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Risk assessment and follow-up of oral potentially malignant disorders in patients with mild

or moderate oral epithelial dysplasia is an ongoing challenge for improved oral cancer

prevention. Part of the challenge is a lack of understanding of how observable features

of such dysplasia, gathered as data by clinicians during follow-up, relate to underlying

biological processes driving progression. Current research is at an exploratory phase

where the precise questions to ask are not known. While traditional statistical and the

newer machine learning and artificial intelligence methods are effective in well-defined

problem spaces with large datasets, these are not the circumstances we face currently.

We argue that the field is in need of exploratory methods that can better integrate clinical

and scientific knowledge into analysis to iteratively generate viable hypotheses. In this

perspective, we propose that visual analytics presents a set of methods well-suited

to these needs. We illustrate how visual analytics excels at generating viable research

hypotheses by describing our experiences using visual analytics to explore temporal

shifts in the clinical presentation of epithelial dysplasia. Visual analytics complements

existing methods and fulfills a critical and at-present neglected need in the formative

stages of inquiry we are facing.
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1. INTRODUCTION

The lack of understanding of the natural history of oral cancer is a major barrier to our ability
to impactfully intervene early in the disease. As a collective group, clinicians and scientists have
followed patients with clinical lesions and dysplastic disease for decades. There are unused files
full of text, pictures, and annotations on these patients. In addition, as our capacity to examine
biological change underlying time-varying shifts in lesions has accelerated, there is simultaneously
additional, increasingly diverse information from scientists coming in. A keymissing component in
this effort is methods that allow us to frame and utilize such complex and heterogeneous data. They
are highly multi-faceted and demand the integration of diverse clinical and scientific knowledge to
generate testable hypotheses informed by the most comprehensive understanding of why lesions
shift over time and when such changes may be clinically important.

Traditional statistics or the newer machine learning and artificial intelligence (henceforth
ML/AI) methods are ill-suited to address many of the immediate challenges faced. The small
sample sizes and complexity of clinical datasets limit the types of questions that can be
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answered. Additionally, these methods generally rely on
well-defined and narrow questions. This is appropriate for
summative analyses that aim to evaluate specific hypotheses and
expectations. Current research, however, is at an exploratory
stage. Instead, formative approaches that aim to understand
how clinical data might be interrogated, and that support the
scientific inductive process of developing, testing, and iterating
over a theory are better suited. This requires the integration of
expert knowledge into analysis. Data on their own do not offer
explanations of why certain patterns or relationships within them
exist. From the understanding of procedures involved in data
gathering to theories of how observed data relate to underlying
biological mechanisms driving dysplastic disease, clinical, and
scientific knowledge is key. Unfortunately, statistical and ML/AI
methods often require significant training for interpretation
and even with sufficient training often remain as difficult-to-
understand “black boxes.”

We have faced this problem in British Columbia for
some time. The Oral Cancer Prediction Longitudinal (OCPL)
study was established over 20 years ago, to follow patients
with biopsy-confirmed primary mild and moderate epithelial
dysplasia (henceforth low-grade dysplasia, LGD). The presence
of epithelial dysplasia is one of the strongest predictors of
transformation of LGD to oral cancer; yet there are many
unresolved issues around such lesions. The long-term goal
of the OCPL study is to use this cohort, with its diverse
data on clinical, histologic, and molecular change, and its
samples, to help us answer some of the key management
questions for these patients: Which of these dysplastic lesions
is at risk for progression? Which do we treat, and if we
treat, when and how do we do it? There are close to 600
cases in the OCPL study, many with between 10 and 20
years of follow-up, with over 7,000 visits for these patients—
a rich resource to identify and study the diverse patterns of
temporal change as they occur and look for associations with
transformation risk.

The question addressed in this paper is faced
by all of us working in this area. How do we deal
with this complex and increasingly multi-faceted data
pool, especially when dealing with temporal shifts in
patient data? How do we use such information to
drive meaningful change—to link patterns across data
sources and to generate new testable ideas? Where do
we begin?

We argue for methods that support the iterative scientific
process needed to integrate clinical and mechanistic
knowledge. We propose that visual analytics (VA) is well-
suited to such a niche, providing an approach that can be
used to integrate “data-driven” and “knowledge-driven”
processes into an iterative analysis that can improve
our understanding of the natural history of oral cancer
development. In this paper, we describe the challenges of
heavily “data-driven” methods and why VA is well suited to
complement such methods. We illustrate the value of VA
by discussing a simple exploratory visual analysis of lesion
shifts in oral dysplasia we conducted using data from the
OCPL study.

