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Dental mesenchymal stromal cells (MSCs) are multipotent cells present in dental tissues,

characterized by plastic adherence in culture and specific surface markers (CD105,

CD73, CD90, STRO-1, CD106, and CD146), common to all other MSC subtypes.

Dental pulp, periodontal ligament, apical papilla, human exfoliated deciduous teeth,

alveolar bone, dental follicle, tooth germ, and gingiva are all different sources for isolation

and expansion of MSCs. Dental MSCs have regenerative and immunomodulatory

properties; they are scarcely immunogenic but actively modulate T cell reactivity. in

vitro studies and animal models of autoimmune diseases have provided evidence

for the suppressive effects of dental MSCs on peripheral blood mononuclear cell

proliferation, clearance of apoptotic cells, and promotion of a shift in the Treg/Th17

cell ratio. Appropriately stimulated MSCs produce anti-inflammatory mediators, such

as transforming growth factor-β (TGF-β), prostaglandin E2, and interleukin (IL)-10. A

particular mechanism through which MSCs exert their immunomodulatory action is via

the production of extracellular vesicles containing such anti-inflammatory mediators.

Recent studies demonstrated MSC-mediated inhibitory effects both on monocytes

and activated macrophages, promoting their polarization to an anti-inflammatory

M2-phenotype. A growing number of trials focusing on MSCs to treat autoimmune

and inflammatory conditions are ongoing, but very few use dental tissue as a cellular

source. Recent results suggest that dental MSCs are a promising therapeutic tool

for immune-mediated disorders. However, the exact mechanisms responsible for

dental MSC-mediated immunosuppression remain to be clarified, and impairment

of dental MSCs immunosuppressive function in inflammatory conditions and aging

must be assessed before considering autologous MSCs or their secreted vesicles for

therapeutic purposes.
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INTRODUCTION

Mesenchymal stromal cells (MSCs) are a subset of multipotent
cells present in tissues of mesenchymal origin, mainly responsible
for their regeneration. MSCs were first identified as a specific
subset of spindle-shaped cells in the bone marrow, characterized
by adherence to plastic under standard culture conditions,
with the potential for clonogenic proliferation. In 2006,
the Mesenchymal and Tissue Stem Cell Committee of the
International Society for Cellular Therapy defined three minimal
criteria for MSCs: plastic adherence, ability to differentiate into
chondroblasts, osteoblasts, and adipocytes in vitro, and the
presence of several specific surface markers, such as CD105,
CD73, and CD90 [1]. More recently, the nomenclature has been
revised, and novel specific surface molecules have been identified:
MSCs are now defined also as STRO-1, CD106, and CD146
positive cells [2–5].

After the isolation and characterization of bone marrow
stromal stem cells (BMSCs), other MSC-like populations have
been identified in other tissues and organs [6, 7]. MSC sources
include umbilical-cord, amniotic-fluid, adipose, and dental tissue
[8–10]. Similar MSC populations can also be found in skeletal
muscle, synovium, liver, lungs, tendons, placenta, dermis, and
breast milk [11–15].

All MSC subpopulations not only share self-
renewal capabilities and multipotency but also display
immunomodulatory properties [16, 17].

With regard to dental tissue-derived MSCs, eight different
subsets of MSCs have been identified so far: dental-pulp MSCs
(DPMSCs), periodontal-ligament MSCs (PDLMSCs), MSCs
from apical papilla (MSCAPs), MSCs from human exfoliated
deciduous teeth (MSCHEDTs), alveolar bone-derived MSCs
(ABMSCs), dental follicle progenitor cells (DFPCs), tooth germ
progenitor cells (TGPCs), and gingival MSCs (GMSCs) [18–20].
MSCs derived from the oral cavity are particularly interesting
in terms of their embryogenesis in that dental MSCs originate
frommigrating neural crest cells in the lateral ridges of the neural
plate [21]. Neural crest cells possess stemness and multipotency
features, play a strategic role in tooth organ development, and
contribute to craniofacial bone formation [22].

