 1C).
• The Cobblestone/Dirt Area: This settings, simpler than the
others in structure, depicts an open field with minimal
obstructions allowed for straightforward flight paths, akin to
those over accessible terrain (see also Figure 1D).
• TheHigh-Contrast Enclosure:The setting refers to a featureless
environment, bounded by tall walls, crafted to contrast starkly
with the power tower. It creates a unique challenge of visual
differentiation in a high-contrast scenario, which is meant to
replicate isolated conditions where background distractions are
minimised. This environment also helps to generate data for
saturated luminosity scenarios (see also Figure 1E).

Each of the above scenarios is chosen for its relevance to the
European landscape, reflecting the broad array of settings in which
power towers are commonly situated. By integrating the 3D model
of power towers within each scenario, at pseudo-randomly chosen
positions, we generate a variety of different operating conditions
in which the drones is required to carry out the inspection
process.

To ensure the simulator provides a reliable models of
natural settings, we integrated into the simulated environment
Photogrammetrically reconstructed 3D models of power towers
(see Figure 1). Photogrammetry is a technique that creates
measurements frompictures (Schenk, 2005; Remondino et al., 2012;
Goncalves and Henriques, 2015). It is based on the principle that
the three-dimensional coordinates of a point on an object can be
determined by measurements made in two or more photographic
images taken from different positions. The Photogrammetrically
reconstructed models accurately reproduce aspects (e.g., the
structural as well as textural elements) of physical power towers,
by greatly enhancing the realism of our simulator.

The incorporation of photogrammetry-derivedmodels of power
towers is meant to improve the effectiveness of synthetic images
when used to train convolution neural network for the segmentation
process. For example, photogrammetry-based models of towers
are characterised by a high-resolution textures and geometrically
precise structural details. These properties help to improve the
adherence of synthetic scenarios to physical world conditions.
Thus, they are instrumental in enabling convolution neural network
to recognise intricate features and nuances, which are essential
for a precise and accurate image-segmentation process. Another
significant advantage of photogrammetry is related to the systematic
controlled of some of the potential sources of variability. Synthetic
images generated through photogrammetry enable systematic
manipulation of various factors, such as lighting conditions, object
orientations, and scale. By controlling these elements, we can
adopt a more structured and effective approach to training and
validating convolution neural networks, ensuring they are well-
prepared for a variety of scenarios. Cost-effectiveness is another
key benefit. Creating synthetic images via photogrammetry can
be less expensive than the labour-intensive and often costly
process of collecting physical-world images. This is particularly
relevant for scenarios that would otherwise necessitate extensive
travel, obtaining various permits, and undertaking time-consuming
data collection efforts, especially in challenging or inaccessible
locations. Moreover, the use of photogrammetry enhances safety.
Generating synthetic images through this method eliminates the
need for personnel to be in hazardous environments or close to
dangerous structures, such as high-voltage power towers, during
the image collection phase. This significantly reduces the risks of
accidents and occupational hazards, making it a safer alternative
to traditional data collection methods. Finally, by strategically
utilising photogrammetry, we enhance the quality and realism
of the dataset used for training, with the objective to improve
the network ability to deal with the unpredictable physical-world
conditions.

3.2 The image datasets

Convolution neural networks have been trained to segment
images containing power towers using three different datasets:
the synthetics dataset, the physical-world dataset, and the
hybrid dataset.
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The images of the synthetic dataset comprises five structurally
different photogrammetrised power towers, placed in different
positions of the five scenarios simulated with the AirSim simulator
as illustrated in Section 3.1. The images have been generated
from a camera mounted on a drone which is manually flown
(with the support of the AirSim flight dynamics library) along
a predefined trajectory around the towers. The simulated camera
model a Zenmuse P1with 35 mm focal lens locked in forward facing
mode. The trajectories of the drone mimics the navigation paths
recorded by physical drones while inspecting physical power towers.
The use of these flight trajectories in combination with accurate
models of the physical towers guarantees that the images reflect
the large variability in the operating conditions encountered by
physical drone during the inspections and the complexity of the
segmentation task. This refers to the fact that images are also taken
from “undesired” positions, due to manoeuvres to avoid obstacles
(e.g., branches), or being affected by phenomena such as light
reflection. The synthetic images are automatically annotated, with
each pixel labelled as either part of a tower or of the background.

