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Periodontitis is an oral chronic inflammatory disease and may cause tooth loss in

adults. Oral epithelial cells provide a barrier for bacteria and participate in the immune

response. Fusobacterium nucleatum (F. nucleatum) is one of the common inhabitants

of the oral cavity and has been identified as a potential etiologic bacterial agent

of oral diseases, such as periodontitis and oral carcinomas. F. nucleatum has been

shown to be of importance in the development of diverse human cancers. In the

dental biofilm, it exhibits a structural role as a bridging organism, connecting primary

colonizers to the largely anaerobic secondary colonizers. It expresses adhesins and

is able to induce host cell responses, including the upregulation of defensins and

the release of chemokines and interleukins. Like other microorganisms, its detection

is achieved through germline-encoded pattern-recognition receptors (PRRs) and

pathogen-associated molecular patterns (PAMPs). By identification of the pathogenic

mechanisms of F. nucleatum it will be possible to develop effective methods for the

diagnosis, prevention, and treatment of diseases in which a F. nucleatum infection is

involved. This review summarizes the recent progress in research targeting F. nucleatum

and its impact on oral epithelial cells.

Keywords: F. nucleatum, oral epithelial cells, immune response, cytokines, receptors, infection, cancer,

periodontitis

INTRODUCTION

The oral epithelium as part of the masticatory mucosa, the lining mucosa, and the specialized
mucosa, provides a barrier that separates the oral soft tissues from the environment. This barrier
is the result of a number of functional and structural protein interactions that result in the
capability to react to numerous exogenous, possibly toxic, influences [1]. It is actually known that
epithelial cells are not only passive bystanders, but are able of responding to external stimuli by
producing a number of cytokines, adhesion molecules, growth factors, chemokines, and matrix
metalloproteases [2]. Fusobacterium nucleatum, a Gram-negative obligate anaerobic bacterium,
belongs to the genus Fusobacterium, which normally lives parasitically in the oral cavity, urogenital
tract, soil, intestinal tract, and upper digestive tract, but most commonly in oral plaque. It is
frequently present in the oral cavity, in diseased as well as healthy individuals [3].

In the past, F. nucleatum has been regarded as a component of the normal flora of the human
body. Due to the continuous isolation of the bacterium from clinical samples, F. nucleatum has
attracted attention from researchers and has been recognized as a bacterium that should not be
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ignored. It was verified that F. nucleatum is an opportunistic
pathogen with strong pathogenicity. F. nucleatum is frequently
detected in oral and systemic infections. It is associated with
various human diseases, such as periodontitis, angina, lung
abscesses, chronic otitis, sinusitis, peritonsillar abscesses, cerebral
abscesses, inflammatory bowel disease, ulcerative colitis, Crohn’s
disease, gynecological abscesses, neonatal sepsis, Lemierre’s
syndrome, and infective endocarditis [4–9].

In oral infections, it is widely present in infected dental pulp,
periodontal, and other inflammatory lesions. Most importantly,
F. nucleatum is implicated in different kinds of periodontal
disease from the reversible and rather mild form of gingivitis
to the more severe forms of periodontitis such as chronic and
aggressive periodontitis [3]. The prevalence of F. nucleatum
is higher in severe forms of the disease, with progressive
inflammatory responses, and increased pocket depth. [10].

F. nucleatum is not only detected in periodontal sites
but additionally in saliva, with higher prevalence in patients
exhibiting gingivitis and periodontitis, in comparison to healthy
controls [11]. The results of animal studies suggest a causative
role of F. nucleatum in periodontal infections [3]. A mono-
infection of mice with F. nucleatum induces periodontal bone
loss or abscess formation [12]. Together with other oral species,
synergistic effects of virulence are detected, resulting in increased
bone loss, abscess development, or death [13]. It has been shown
that F. nucleatum passes through the gingival epithelial cells
to the endocytic pathway of degradation after the invasion.
After this event, no cytopathic effect on gingival epithelial