As for other types of MSCs, dental MSCs are currently
widely studied for their immune properties [23]. Here, we briefly
describe the immunomodulating properties typical for each
subset of MSCs (see Figure 1).

DENTAL PULP MESENCHYMAL STROMAL
CELLS

DPMSCs were the first human dental MSCs identified in 2000
by Gronthos et al. [24]. DPMSCs are today widely used in
clinical trials for regenerative purposes. Many groups already
demonstrated that DPMSCs are capable of T cell inhibition
and therefore have the potential for modulating T cell reactivity
associated with both autoimmune diseases and allogeneic
tissue transplantation [25]. Inhibition of peripheral blood
mononuclear cell proliferation in vitro is thought to occur

via the production of soluble factors secreted by DPMSCs,
induced by interferon (IFN)-γ. The immunosuppressive effect of
DPMSCs was alternatively shown to be triggered by activation of
Toll-like receptors (TLRs) through the upregulation of specific
cytokines and growth factors, such as IL-6 and TGF-β [26]. In
addition, DPMSCs can induce apoptosis of activated T cells
via direct cell-to-cell interactions, mediated by the Fas ligand
[27]. DPMSCs also interact with activated neutrophils: a recent
article demonstrated enhanced IFN-γ and IL-6 production
after coculturing. Moreover, rapid and significant commitment
toward the osteogenic lineage is achieved by neutrophil-
exposed DPMSCs [28]. DPMSCs’ immunomodulatory ability
was deeply investigated by Martinez and co-authors in in
vitro-induced hypoxic conditions. DPMSCs were not only
shown to dampen dendritic cell (DC) differentiation from
monocytes but also efficiently recruited monocytes with
immunosuppressive potential, as demonstrated by the M2-
phenotype of macrophages and high levels of IL-10. Moreover,
DPMSCs were demonstrated both to determine impairment
in natural killer (NK) degranulation and to have enhanced
resistance to NK cell-mediated lysis. Lastly, DPMSCs’ pro-
angiogenic properties were also described [29]. Several authors
have hypothesized the presence of different subpopulations
with different activity among DPMSCs [30]; whether the
immunosuppressive phenotype strictly correlates with the
presence of specific surface markers still needs to be determined.

MESENCHYMAL STROMAL CELLS FROM
HUMAN EXFOLIATED DECIDUOUS TEETH

MSCHEDTs are the DPMSC’s counterpart in deciduous teeth,
discovered in 2003 by Miura et al. [31]. MSCHEDTs significantly
inhibit the differentiation of the pro-inflammatory subset of T
helper 17 (Th17) cells and promote the induction of regulatory
T cells (Tregs) ex vivo, being even more efficient than BMSCs
for Th17 inhibition [32]. Their immunomodulatory effect has
already been demonstrated in canine models of muscular
dystrophy [33].

In murine models, systemic infusion of MSCHEDTs was
able to effectively reverse systemic lupus erythematosus (SLE)-
associated manifestations, probably because of a shift in the
Treg/Th17 cell ratio. Potentially, their efficacy in SLE models
could also be due to clearance of apoptotic cells by MSCHEDTs,
as already demonstrated for other types of MSCs [34].

PERIODONTAL LIGAMENT
MESENCHYMAL STROMAL CELLS

PDLMSCs were isolated and described in detail for the first time
by Seo et al. [35] and Trubiani et al. [36]. PDLMSCs, similar to
other MSCs of different origins, are sensitive to specific stimuli.
One such stimulus for the expression of immunomodulatory
properties is a coculture with peripheral blood mononuclear
cells and specific cytokines such as IFN-γ [37, 38]. After in
vitro exposure to IFN-γ, the expression of hepatocyte growth
factor, indoleamine 2,3-dioxygenase (IDO), and TGF-β was
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FIGURE 1 | Schematic representation of dental mesenchymal stromal cell (MSC) sources (left panel) and possible immunomodulating mechanisms (right panel).