The physical-world dataset contains images displaying physical
power towers under different environmental conditions varying in
terms ofmorphology, colour, textures of the tower, aswell as in terms
of ambient lighting, background scene. In some of the images, there
are also elements (e.g., branches of trees, leaves) that occlude the
view of part of the power towers. The cameras used to acquire the
images are DJI Zenmuse X5S with 35 mm focal lens equipped on a
DJIM210 and aDJI Zenmuse P1 with 35 mm focal lens equipped on
a DJI M300. The flight security distance respected was of 5 m from
any structural parts of the power tower and the electric cables. The
flight were performed by professional pilot during audits and with
the agreement from the electricity grid operator.

The hybrid dataset is generated by merging all the physical-
world images with all the synthetic images. This dataset serves
as a comprehensive training resource, blending the clear, high-
quality aspects of synthetic images with the intricate and varying
characteristics of physical-world images.

The datasets used for training aremade of 1080 images and those
for validation are made of 180 images. The statistical properties of
the datasets are shown in Table 1. This analysis has been carried
out on the resized images used from training and validation. This
distribution is calculated around the resized images that will be used
during the experiment. For each dataset, the ground truth grayscale
images are marked with 0 pixels for non-power tower regions and
255 for power tower pixels.

3.3 The convolution neural network

The convolution neural network used in this experiment
is an Attention U-Net architecture Ronneberger et al. (2015a),
meticulously engineered for real-time power towers image
segmentation tasks. We choose an Attention U-Net because it
efficiently balances performance with computational pragmatism.
For example, this type of network can be trained in a relatively
short amount of time and with modest hardware requirements.
This makes the U-Net architecture an optimal choice for rapid
prototyping, since it allows for quick iteration anddeployment in live

operational settings, while ensuring reliability and responsiveness
to the dynamic demands of drones-based surveillance and analysis.

Central to the architecture is an encoder-decoder structure,
augmented by skip connections (see Figure 2). The encoder
comprises a series of convolutional layers designed to progressively
capture the hierarchical feature representations of power towers.
Each convolutional layer is typically followed by a rectified linear
unit (ReLU) activation function and a max pooling operation,
which serves to down-sample the spatial dimensions of the feature
maps. This down-sampling strategy is instrumental in reducing the
computational load and enhancing the network’s focus on the most
salient features by minimising redundant spatial information.

The decoder is the element of the U-Net architecture, where
the feature maps are progressively up-sampled to reconstruct the
spatial resolution that are reduced during encoding. The decoder
uses transposed convolutions for up-sampling and combines these
larger feature maps with the attentively filtered feature maps from
the encoder via skip connections. These connections are critical
for restoring spatial details and context, which is lost during the
encoding process, thus allowing for high-fidelity reconstruction of
the segmented output.

The bottleneck functions is a pivotal point between the encoder
and decoder. It processes the most abstracted form of the input
data, distilling the feature maps to their most compressed and
essential representations. This portion of the network typically
involves a dense application of convolutional operations to enforce
a robust feature encoding before the subsequent decoding phase.
We have integrated into the classic U-Net architecture an attention
mechanism, referred to as attention gates (AGs) Bello et al. (2019),
to refine the feature extraction process, thereby enhancing the
precision of segmentation in real-time applications. The integration
of AGs at key junctures are positioned prior to the concatenation
points of the skip connections that bridge the encoder and decoder
blocks. These AGs are pivotal in executing a selection mechanism,
improving the model’s capability to focus on pertinent regions
within the image by enhancing salient features and diminishing the
less relevant ones. This selective attention is directed by a gating
signal derived from the decoder’s output, modulating the encoder’s
feature response accordingly. The attention-driven modulation
brought about by the AGs significantly curtails the semantic gap
between the encoder’s compressed representations and the decoder’s
expanded interpretations. Such a focused approach is imperative
for real-time segmentation, where rapid and accurate delineation of
power towers against diverse and dynamic backgrounds is crucial.
The terminal part of the network is a convolutional layer with a
softmax activation function that assigns to each pixel probabilities
to be part of the image corresponding to the tower or to the
background. This probabilistic mapping is then used to generate a
segmented image, with each pixel labelled according to the class with
the highest probability.

3.4 The computational validation

Having outlined our CNN model solution, we now turn to
evaluating its “online” performance capabilities when deployed on
a UAV. Our current setup includes a DJI M300 RTK UAV outfitted
with a Zenmuse P1 with 3-Axis gimbal. Beyond the standard
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TABLE 1 Table showing statistical properties of the different datasets for training and validation. In particular, it is shown the mean and the median of
negative and positive pixels. The table also shows the number of images without any positive pixels. The positive pixels represent the power tower
structure while the negative pixels represent the other parts of each image.