FIGURE 1 | (A) Heavily data-driven methods follow a linear flow from data to

findings, require voluminous data to address narrow questions that are known

ahead of the analysis, and produce confirmatory and precise findings but

where analyses may be difficult to interpret “black boxes.” (B) Methods that

support the data and knowledge-driven process of sensemaking iteratively

generate, evaluate, and refine alternative hypotheses. Such methods are

appropriate for exploratory and formative analyses.

2. CHALLENGES IN HEAVILY
DATA-DRIVEN METHODS

The rapid change in computational capacity has allowed
researchers to increase the volume of data analyzed and to
employ sophisticated ML/AI to increasingly complex datasets,
which have been inaccessible in the past. Computer vision
algorithms can identify cancerous nodules from medical
imaging with accuracy sometimes exceeding human experts
[1]. Recent preliminary research has also made headway in
making these algorithms more interpretable for clinicians [2].
However, state-of-the-art algorithms such as these are applied
to narrow and highly specific tasks and require large volumes
of highly constrained, well-defined data while relying on a
number of assumptions about the statistical properties of these
data [3] (Figure 1A).

In contrast, clinical datasets are often complex, heterogeneous,
and composed of comparatively much lower volumes of patient
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data. In addition, patients are diverse and biological processes are
ill-understood, and the understanding of how data are gathered
is primarily held by clinicians. This creates an ill-defined problem
space where the precise questions to ask are not yet known
and thus we cannot expect a linear process of well-defined
inquiry. Even if there are some well-defined questions, they
have not been addressed using existing approaches and progress
has been slow. This problem requires iterative and flexible
generation and evaluation of practically relevant and knowledge-
informed hypotheses (Figure 1B). Presently, natural intelligence
is comparatively better than artificial intelligence at dealing with
such challenges.

ML/AI algorithms struggle with generalization that goes
beyond very constrained problem spaces; they cannot generate
causal models of mechanisms underlying the data and translate
them to other domains [3]. Generalization involves going
beyond what is explicit in data and imagining alternative
potential mechanisms of explanation. Counterfactual reasoning,
the imagining of alternative events and outcomes, has been the
foundation of theories explaining causality [4]. These theories
have been integrated into methods used to analyze observational
data in epidemiology in the Bradford-Hill criteria [5]. While
there is an effort underway to reconcile ML/AI approaches with
contemporary causal inference to enable automated discovery of
causal structure from data [3], such problems are still largely a
human reasoning activity.

3. SENSEMAKING

Sensemaking is a “natural kind of human activity in which large
amounts of information about a situation or topic are collected
and deliberated upon to form an understanding that becomes the
basis of problem-solving and actions” [6]. This activity is often
described through the data/frame theory of sensemaking which
posits that humans organize knowledge and account for new
information using explanatory structures called “frames” [7]. As
humans encounter new information through their environment,
or in this case visualization systems, the information is matched
and fitted to these frames. These frames are then elaborated
upon, questioned, rejected, or otherwise manipulated, in our
case through the interactive visualization system, in light of any
new information. The scientific process of developing, testing,
and iterating over theory closely mirrors sensemaking. This
flexible way of thinking is what allows humans to meaningfully
understand and act in a variety of natural settings such as the
exploratory scientific inquiry of data.

An essential component of sensemaking is the generation of
alternative hypotheses or interpretations that are flexibly fitted to
and altered by data [8]. This process can generate new frames of
understanding based on data (data-driven), as well as iterate over
existing ones (knowledge-driven) [7]. This iterative fitting and
manipulation of data and theory (Figure 1B) integrates human
knowledge into analysis without being hampered by the limits of
what is explicitly contained in the data. The relatively new field of
VA specifically supports such human sensemaking activities.