Dental pulp MSCs (DPMSCs), MSCs from human exfoliated deciduous teeth (MSCHEDTs), periodontal ligament MSCs (PDLMSCs), alveolar-bone derived MSCs

(ABMSCs), gingival MSCs (GMSCs), MSCs from apical papilla (MSCAPs), dental follicle progenitor cells (DFPCs), and tooth germ progenitor cells (TGPCs). Peripheral

blood mononucleated cells (PBMCS), mixed lymphocyte reaction (MLR), plasmacytoid dendritic cell (pDC), natural killer (NK), type-2 cyclooxygenase (COX2), Fas

ligand (FasL), indoleamine 2,3-dioxygenase (IDO), nitric oxide (NO), transforming growth factor-β (TGF-β), hepatocyte growth factor (HGF), prostaglandin E2 (PGE2),

hypoxia-induced factor (HIF), interleukins 6 and 10 (IL6 and IL10, respectively), monocyte chemoattractant protein-1 (MCP-1), Toll-like receptor (TLR), and interferon-γ

(IFN-γ). Created with BioRender.com.

upregulated, leading to immunosuppression [39]. PDLMSCs
were also shown to induce T cell anergy through the secretion
of prostaglandin E2 (PGE2) [40].

In animal models of experimental autoimmune
encephalomyelitis, decreased signs of inflammation and
demyelination in the spinal cord are observed after injection
of PDLMSCs, both through the increased production of
neurotrophic factors and the suppression of inflammatory
mediators [41]. The cell-conditioned medium reduced
inflammatory damage in the same model and purified
extracellular vesicles from PDLMSCs that mediated similar
effects [42]. The vesicles were found to contain the anti-
inflammatory cytokines IL-10 and TGF-β. However, PDLMSCs
from inflamed periodontium were shown recently to have
significantly diminished inhibitory effects on T cell proliferation,
compared with cells from healthy tissue, mainly due to a
reduced induction of Tregs [43]. These findings may be relevant
to the pathogenesis of periodontitis and should direct the
efforts toward developing therapeutics for periodontitis by
exploiting immunomodulation.

MESENCHYMAL STROMAL CELLS OF
APICAL PAPILLA

The apical papilla is the part of the soft tissue found at the apex of
developing teeth. MSCAPs were discovered in human immature
permanent teeth in 2006 by Sonoyama et al. [44, 45].

Relative to DPMSCs, MSCAPs show higher proliferation rates
and mediate more efficient regeneration of the dentin matrix.
Thus, developing dental tissues are probably a better source of
immature stromal cells. MSCAPs are scarcely immunogenic and
inhibit mixed lymphocyte reactions mainly through the secretion
of soluble factors [46]. Conveniently, cryopreservation does not
seem to alter MSCAPs’ immune properties [47].

ALVEOLAR BONE MESENCHYMAL
STROMAL CELLS

Recently, a unique population of MSCs referred to as
ABMSCs has been isolated from the alveolar bone [48].
The isolation procedure is considered particularly easy and
feasible when performed during implant positioning. These
cells morphologically and functionally resemble the other types
of dental MSCs described. Very recent studies confirmed in
vitro ABMSCs’ immunosuppressive effects both on monocyte
and T cell activation. Moreover, ABMS was found to induce
polarization of macrophages toward an anti-inflammatory
phenotype (M2) and was able to secrete IL-6 and MCP-1 [49].

DENTAL FOLLICLE PRECURSOR CELLS

The dental follicle (DF) is a vascular fibrous sac containing the
developing tooth and its odontogenic organ before eruption [50].
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The DF eventually differentiates into the periodontal ligament.
A subset of progenitor cells with the characteristics of MSCs
was isolated from the DF of human third molars in 2005 by
Morsczeck et al. using the same protocol as Gronthos et al.
used before for DPMSCs [51]. Recent studies have shown that
DFPCs can inhibit the mixed lymphocyte reactions and elicit
macrophage M2 polarization, mainly through TGF-β production
[52]. Moreover, treatment with TLR3 and TLR4 agonists
potentiates TGF-β and IL-6 secretion [53]. These characteristics
make DFPCs promising candidates for the treatment of chronic
inflammatory conditions.