Dataset Mean negative Mean positive Median negative Median positive w/positive

training R 75.2 24.8 75.68 24.32 43

validation R 74.66 25.34 75.18 24.82 4

training S 81.88 18.12 83.15 16.85 108

validation S 81.95 18.05 82.69 17.31 9

training H 77.54 22.46 79.13 20.87 72

validation H 78.01 21.99 79.09 20.91 3

FIGURE 2
Diagram of the structure of the Attention U-Net Convolutional Neural Network. This structure is adapted from the one illustrated in Oktay et al. (2018),
with the addition of an extra convolution and deconvolution layer.

UAV configuration, we have added a custom support system that
houses our onboard solution, enabling communication and control
via the DJI SDK for image capture and UAV manoeuvring. The
heart of this system is an NVIDIA Jetson TX2 8Gb, operating on
Jetpack version 4.6.1. This setup allows us to leverage TensorRT
for neural network optimisation, maximising performance given
the hardware’s capabilities and the model’s computational demands.
However, the ageing Jetson and its outdated Jetpack version impose
limitations on the extent of TensorFlow/PyTorch optimisation,
leading us to select an older CNN model for our tests. For effective
real-time operational capability, we’ve determined that the model

should achieve at least 7 Iterations Per Second (IPS) for basic
functionality, 14IPS for moderate performance, and above 20IPS
for optimal execution. Higher IPS rates enable more sophisticated
filtering techniques between iterations to improve movement
predictions. At 7IPS, the model is highly precise due to the absence
of filtering options. At 14IPS, a two-iteration filter can be applied,
and beyond 20IPS, a three-iteration Kalman filter can be utilised,
accommodating models of lesser quality. This study emphasizes
detection accuracy while ensuring compatibility with our hardware
and the broad applicability of the system.TheAttentionUNetmodel
developed and optimised via TRTEXEC (TensorRT) demonstrated
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8-10IPS in a 15-min continuous feed stress test, with the Jetson
operating under passive cooling at 22°C.TheUAV’s flight dynamics,
particularly the airflow generated by its rotors, can further enhance
cooling efficiency. While the system hovers near the lower threshold
of acceptable IPS for autonomous operations, not every aspects
of the attention mechanism were optimal. Advances in Jetpack
versions and modern embedded systems could potentially boost
performance. It is noteworthy that a baseline U-Net model, lacking
an attention mechanism, could reach up to 28IPS when fully
optimised.

3.5 The training process

We have run three training processes in which an Attention U-
Net model (see Section 3.3) is taught to segment images referring
to power towers placed in many different background scenes (see
Section 3.2).The training processes differ in the type of images in the
dataset: one process is based on a dataset made of labelled physical-
world images, a second one on a dataset made of synthetic images
generated with the simulator (see Section 3.1), and a third one on
a dataset made of a combination of physical-world and synthetic
images. Each dataset is made of 1200 images. Approximately, 80% of
the each dataset is used for training, with the remaining portion set
aside for validation. In particular, 1020 images are used for training
and 180 for validation. Note that, in the hybrid dataset, 50% of
the images used for training/validation are synthetic and 50% are
physical-world images.

Each training process involves several key steps. Initially, we
initialise the weights of the network using a normal initialisation
method. This step is crucial for facilitating effective deep network
training, especially when using ReLU activation, as it helps in
avoiding the vanishing gradient problem and ensures a smoother
convergence. For the loss function, we used a weighted categorical
cross-entropy. This approach is particularly effective in addressing
class imbalances within the datasets, which is a common challenge
in segmentation tasks. By weighting the classes differently, we
promote a better overlap between the predicted segmentation
and the actual ground truth. We employ an Adam optimiser
since it is known for its efficiency in handling large datasets
and complex architectures. To further enhance its effectiveness,
a learning rate scheduler is integrated into the training process.
This scheduler dynamically adjusted the learning rate based on
the validation loss plateaus, optimising the training phase and
preventing overfitting. We also implemented a hold-out validation
strategy. The validation occurs after each training epoch, and
is based on a composite metric including validation loss, pixel
accuracy, and Intersection over Union (IoU). Validation loss is
used to measure how well the network generalises to new data;
pixel accuracy assessed the direct correctness of the predictions;
and IoU provided a measure of precision in the segmentation
task. This composite metric offers a comprehensive overview of
the network capabilities, by indicating not only how accurate the
network is in this segmentation task, but also how precise it
is in differentiating power towers from their surroundings, and
how much robust it is in segmenting images not seen during
training.