FIGURE 1 | Pathogenicity of Fusobacterium nucleatum. Fad-I, Fusobacterium-associated defensing inducer; FadA, Fusobacterial adhesion; MMP, Matrix

metalloproteinase; LPS, Lipopolysaccharides.

cells persists, which may be associated with the host evasion
strategies of F. nucleatum in the pathogenesis of periodontitis
[14]. This oral gram-negative bacterium can enter connective
tissue and enhance tissue destruction through proteases as well
as by inducing abundant inflammatory responses [14]. Figure 1
shows an overview of the multiple forms and components of F.
nucleatum and their interactions with oral epithelial cells.

F. NUCLEATUM—A BRIDGING ORGANISM

In the dental bacterial biofilm, F. nucleatum plays a structural
role by acting as a bridging organism, connecting the primary
colonizers such as the Streptococcus species to the mostly
anaerobic secondary colonizers to which it can bind as well,
i.e., Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter
actinomycetemcomitans (A. actinomycetemcomitans) [3, 15, 16].
F. nucleatum exists in the intermediate layer of tooth-attached
human plaque samples, as proposed by Kolenbrander and
London [17], which also was supported by an in vivo study [18]. It
can co-aggregate with almost all bacterial species that participate
in oral plaque formation [19]. F. nucleatum is able to bind to and
transport Streptococcus cristatus, a non-invasive bacterial species,
into host cells, working as a shuttle [20]. In general, known
fusobacterial adhesins (Aid1, CmpA, Fap2, FomA, FadA, and
RadD) play a vital role in microbial coaggregation, mediating the
invasion and facilitating the spread of bacteria [3, 6, 21–24].

RadD plays an eclectic role in fusobacterial adhesion, which
has been shown as themain adhesin that mediates the attachment
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of numerous gram-positive early colonizers [23] and promotes
fusobacterial adherence to biofilms [25]. It can bind to the S.
mutans adhesin SpaP to mediate the co-aggregation of these two
bacterial species and progressive biofilm organization [15, 26].
It conveys interactions not only to bacterial species but also to
Candida albicans, which can also be part of the oral microbiota
[15, 23, 27]. According to a microarray analysis, Kaplan et al.
found that a small hypothetical protein encoded by FN1253,
which they designated as Adhesion Inducing Determinant 1
(Aid1), is induced in F. nucleatum single-species biofilms. Aid1
appears to be unique to fusobacteria and potentially plays a
vital role in facilitating RadD-mediated interaction with oral
streptococci [28]. The interaction between F. nucleatum ATCC
23726 and S. gordonii V288 is mediated by RadD and another
second outer membrane protein called Coaggregation-mediated
Protein A (CmpA) [29]. While CmpA increased the expression
under biofilm conditions, RadD expression was decreased,
indicating that these two proteins may be involved in different
physiological processes [29].

The fusobacterial adhesin (FadA) is the only adhesin that
has been demonstrated to bind to host cells and, until now,
remains to be the virulence factor from F. nucleatum that
has been characterized the best [30]. FadA plays an essential
role in inducing the tumorigenic responses and binding and
invasion of host cells by the organism [31]. A synthetic peptide
that can prevent FadA from binding to E-cadherin inhibits
tumorigenic responses in colorectal cancer [32]. FadA binds
to E-cadherin, activates β-catenin signaling, and regulates the
inflammatory and oncogenic reactions in a differential manner
[32–35]. F. nucleatum activates p38 MAP kinase followed by
the secretion of matrix metalloproteinase (MMP)−9 and MMP-
13 [33, 36–38]. MMP-9 and MMP-13 induce invasion and
metastasis manifestation [6, 39]. This supports the migration
of cells over the stimulation of Etk/BMX, S6 kinase p70,
and RhoA kinase [40]. Liu et al. assessed the prevalence of
F. nucleatum and its virulence factor FadA adhesion gene
(fadA) in subgingival biofilm samples from patients with
gingivitis or periodontitis with or without fixed orthodontic
appliances. It was found that F. nucleatum fadA was detected in
higher amounts in the periodontitis group and non-orthodontic
gingivitis group compared to the other groups. It was also
increased in the orthodontic gingivitis group but only compared
to healthy subjects. The authors concluded that F. nucleatum
carrying fadA probably plays a role in the development of
non-orthodontic gingivitis and periodontitis compared with
orthodontic gingivitis [41].