TOOTH GERM PROGENITOR CELLS

TGPCs were identified by Ikeda et al. in the dental mesenchyme
of the third molar tooth germ during the late bell stage.
TGPCs have been successfully transplanted in rat models of
chronic hepatitis, preventing the progression of liver fibrosis and
contributing to the normalization of liver function [54]. Thus far,
little is known about TGPCs’ immunomodulatory mechanisms.

GINGIVA-DERIVED MESENCHYMAL
STROMAL CELLS

Zhang et al. [55] identified human gingiva-derivedMSCs in 2009.
GMSCs are easily isolated and rapidly expanded ex vivo, thus
potentially representing an optimal source ofMSCs in the clinical
setting. GMSCs have been shown to efficiently inhibit T cell
proliferation in response to mitogen stimulation and to induce
IDO, IL-10, cyclooxygenase 2, and inducible nitric oxide synthase
through IFN-γ secretion, thereby exerting a wide-ranging anti-
inflammatory and immunomodulating action [56].

In animal models of contact hyper-reactivity and in an
autoimmune arthritis model, systemic infusion of GMSCs
attenuated pathological damage and suppressed Th17 activity,
with a significant increase both in Tregs differentiation and IL-
10 production [57]. Moreover, GMSCs elicited M2 polarization
of macrophages and decreased Th17 cell expansion [58].
In addition, murine models of chemotherapy-induced oral
mucositis showed significant clinical improvement after GMSC
administration: in this setting, increased levels of manganese
superoxide dismutase and hypoxia-inducible factors 1 and 2α
were associated with lower rates of oxidative stress-induced
apoptosis of epithelial cells [29].

ADDITIONAL DATA ON DENTAL
MESENCHYMAL STROMAL CELLS AND
OTHER CELL SOURCES

Our paper focused on MSC interaction mainly with T cells
and macrophages because most of the existing data on dental
MSCs are restricted to these cell subtypes. However, MSCs in
general have been deeply investigated for their interactions with
other immune cells, with the majority of data coming from bone
marrow MSCs [59].

MSCs notably inhibit the maturation of DCs and can
promote plasmacytoid DC differentiation, with subsequent Th2
polarization of the immune response [60, 61]. Both PGE2 and
IL-6 secretions have been postulated as possible mechanisms for
DC modulation by MSCs [62, 63]. NK cells also interact with
MSCs and are sometimes responsible for their death through
cell lysis [64]. However, although only partially interfering with
activated-NK activity, MSCs can block the proliferation of resting
NKs. Moreover, MSCs prevent DC-mediated induction of T-cell
effector functions, IDO and PGE2 being key mediators in this
setting [65]. MSCs are also capable of B cell inhibition and can
block antibody production [66]. Programmed-death-1 pathway,
CCL2 production, and Blimp-1 inhibition seem to be responsible
for this action [67, 68]. Finally, MSCs are demonstrated to
promote the proliferation of CD4+ CD25+ FOXP3+ Tregs both
in vitro and in vivo [69–71].

Although those data have not entirely been confirmed for
dental MSCs, it is possible to hypothesize similar mechanisms
underlying their immunomodulatory action. In fact, several
comparative studies between dental MSCs and MSCs from other
sources have been performed in the last years, but although
significant differences were found in proliferative potential and
both regenerative and differentiating properties, none of them
was focused on immune-modulatory capabilities [72, 73].

DISCUSSION

MSCs have already been used as cell-based immunosuppressive
therapies for various disorders, including neurologic, ocular,
oral, cutaneous, cardiovascular, and autoimmune diseases
[74, 75]. A growing number of clinical trials are using
MSCs for therapeutic interventions in severe degenerative
and inflammatory disorders. At the time of writing, almost
more than 1,000 clinical trials were registered worldwide at
ClinicalTrials.gov [4, 76], with MSCs becoming a powerful
new tool for effective immunosuppression avoiding many
unwanted adverse effects of conventional drugs [77]. Some types
of dental MSCs have been shown to share both regenerative
and immunoregulatory potentials, which are becoming
extremely relevant for tissue engineering and regenerative
medicine [78]. However, very few studies have explored
their interactions with immune cells in any depth, and
much less is known about the possible mechanisms of their
activity. Taking into account the different types of MSCs
isolated from teeth, including DPMSCs, MSCHEDTs, GMSCs,
PDLMSCs, ABMSCs, DFPCs, and TGPCs, representing an easily
accessible source of multipotent cells for clinical applications
[79, 80], we are still far from a systematic investigation
and comparative appreciation of their immunomodulatory
properties [81].