4 Results

In this section, we first show the results of the training
processes illustrated in Section 3.5, and subsequently we discuss the
results of a series of post-evaluation tests run on the best trained
networks. We remind the reader that our objective is to evaluate
the extend to which the type of images of the dataset used for
training bears upon the effectiveness of the networks in successfully
distinguishing power towers from background in images taken by
cameras mounted on drones engaged in inspection tasks.

Figure 3 shows the trend of the Mean Error Loss for training
and validation during 200 epochs in the three different learning
processes (i.e., with synthetic images in Figure 3A, with physical-
world images in Figure 3B, and with a combination of synthetic
and physical-world images in Figure 3C). We notice that for all the
three conditions, the initial decreasing trend for both training and
validation curves is inverted after epoch 25 for the Mean Error
Loss for validation (see in Figures 3A–C the orange line). This can
be interpreted as a sign of overfitting, possibly due to a lack of
diversity within the dataset. In order words, regardless of the types
of images in the dataset, the networks, after epoch 25, seem to
learn dataset-specific features rather than a effective segmentation
strategy capable of performing equally well on images not used for
training. We conclude that 200 epochs for training are effectively
too much for this type of network which does not require that
much training to reach its best performance given the size of the
datasets used. The other important element from Figure 3 is that, in
the condition with the hybrid dataset (see in Figure 3C), the Mean
Error Loss for validation reaches lower values than in the other
two conditions, suggesting that the network trained with the hybrid
dataset outperforms the networks trained with the synthetic and
physical-world images.

To validate this first result, we have run a series of post-
evaluation tests. In particular, for each training process, we have
selected two networks from the training epochs in which the Mean
Errors Loss for validation is at its lowest values. This is because
a low Mean Errors Loss typically correlates with higher accuracy
and better generalization capabilities, thereby reducing the risk of
overfitting.

Hereafter, the best two networks trained with synthetic images
are referred to as S1 and S2, those with physical-world images as
R1 and R2, and those with a combination of physical-world and
synthetic images as H1 and H2. These six networks have been post-
evaluated with tests in which each network’s efficiency is estimated
using four different metrics, and multiple types of images not seen
during training. In the remaining of this Section, we describe the
results of this post-evaluation analysis.

4.1 Multi metrics post evaluation

To compare the performances of the six different networks,
we have use the following four different metrics: 1) the F1 score
(hereafter, referred to as F1), 2) the Recall (hereafter, referred to
as Rec), 3) the Precision (hereafter, referred to as Pre), and iv) the
Intersection over Union (hereafter, referred to as IoU). Each metric
is used to evaluate different aspects of the network’s performance in
segmenting power towers against diverse backgrounds. In particular,
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FIGURE 3
Graphs showing the trend of the Mean Error Loss for training (blue lines) and validation (orange lines) during 200 epochs with (A) the synthetic dataset,
(B) the physical-world dataset, and (C) the hybrid dataset.

FIGURE 4
Examples of the results at the post-evaluation tests by the six selected best networks S1, S2, R1, R2, H1, and H2 on: (A) a physical-world image captured
with a positive pitch, featuring a power tower against a clear sky background; (B) a synthetic image on a horizontal pitch, depicting a power tower in a
field, surrounded by a metal fence; (C) a physical-world image with a negative pitch, showcasing a grass and dirt foreground with the sky visible at the
top.

Rec measures the proportion of actual positive cases correctly
identified, indicating the network ability to capture relevant pixels.
Pre evaluates the accuracy of positive predictions, showing how
often predicted positives are correct. The F1 harmonises recall
and precision, providing a balanced measure of the network
performance in cases of uneven class distribution. IoUassesses the
overlap between predicted and actual segments, quantifying the
network accuracy in segment coverage. Together, these metrics
offer a comprehensive view of a network’s effectiveness in this
segmentation task.