4. VISUAL ANALYTICS

In scientific domains, visualization is commonly thought of as
serving a purely communicative role, primarily supplementing
text to emphasize a point. Yet, visualizations, especially
interactive ones, can also be used to support a method of
analysis. Visual Analytics, the “science of analytical reasoning
facilitated by interactive visual interfaces” [9], leverages the
strengths of computers to improve human analysis. The aim
is to make complex computational processes transparent and
empower humans to conduct analysis in an interpretable
and accessible way. Rather than replacing ML/AI methods,
VA complements these approaches and often integrates them
in analysis. Addressing the challenges of interpretability and
opening the “black box” of ML/AI algorithms has become a
burgeoning area of research in VA [10] .

Visualization capitalizes on the innate intelligence of the
human visual system. Using external representations as an
aid is called “visual thinking” [11]. The human visual system
can extract complex statistical patterns from scenes while
at the same time linking visual information to high-level
cognitive processes. The human visual system is not one
passive system, but a number of active systems that can both
direct attention to important aspects of data in a bottom-
up fashion as well as be directed to search for patterns in
a top-down fashion [12]. This interplay between bottom-up
(data-driven) and top-down (knowledge-driven) processes in the
visual system creates a dynamic interface between humans and
data enabling iterative sensemaking processes. This interaction
between prior knowledge and perception enables humans to
“complete patterns” and derive meaning based on incomplete or
uncertain information. The “Gestalt” school of psychology and
the concomitant visual Gestalt laws describe these processes [11].

Just as sensemaking in open-ended problem spaces requires
the generation and management of alternative hypotheses, VA
systems are designed to support alternative visual representations
of data to address these hypotheses and help steer the analysis.
Some VA systems also incorporate explicit support for managing
alternatives [13, 14]. Others have proposed “mixed-initiative”
systems that utilize machine learning and data-mining systems
that integrate alternative “threads” of analysis as a central system
component [15, 16].

VA may seem relatively new, but this approach has already
been incorporated in a broad range of domains associated with
healthcare and scientific areas. For example, VA has impacted
the tracking of disease progression in electronic health records
[17], clinical support for blood transfusions [18], decision
making in public health [19], genomics [20], chemistry [21], and
oncology [22, 23].

5. OUR COLLABORATIVE PROJECT

In this section, we illustrate how VA supports the process of
generating, testing, and iterating over alternative hypotheses,
using our experiences analyzing a clinical dataset of patients with
LGD. We began our analysis around data collected during the
examination of clinical lesions. Such assessment is a key initial
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point in the engagement of a clinician with the patient. It is part of
the ascertainment of whether the lesion falls within the “normal”
boundaries of change in a tissue, and can thus be triaged back to
the community, or instead, requires further follow-up.

Lesions change over time—disappearing, re-appearing,
growing in size, altering shape, and changing in texture and
appearance. As such, clinical change reflects, in part, alterations
occurring at the molecular, cellular, and tissue level. Increasingly
there are new developments in clinical approaches and tools
used in decision making around lesions. A missing component
is our capacity to track changes over time and understand what
observable baseline changes, in the absence of intervention, are
associated with alterations in progression risk.

Time-based analyses may consider a variety of perspectives
or properties of data (e.g., curve fitting, regression, or signal
decomposition). When we began these studies, we had no basis
to choose any particular type of analysis, and rather than over-
constrain the problem-space, we chose to look at sequences which
we felt could reveal a variety of patterns in the time-varying data.

Sequences are notoriously challenging for both humans and
algorithms to work with [24, 25]. As a preliminary step, we
consulted ML experts on an appropriate approach. We employed
hidden Markov models (HMMs), a set of algorithms commonly
used for mining sequence patterns of biological data [26].
However, the areas where such models have been particularly
effective are where the volume of data is quite high, the variety of
patterns is relatively low, and the problem space is also relatively
constrained. Examples include sequence mining in genetics [27]
or protein structure prediction [28]. We discovered early on that
we do not have nearly enough data for HMM. Another issue was
that our clinical data are relatively complex, reflecting a variety of
data-generating processes. The algorithmic output was not strong
and we could not find any explanations that could account for the
patterns and match existing biological understanding.

We then explored the use of interactive visualizations to
analyze these sequences. While algorithmic approaches are often
incorporated in VA systems to make sequences and other
patterns more tractable [24], for the illustrative purposes of this
paper, we will focus on a purely visual approach to highlight how
visualizations enable sensemaking and hypothesis generation.