FomA is a major outer membrane pore protein of F.
nucleatum. The increased abundance of FomA may be related
to the promotion of biofilm formation [42]. FomA was also
identified as the target antigen bound to F. nucleatum-specific
IgA [43]. The production of anti-FomA IgG antibodies was
dependent on TLR2 expression [44]. F. nucleatum invades host
cells through a “zipper” mechanism that relies on a large number
of adhesins [45]. However, a study found that P. gingivalis
outer membrane vesicles (OMVs), reduced the expression levels
of FadA and FomA through protease components and further
inhibited the invasion of F. nucleatum into the oral epithelial
cells [46].

Fibroblast activation protein 2 (Fap2) is a galactose-
sensitive hemagglutinin and adhesin that probably participates
in the virulence of Fusobacteriae [22]. Its function is
critical in mediating colorectal cancer (CRC) development
through binding with acetylgalactosamine (Gal-GalNAc),
which is overexpressed in human metastases and colorectal
adenocarcinoma [47]. It was demonstrated that the Fap2 protein
of F. nucleatum directly interacts with the T cell immune
receptor with Immunoglobulin G (TIGIT) expressed on NK
cells and tumor-infiltrating lymphocytes, causing inhibition of
natural killer (NK) cell cytotoxicity and lymphocytes activity,
thus inducing the development of CRC [48, 49]. FadA interacts
with endothelial cells and epithelial cells, while Fap-2 binds only
to Gal-GalNAc [6, 50].

Compared with P. gingivalis, F. nucleatum demonstrated a
highly invasive capacity [14]. The coinfection with F. nucleatum
can enhance the adhesion and invasion of P. gingivalis and A.
actinomycetemcomitans to human gingival epithelial cells and
inhibits host innate immune responses [51]. The green and black
tea extracts, epigallocatechin-3-gallate (EGCC), and theaflavins
diminish the adherence of F. nucleatum to oral epithelial cells
and matrix proteins [52]. Furthermore, these tea components
also inhibit F. nucleatum-mediated hemolysis and hydrogen
sulfide production, which represent two further virulence factors
expressed by this bacterium [52].

F. NUCLEATUM—RECEPTOR
INTERACTIONS

Microbial detection is achieved through germline-encoded
pattern-recognition receptors (PRRs) and pathogen-associated
molecular patterns (PAMPs) that surveil the extracellular as well
as the intracellular area for conserved microbial components
that indicate infection [53–55]. Representative bacterial PAMPs
include lipid A of lipopolysaccharides (LPS), lipopeptide, and
peptidoglycans (PGNs) [54]. The classification of the most PRRs
is based on protein domain homology, discriminating them
into one of five families, including Toll-like receptors (TLRs)
and nucleotide-binding domain, leucine-rich repeat (LRR)-
containing [or nucleotide-binding oligomerization domain-
containing proteins (NOD)-like] receptors (NLRs) [55, 56]. TLRs
are membrane-bound inborn receptors, while NLRs form the
unbound intracellular receptor class [55].