Since the segmentation of power towers images necessitates
pixel-wise precision due to the intricate nature of the task, the four
evaluation metrics mentioned above are grounded in a pixel-to-
pixel comparison framework, in which: 1) a True Positive (TP)
refers to a correct classification of a pixel identified as part of a

tower; 2) a True Negative (TN) refers to a correct classification of
a pixel identified as background; 3) a False Positive (FP) refers to
an incorrect classification of a pixel identified as part of a tower
when it is part of the background; 4) a False Negative (FN) refers
to an incorrect classification of a pixel identified as part of the
back ground when it is part of a tower. We have chosen to post-
evaluate each network on the three different types of dataset: the
synthetic dataset (hereafter, referred to as S dataset), the real-world
images dataset (hereafter, referred to as R dataset), and the hybrid
dataset (hereafter, referred to as H dataset). Each dataset is made
of 450 images not seen during training. For the H dataset, 225
are physical-world and 225 synthetic. The composition of these
datasets ensures a thorough and effective evaluation of the networks’
performance across different conditions, which is crucial for the
precise segmentation of power towers.
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TABLE 2 Table showing the performances of the six networks (S1, S2, R1, R2, H1, H2) at the post-evaluation analysis. Each network is post-evaluated on
the three different types of datasets (i.e., the S, the R, and the H), and the performances are shown with respect to four metrics (i.e., the F1, the Rec, the
Pre, and the IoU). The best performance for each metric is indicated in bold.

F1 Rec Pre IoU

S R H S R H S R H S R H

S1 0.834 0.855 0.847 0.824 0.909 0.876 0.864 0.815 0.834 0.729 0.764 0.751

S2 0.819 0.866 0.848 0.806 0.920 0.875 0.860 0.826 0.840 0.713 0.780 0.754

R1 0.953 0.946 0.969 0.957 0.949 0.969 0.952 0.947 0.971 0.890 0.947 0.971

R2 0.961 0.950 0.975 0.977 0.955 0.982 0.948 0.947 0.969 0.913 0.947 0.969

H1 0.992 0.955 0.986 0.994 0.961 0.988 0.992 0.950 0.984 0.978 0.950 0.984

H2 0.993 0.957 0.987 0.996 0.964 0.992 0.990 0.951 0.983 0.980 0.951 0.983

The results, shown in Table 2, indicate that, the best
performances in all the metrics are those obtained by the networks
trained with the hybrid dataset (see Table 2 row H1 and H2 for all
metrics).These best performances are recordedwith either synthetic
images (see Table 2, column S, for Rec and Pre) or with theH dataset
(see Table 2, column H, for F1 and IoU). This result suggests that
the networks H1 and H2 possess a remarkable ability to effectively
interpret both synthetic and physical-world images, with a strong
generalisation capabilities, particularly in discerning the shape of
power towers across varying environmental conditions (Figure 4).

These post-evaluation tests have also given other more
interesting and unequivocal indications. First of all, the data shown
in Table 2 tells us that the networks trained with hybrid images (i.e.,
H1and H2), perform, for all metrics, slightly better than the best
networks trained with physical-world images when evaluated with
the R dataset (see Table 2, row H1 and H2, and R1 and R2, for all
columns R). This indicates that networks H1 H2 are highly effective
in accurately identifying, in physical-world images, (see Figures
4A, C) positive cases (high precision), by effectively capturing a
majority of the TP instances (high recall). Moreover, networks H1
and H2 prove effective in maintaining a balanced trade-off between
precision and recall (reflected in the F1 score), and in accurately
delineating the spatial boundaries of the objects (indicated by IoU).
Note also that, both the performances of networks R1 and R2 as well
as of networks H1 and H2 are very close to the maximum scores
(i.e., 1) that a network can get in each of these four metrics. The
consistent high scores in all metrics is a sign of networks that have
achieved a good balance between underfitting and overfitting, or in
other words, an effective trade-off between bias and variance. Thus,
they promise to be highly reliable to be effectively deployed in a
physical world power tower inspection process.

Another important element from Table 2 concerns the scores at
metric Rec for networks H1 and H2 and networks R1 and R2. The
high score at Rec by these networks indicates that these networks are
particularly effective at identifying most of the relevant instances of
power towers, demonstrating high sensitivity in detecting the objects
of interest. However, it is worth noticing that for both H1 and H2
and R1 and R2, the scores at F1 and Pre are lower in comparison
to those at Rec. This points to the fact that these networks prioritise
detecting asmany true positives as possible (highRec) but at the cost

of includingmore false positives (lower Pre).Themetric Pre assesses
how many of the predicted positives are actually true positives.
Therefore, a lower score at Pre than at Rec implies that while these
networks detect most of the power towers, not all pixels considered
part of a tower are correctly classified.