5.1. Investigating Shifts in Lesions
We conducted our analysis using simple dot plot visualizations.
In Figure 2A, we provide a simplified diagrammatic version of
the interactive visualizations we used in analysis to illustrate
our process. We identified patterns in the data which indicated
potential explanatory mechanisms (Figure 2B). This is an
example of how patterns in data (data-driven) can elicit
relevant knowledge and thus also influence how important
patterns are perceived (knowledge-driven). Drawing on prior
domain knowledge, clinical researchers on our team recognized
several sequence patterns and iteratively generated alternative
hypotheses that could account for such patterns.

We first identified instances where clinical lesions disappeared
completely—establishing when lesions were present or absent for
each patient (Figure 2). In some patients, the lesion persisted
at all time points (termed “persistent lesions”). In others, the

FIGURE 2 | (A) Four exemplary sequence patterns in patient visits identified

through visual analysis are presented. Circles represent individual visits with

time moving left to right. (B) Several alternative explanatory mechanisms

generated during visual analysis are matched to observed patterns.

lesion disappeared and did not recur during follow-up (termed
“resolved”). In some cases, the lesion disappeared early in
follow-up and then “re-emerged.” A fourth pattern showed
lesions disappearing and reappearing, often multiple times, in an
“unstable” fashion.

This process triggered some speculative questions around
what could explain these perceived patterns. As a preliminary
inquiry, we questioned the reliability of these data as they had
not been used in this way before. Clinicians associated with the
OCPL study went back to the data to confirm these patterns,
using clinical charts, pictures, and the database. As a result of this
process and dialogue, several errors in the data were identified
and corrected, illustrating the value of visualization at such
formative stages.

We also questioned whether shifts in “resolving” and
“unstable” lesions associated with small lesion size and excision
during biopsy could be confounding the lesion’s natural history.
We checked. There was no apparent, consistent association
with such descriptors. We explored the relationship between
these patterns and patient outcomes. Virtually all of the mild
or moderate lesions that progressed to severe dysplasia or
cancer were persistent lesions. But what intrigued us was the
observation that non-progressing lesions fell into two groups:
stable, persisting lesions, and unstable lesions, with lesions
appearing and disappearing multiple times during follow-up.
This generated a series of questions: What was causing the
“unstable” phenomena, i.e., what is the underlying biology
associated with such change? And did it mean anything for
risk or future trajectory of patients? Does it have clinical
ramifications/value?

One potential hypothesis is that “unstable” non-progressing
lesions could represent those in which protective mechanisms
are actively engaged in identifying and removing damaged and
genetically altered cells, those with altered signaling pathways,
and dysregulated proliferation/differentiation controls. This
could involve damage recognition and repair genes, for example,
p53-controlled processes, that would trigger events such as
senescence or apoptosis. Such changes could also involve cell-
cell interactions in the tissue, the local microenvironment, and/or
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activity of the immune system. These protective systems could
switch on and off, as abnormal clones developed and evolved
in a lesion. A dysregulation of such systems would result in
progression with persistence of the lesions.

The link to the immune system, is particularly attractive,
given the rapid evolution of both technology in this area,
especially associated with tissue change and risk prediction
for cancer development. Recent findings in the esophagus,
lung, and oral cavity support the possibility that the immune
system is capable of recognizing premalignant lesions and
intercepting their progression to cancer [29–32]. Premalignant-
specific putative neoantigens have been identified in some such
lesions and coupled to tissue infiltration of specific T effector
and cytotoxic cells, for example, CD4, CD8, PD-1, and PD-L1
[31]. Finally, early data support the association of alterations
to antigen processing and presentation pathways and depletion
of innate and adaptive immune cells with premalignant lesions
that are more likely to progress. The question is, can we
now use this knowledge and our current analysis systems to
follow the immune system over time, and look for parallel,
concordant alterations in unstable lesions that would support
their involvement in temporal shifts?

6. DISCUSSION

We have only touched on a small portion of the potential analyses
in the research area we have outlined. Even so, our experiences
demonstrate the potential for visual analytics to generate and
explore new research questions. Conventional methods used

in oral oncology research have left many resources, such as
complex clinical datasets or the expert knowledge of clinicians,
underutilized, and many related questions unasked. It doesn’t
need to be this way. Using VA allows us to cast a wider net
and catch research trajectories that might otherwise remain
unexplored. In the context of early detection and prevention of
malignant dysplasia, leveraging the data that are already available
through clinics has the potential to transform the standard
of care.
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