One difficulty in such studies resides in the complexity of
the stroma, whose tissue-resident cells interact in many ways
with immune cells. The characterization of stromal subsets,
which are often identified by combinations of markers that
are not cell type-specific, has not been extensively carried out
[82]. These subsets of mature stromal cells and MSCs from
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different tissues (bone marrow, adipose tissue, and umbilical
cord, better studied so far) both promote active responses
and suppress immune effector cells through regulatory circuits.
Tissue stromal cells under inflammatory conditions drive the
formation of immune cell aggregates, termed tertiary lymphoid
structures [83], which disappear on a resolution of inflammation
[84]. These structures actively drive inflammation, autoimmune
responses, and autoantibody production, as well as promoting
cancer progression, as prominently described in the lymph node
stroma [85], but they also harbor tolerogenic potential, which
depends on the inflammatory environment to be licensed [86].

Several mechanisms and molecules have been proposed for
the immunoregulatory activity of MSCs in general, involving
both cell contact and soluble mediators [87]. These have a
protective role and stimulate growth and survival through
paracrine secretion of bioactive molecules, collectively defined
as the secretome. In many instances, the secretome has been
shown to account for the effects of MSCs, so its exploitation
may avoid the limitations associated with stem cell therapy
[88, 89]. The secretome also contains extracellular vesicles (EVs)
[90]. These released membrane vesicles, including exosomes,
microparticles, microvesicles, and apoptotic bodies, can be
regarded as a dynamic extracellular vesicular compartment,
strategic for their paracrine or autocrine biological effects.
They can contribute to tissue regeneration, but with their
content rich in cytokines, chemokines, enzymes, growth
factors, microRNAs, and other molecules, they may also be
responsible for controlling interactions with immune cells,
ensuring prevention of excessive tissue fibrosis, stimulation of
angiogenesis, and immunomodulatory effects [91]. However,
as for different sources of MSCs, and different culture and
passage conditions, also for the secretome, differences in
production protocols, cell source, and cellular age all impact
its composition and anti-inflammatory action [92]. There is a
need for focusedmechanistic studies and standardized functional
assays in the area of immunomodulation by MSCs because
they are usually assessed by in vitro tests of inhibition of
T lymphocyte proliferation, and only a few studies compare
MSCs from different tissue sources, none at present with dental
MSCs [93]. There is general agreement that pro-inflammatory
environments are not permissive for endogenous stem and
progenitor cells to initiate regenerative processes because stem
and progenitor cells require a tolerogenic niche to survive
and to promote repair and regeneration. MSCs from teeth
have a central role in dampening inflammation locally as
in periodontitis [94], and they achieve this effect through
their secretome [93] and EVs. The cytokine content and
immunoregulatory effect effects of the latter are variable across
different diseases, so that the MSCs-EV fraction should be
carefully evaluated in the context of the condition studied for the
best therapeutic potential.

Although there are no direct studies of MSC interactions
with neutrophils in tissues, MSCs inhibit neutrophil apoptosis,
although they have no inhibitory effect on their phagocytic and
chemotactic activity [95]. MSCs generally reduce the activation
of innate immunity [92], and many of their effects are due to
the secretion of IL-6, PGE2, and IL-17. Stromal cells also play a

role in the induction of myeloid-derived suppressor cells, which
can be a pathological differentiated type of neutrophil, in several
conditions, including cancer, sepsis, and viral infections [96].
MSCs and their EVs have been shown to induce conversion of
pro-inflammatory M1 into M2 macrophages, and EVs released
by M2 macrophages can subsequently promote Treg formation
[97–99]. MSCs also modulate immune cell function through
inhibition of dendritic cell maturation and suppress the functions
of T lymphocytes, B lymphocytes, and NK cells. Many reviews
have appeared on this issue of immunosuppression related to
clinical uses, for example [100–102].