The other clear result from the data in Table 2 refers to the
performances of networks trained with only synthetic images.These
networks (i.e., S1 and S2) obtained the lowest performances in all
tests. S1 and S2 record the worst performances even with respect
to images of the same type of those experienced during training
(see Table 2, rows S1 and S2, for all columns S). This suggests
that the limited variety of photogrammetry-based power towers in
synthetic images leads to overfitting, which occurs despite the high
variability in the background characterising the synthetic images
used for training. Therefore, we conclude that variability during
training with respect to the features of the power towers, instead
of the background, is crucial for achieving good generalization.
The relatively high score at the metric Rec for S1 and S2 indicates
that these networks are effective at identifying most of the relevant
instances of power towers in all datasets (see Table 2, rows S1 and
S2, for column S, metric Rec). Essentially, this suggests that these
networks are capable of detecting the presence of power towers with
a high degree of sensitivity. However, the low IoU score implies that
while these networks are successful in identifying power towers,
their precision in outlining or segmenting the towers is inadequate
(see Table 2, rows S1 and S2, for column S, metric IoU). This
combination of high Rec and low IoU scores typically points to
networks that showover-detection; that is, they correctly identify the
objects of interest but also inaccurately include a significant amount
of the surrounding area in their predictions. This characteristic is
particularly critical in applications where accurate delineation of the
object is as important as its detection.

As far as it concerns networks S1 and S2, it is worth noticing that
although their capabilities are somewhat limited and not as robust
as those of the other types of networks, they still manage to perform
relatively well (see Figure 4B). This is thanks to a synthetic dataset
in which images are generated by using substantial noise filtering
techniques and the application of a Kalman filter Kalman (1960).
These techniques are particularly crucial to boost the performance of
networks that, otherwise tend to exhibit lower scores at IoU metric,
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indicating a tendency to inaccurately include surrounding areas in
their predictions. By employing noise filtering and the Kalman filter,
the risk of such inaccuracies can be significantly reduced, enhancing
the practical usability of the networks trained with the S dataset
despite their inherent limitations in comparison to models trained
with the R and H dataset.

Finally, a significant aspect of our findings pertains to the
influence of synthetic images on the training of networks H1 and
H2. In particular, this type of images does not adversely affect
the networks’ ability to accurately interpret and analyse physical-
world images. This observation is particularly noteworthy as it
highlights the efficacy of the photogrammetry techniques and
the simulation tool used to create the synthetic images used for
training. We can claim that the simulation tool we employed
generates photorealistic images of power towers, sufficiently detailed
to effectively contribute to shape the segmentation mechanisms
underlying the good performances of networks H1 and H2. The
simulated images, therefore, not only augment the diversity of the
training dataset but also contribute positively to the networks’ ability
to generalise and to perform effectively across different scenarios.
This finding has significant implications for the use of simulated data
in training robust networks, especially in contexts where physical-
world data might be limited or too challenging to obtain.

4.2 Comparison with mask2former

TheU-Net architecture described in Section 3.3 has been chosen
by taking into account a important trade-off between performance
and computational resources which is imposed by the technology
currently available to run the power tower inspection task by the
company that financially supports this study. Generally speaking,
as far as it concerns the domain of CNNs, the performance and
the required computational resources to run the network tend
to be positively correlated, meaning that a progressively better
performance is likely to require networks that are more costly in
terms of computational resources.

In this Section, we show the results of a comparative test that
quantifies the performance gain obtained by replacing the U-Net
with a computationally more costly state-of-the-art CNN for the
image segmentation task described in this study. In particular, we
train a mask2former model (m2f) Cheng et al. (2022), integrated
with a Swin-B backbone Liu et al. (2022), on the same datasets (S,
R, H) used for training the Att-U-Net model. Just like the U-Net
model, the Mask2Former model gets the same size of input and
output (512 width and 512 height image). The comparative results,
illustrated in Table 3, indicate a slightly superior performance of the
mask2former model over the U-Net variant. Consistent with earlier
findings, the Mask2Former trained with the H dataset exhibits
an overall enhanced performance. Nevertheless, contrary to what
observed with the U-net, the Mask2Former trained with the other
two datasets (i.e., S, R), yields results that are comparably close
to the mask2former Hybrid model trained with the H dataset.
The results of this test confirm that larger computational resources
make possible to run more effective networks which produce better
performances. However, the U-Net remains an effective solution,
that guarantees an excellent performance at reduced computational
costs compared to other slightly more effective networks.