Toll-like receptors are an essential class of protein molecules
that participate in innate immunity, and they are also the bridge
connecting innate and adaptive immune responses. TLR 1, 2, 4, 5,
6, and 10 are expressed on the cell surface and are transferred to
phagosomes after being activated, whereas TLR 3, 7, 8, and 9 are
expressed in intracellular compartments in nearly all cell types,
principally in the endosomes and the endoplasmic reticulum,
with the ligand-binding domains sampling the lumen of the
vesicle [57]. In the oral cavity, both immune cells and cells of the
periodontium express TLRs [58]. Gingival keratinocytes express
TLR2 [59], which interacts with either TLR1 or TLR6 [54]. TLR2
recognizes gram-positive and gram-negative bacterial PAMPs
and activates intracellular signaling pathways, which could then
induce antimicrobial peptides, like human beta defensins (hBDs)
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and inflammatory markers like cytokines or MMPs [54, 59, 60].
TLRs on the epithelial cell surface recognize F. nucleatum which
activates pro-inflammatory signaling pathways [33]. The hBD2
and hBD3 are induced in oral epithelial cells via TLR2 and
neutrophilic alkaline phosphatase (NALP) 2 [14, 53, 61]. Ji et al.
demonstrated that TLR2 and NALP2 mediate the induction
of hBDs, but not IL-8, and hBD2 and hBD3 are divergently
regulated [53]. Fusobacterium-associated defensin inducer (FAD-
I) is the principal F. nucleatum agent for hBD2 induction in
human oral epithelial cells via TLR-1/2 and TLR-2/6 [31].

NOD-like receptors are normally composed of a central
conserved NOD domain, a C-terminal LRR, and an N-terminal
effector domain [62, 63]. Depending on the N-terminal effector
domain, NLRs can be categorized into varying groups, such
as NLRP, NLRC, and NLRX [64]. Every NLR is essential and
not redundant in recognition of specific PAMPs or damage-
associated molecular patterns (DAMPs). The responses that
are induced can be classified as inflammasome-dependent or
-independent [62]. NLRP1, NLRP3, and NLRC4 for example
can build inflammasomes to activate caspase-1 after the sensing
of PAMPs and DAMPs that results in the release of IL-1β
[62, 65]. NLRP10 is the smallest human nucleotide-binding and
leucine-rich repeat (NLR) protein which has anti- and pro-
inflammatory functions [66]. It takes part in activating the
extracellular signal-regulated kinases (ERK) signaling pathway
in human epithelial cells infected with F. nucleatum and
augments the pro-inflammatory cytokine IL-1α levels [66]. NOD
proteins are cytosolic pattern recognition molecules that belong
to the family of NLRs, recognizing PGN, a component of
bacterial cell walls [67]. NOD1, NOD2, and NLRX1 induce pro-
inflammatory responses through nuclear factor kappa B (NF-κB)
or mitogen-activated protein kinase (MAPK) signaling during
microbial infection [56, 64]. NOD1 is mostly involved in sensing
components of Gram-negative bacteria, while NOD2 is able to
recognize both Gram-negative and Gram-positive bacteria [68].
Both NOD1 and NOD2 might have played a role in recognizing
periodontal pathogens, but the stimulatory activities of P.
gingivalis are weaker than those of other periodontal pathogens
[69]. In addition, the NLR family acts as an essential regulator
of inflammatory and innate immune response, which can control
IL-1, NF-κB, and host response to pathogens including distinct
forms of cell death [70]. Depletion of NLRX1 can decrease
F. nucleatum infection-activated NLRP3 in gingival epithelial
cells (GECs). It is proposed that NLRX1 should enhance the
innate immune response during infection by pathogens but
behave as a break to prevent excessive inflammation under
normal circumstances [62]. A study also found that F.nucleatum
can stimulate NLRP3, activate upstream signal molecules of
ATR-CHK1, and inhibit the activation of CHK1, promoting
tumor growth and proliferation in squamous cell carcinomas
(SCCs) [71].