Pulp-derived MSCs have been proposed for treating systemic
disorders [87] and other types of MSCs, particularly in the area of
neuroinflammatory and neurodegenerative diseases [103, 104],
whereas EVs have been advocated for the control and therapy
of autoimmunity [105]. This promising outlook is certainly
reinforced by progress in transcriptomics and single-cell analysis
of MSCs [106, 107], revealing different subsets and mechanisms
of action. It is therefore not surprising that MSCs or their
exosomes have recently been suggested as a treatment for severe
COVID-19 [108–111]. This potential therapeutic strategy has
been successfully used in a few reported cases [112] and is
mainly based on the known immunomodulating actions of
MSCs in acute respiratory infections, through induction of
Tregs [113] and in their ability to counteract proinflammatory
cytokines [114].

Recent studies have highlighted that MSCs aging may limit
their function and therapeutic potential, with some evidence for
reducing their immunosuppressive activity [115–117]. Senescent
MSCs show decreased proliferative activity, smaller MSCs-
EV size, and lower production of cytokines and chemokines;
their ability to inhibit T cell proliferation is impaired while
not suppressing NK, B lymphocytes, and macrophages [76,
118]. To address this issue, changes in the expression profiles
(including transcriptomic, proteomic, epigenetic, and non-
coding RNAs) of senescent MSCs have been explored, and some
rejuvenation strategies devised, starting from the modulation
of the microenvironment under hypoxic conditions [119, 120].
Data mining several genetic datasets, coupled with powerful
bioinformatics applications, have revealed that upregulation of
HLA class II antigen expression is central to the changes of aged
MSCs, causing a pro-inflammatory phenotype and a decreased
immunosuppressive function [121]. Again, little is known about
replicative senescence (and its markers) and other effects of aging
on dental MSCs.

The immunomodulatory properties of MSCs, at variance
with other stem cells, contribute greatly to their therapeutic
effects not only in immune-mediated diseases but also for the
repair of tissue damages. This has been chiefly verified in
several neurodegenerative disorders, such as Alzheimer’s disease,
amyotrophic lateral sclerosis, and Parkinson’s disease, as well as
in cerebrovascular damage and autoimmune disease as multiple
sclerosis. The glia cells, activated in these conditions, constitute
the main targets of the immunosuppressive action of MSCs
[103]. Other cell types, predominantly macrophages, but also
dendritic cells, induce a different inflammatory environment,
in response to which MSCs display regulatory mechanisms
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tailored to the local situation and, thus, have been used for the
treatment of various conditions such as graft-vs.-host disease
[122], systemic lupus erythematosus [123], liver cirrhosis [124],
and inflammatory bowel disease [125]. Their potential use in
treating fibrotic and inflammatory diseases such as systemic
sclerosis, chronic obstructive pulmonary disease, pulmonary
fibrosis, and also severe asthma and COVID-19 should now be
the logical next step forward.

These immunoregulatory properties and long-term stability of
dental MSCs are of paramount importance for developing their
application to autoimmune and other inflammatory conditions,
as well as for continued renewal in regenerative medicine,
as dampening inflammatory reactions promotes proliferation
and differentiation of MSCs. Present data suggest that dental
MSCs may be a useful source of MSCs for treating immune-
mediated diseases.

However, the exact mechanisms responsible for dental MSC-
mediated immunosuppression remain to be clarified. Moreover,
it is not known whether dental MSCs’ immunosuppressive
function is impaired under local as well as systemic inflammatory
conditions. This point is crucial to understanding whether
autologous PDLC could be a reasonable source of MSCs
for the treatment of autoimmune and other disorders.
Despite the promising results achieved in dental MSCs
and immunomodulation, this area of research needs to be
methodically investigated.
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