5 Discussion and future works

In this Section, we discuss how theConvolutionNeural Network
illustrated in Section 3.3 could be integrated into a larger control
system to automate the behaviour of UAVs engaged in power tower
inspection tasks, while being trained with a hybrid dataset explained
in Section 3.2.

Since after segmentation, the pixels representing the power
tower are labelled differently from those referring to other objects
or background, a relatively simple algorithm can reliably extract
the position of the power tower with respect to the camera
and consequently with respect to the UAV. This information is
subsequently used to plan UAVs movements that avoid collisions
and generate those perspectives on the tower that are instrumental
for the inspection task.

We believe that, by drawing inspiration from basic lane
assistance technology in automobiles, an advanced assisted flight
control system can be developed to monitor the precision of images
captured during flight in real time. By integrating a CNN into
the loop between the pilot and the Unmanned Aerial Vehicle
(UAV), a PID (Proportional, Integral, Derivative) controller can be
implemented to manage the UAV’s roll axis. By processing the edge
position of power towers in the images, the system can accurately
determine the UAV’s positional deviation relative to the tower.
This means the pilot can concentrate on altitude adjustment and
maintaining a safe distance, while the AI system ensures the power
tower is centrally aligned in the captured images, guaranteeing
comprehensive coverage of the tower.

The task of centring the power tower on the camera image
while maintaining an appropriate distance from the tower can be
efficiently managed by the camera system itself, provided certain
parameters of the power tower, such as the width of its main
structure, are known (see also Maître et al., 2022, as an example).
With this approach, the UAV is free from additional, bulkier
equipment, such as proximity sensors like LiDAR. Utilizing the
known width of the tower and the expected pixel coverage in the
image, the actual distance from the power tower can be deduced by
applying theGround SamplingDistance (GSD) algorithm.TheGSD,
which represents the distance between two consecutive pixel centres
measured on the ground, can be calculated in the following:

GSD = H× S
F×R
; (1)

to

α = GSD
R
= H× S

F
; (2)

where α is the optimal pixel size, and GSD, expressed in meters,
represents the distance between two consecutive pixel centers
measured on the ground. GSD measures are directly influenced
by several factors including the altitude (H) of the UAV above the
ground, which is also measured in meters. The size of the sensor’s
pixel (S), often provided by the manufacturer or calculable from the
sensor size and resolution, plays a crucial role as well, alongside the
focal length (F) of the sensor’s lens, which is measured in meters.
Additionally, the resolution of the image (R), defined as the number
of pixels along one dimension of the image, is a critical parameter in
determining the GSD.
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TABLE 3 Table comparing the performance of the U-Nets (S2, R2, and H2) and of the mask2former (m2f) across different training regimes, using the F1
score (F1), Recall (Rec), Precision (Pre), and IoU (IoU) as evaluation metrics. See also the caption of Table 2 for more details. In each column, the highest
value is highlighted to clearly identify the top-performing model for every metric and data type.

F1 Rec Pre IoU

S R H S R H S R H S R H

m2f S 0.995 0.977 0.986 0.996 0.985 0.990 0.995 0.969 0.982 0.990 0.955 0.973

S2 0.819 0.866 0.848 0.806 0.920 0.875 0.860 0.826 0.840 0.713 0.780 0.754

m2f R 0.989 0.992 0.992 0.991 0.992 0.992 0.987 0.992 0.992 0.979 0.984 0.985

R2 0.961 0.950 0.975 0.977 0.955 0.982 0.948 0.947 0.969 0.913 0.947 0.969

m2f H 0.993 0.992 0.993 0.995 0.993 0.994 0.992 0.991 0.992 0.987 0.984 0.986

H2 0.993 0.957 0.987 0.996 0.964 0.992 0.990 0.951 0.983 0.980 0.951 0.983

By knowing the width of the power tower and measuring the
number of pixels it occupies in images taken from an optimum
distance, an approximate size per pixel at each inference can be
computed in the following:

P =W/R; (3)

where the pixel size (P) is measured in centimetres and represents
the dimensions of an individual pixel.Thewidth of the power tower’s
main structure is denoted as W. Additionally, the resolution of the
image (R) is defined by the number of pixels along one dimension of
the image, indicating the total pixel count in that direction.

Movement =
{{{{
{{{{
{

MoveCloser ifP > α

Stay ifP = α

MoveAway ifP < α

Finally, reinforcement learning could be employed to interpret
the mask as input for generating potential UAV movements. Given
that RGB images are information-dense, with 3× 8 bits allocated
for each pixel, the mask’s simplified binary [0, 1] input array could
significantly streamline the image data. This simplification aids in
developing a solution capable of self-centring, by learning from a
more condensed input set. Consequently, this approach could lead to
the optimisation of a smaller neural network, enhancing efficiency.

In terms of future work, we aim to evaluate the efficacy of
different control options. Our comparative study will include audits
of several systems: 1) manual control by a human pilot; 2) a flight
assistant using amultisegment LiDAR; 3) an advanced autopilot that
combines GPS-based online path planning with LiDAR sensors; 4)
a computer vision-based approach augmented with GPS for high-
precision positioning; and 5) a fully autonomous system powered
by computer vision. We will assess these systems based on the speed
of data acquisition, the accuracy and consistency of pylon centring
in the images, and their adaptability to challenging environments.
This comparative analysis will be facilitated by utilising professional
test power tower and its digital twin, which were integrated into our
simulation for this study and employed in the training of ourmodel.

6 Conclusion

We have illustrated the results of a set of simulations in which
we trained a type of CNNs, referred to as U-Net, to identify power
towers from background in images depicting a variety of scenarios.
In particular, we compared the performances of U-Nets trained
with three different types of datasets: 1) a dataset made of synthetic
images; 2) a dataset made of physical-world images; and 3) a hybrid
datasetmixing synthetic andphysical-world images. Post-evaluation
tests have shown that the U-Nets trained with the hybrid datasets
outperform the other U-Nets in all the four evaluationsmetrics used
to estimate the precision with which the networks segment physical-
world and synthetic images in order to distinguish powers towers
from the background.

From these results, we draw the following conclusions. First
of all, the synthetic images generated by our simulator effectively
contribute to improve the performances of U-Nets engaged in the
power tower segmentation task. Given the complexity, high risks,
and the high costs generally associated to power tower inspection
with traditional methods (see Section 1 for details), our research
work contributes to reduce costs and risks by delivering computer-
vision algorithms that facilitate the engineering of autonomous
UAVs capable of replacing humans in the inspection task. In
particular, the innovative value of our work is in the development
of a methodology that generates high performing state-of-the-art
image-segmentation algorithms (i.e., the U-Net) by minimising the
needs of physical-world images used for training them.A sufficiently
large dataset of physical-world images in the context of power tower
inspection by UAVs can be difficult to acquire. Moreover, once
acquired, the inevitable image-annotation process can be extremely
costly and time-consuming. The methodology illustrated in this
research work demonstrates that, it is possible to largely reduce
the quantity of physical-world images, and consequently the costs
and the time of their acquisition and annotation, by relying on
a particular type of synthetic images. These synthetic images are
characterised by being generated with a simulator the can facilitate
the rendering of multiple different scenes with a particular care of
details, and by photogrammetry used to build high-precisionmodels
of different types of powers towers (see Section 3.1 for details).
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A further contribution of our work, can be identified in the
multiple functionalities of the simulator that can be used not only
to generate synthetic images, but also to test and to evaluate the
effectiveness of different control algorithms in guiding autonomous
UAVs in performing the different operations (e.g., navigation,
obstacle avoidance, identification of problems, etc.) related to the
power tower inspection task. This can be done thanks to the
integration into the simulator of libraries such as the physics engine
Unreal, required to simulate the UAVs flight dynamics, as well as
the dynamics of collisions. In this study, we have limited ourselves
to test the best trained U-Nets on the image-segmentation task.
However, in the future, we will tests and validate our algorithms
on simulated UAVs required to fly and to inspect power towers in
a variety of scenarios as those described in Section 3.2. This will
require the integration of U-Nets trained for image-segmentation
task into a more complex UAV control system that takes care of all
the other processes needed to make the vehicle fully autonomous
in the inspection task. We are also planning to test and to validate
our algorithms on physical UAVs, such as those owned by one of
funding body of this work, the company Qualitics (see https://www.
qualitics.ai/) that operates in the domain of power tower inspections
with UAVs in Belgium. These tests with physical UAVs will be
important not only to directly evaluate the capability of the control
system, designed in simulation, to deal with the complexity of the
physical world, but also to indirectly evaluate the effectiveness of
the methodological toolkit we developed and used to design the
components of this controller.
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