Previous studies show that F. nucleatum can inhibit
proliferation, apoptosis, reactive oxygen species (ROS), and
inflammatory cytokine production partly of human gingival
fibroblasts by activating the AKT/MAPK and NF-κB signaling
pathways [72]. It is also reported that a large number of
different genes are enriched in the PI3K/AKT signaling pathway
after stimulation with F. nucleatum [72]. The activation of the

PI3K/AKT pathway may induce cell growth [73, 74]. NF-κB, as
the downstream molecule of the PI3K/AKT signaling pathway,
acts synergetically in regulating cell proliferation, apoptosis,
ROS generation, and the inflammatory respose [72], and it also
mediates oral infections and periodontitis [75].

A recent study showed that F. nucleatum aggravated colitis
by induction of the Th1-related cytokine IFN-γ over the AKT2
signaling pathway in vitro and in vivo. The group demonstrated
that F. nucleatum could support the progression of colitis
by proinflammatory M1 macrophage twisting. Therefore, F.
nucleatum or AKT2 signaling may be therapeutic targets in order
to inhibit the development of the disease [76].

Some signaling pathways that are related to F. nucleatum are
shown in Figure 2.

F. NUCLEATUM AND DEFENSINS

The barrier function of epithelial results from the unique
structural integrity and the production of antimicrobial peptides,
such as hBDs and a cathelicidin, LL-37 [79]. Human beta
defensins are a family of epithelial cell-derived antimicrobial
peptides which are of importance in immune defense against
challenging pathogens. The epithelia of many body sites
express hBD1 constitutively but express hBD2 and hBD3 under
conditions of infection or inflammation [53, 80]. The influences
of oral bacteria on the expression of hBDs in epithelial cells and
the signaling pathway have been studied extensively. hBD2 was
found to have strong bactericidal effects against gram-negative
periodontal bacteria [81], while hBD3 also demonstrated activity
against Gram-positive as well as Gram-negative bacteria [82].
Moreover, hBD2 and hBD3 can furthermore attract different
immune cells and link together the innate and adaptive immune
responses [83]. However, gingival epithelium can also express
hBD2 in the absence of inflammation, presumably due to the
constant exposure to oral bacteria [53]. The promoter region
of hBD2 contains numerous regulatory elements, including
the binding sites for NF-κB, activator protein (AP)-1, AP-
2, and nuclear factor for IL-6 expression (NF-IL-6), whereas
the promoter of hBD3 contains no discernible NF-κB binding
elements [53, 84]. F. nucleatum and F. nucleatum cell wall
(FnCW) extracts induce expression of hBD2 and hBD3 in
cultured primary human GECs in vitro [85, 86]. The induction
of hBD2 in GECs in response to FnCW occurs mainly through
MAPK signaling, not NF-κB [87]. Krisanaprakornkit et al.
demonstrated that hBD2 and Interleukin-8 (IL)-8 could also be
induced by LPS extracted from the cell wall of F. nucleatum [85].
Another study supported that F. nucleatum infection induced the
expression of hBD2 and hBD3 in gingival cells [86].

LL-37, the only cathelicidin-derived antimicrobial peptide
found in humans [88], is expressed by neutrophils and epithelial
cells, and in the gingiva, it is localized in the junctional epithelium
[89]. The local deficiency of LL-37 in the gingival crevicular
fluid is suggested to be a supporting factor in the pathogenesis
of severe cases of periodontitis [90]. Direct killing of microbes
by antimicrobial peptides, including LL-37, is thought to serve
as a crucial innate immune defense mechanism to prevent the
growth of microbes in the gingival sulcus [91]. In addition to its
antimicrobial effects, LL-37 suppresses inflammatory responses
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FIGURE 2 | Signaling pathways that are related to F. nucleatum infection. F. nucleatum upregulates MIR4435-2HG, which binds miR-296-5p and weakens the

inhibitory effect of miR-296-5p on SNAI1 via AKT2 [77]. F. nucleatum can also activate the PI3K/AKT—nuclear factor kappa B (NF-κB) signaling pathway which

regulates cell proliferation, apoptosis, and the inflammatory response [72]. The infection with F. nucleatum promotes the capability of proliferation by leading to DNA

damage through the Ku70/p53 pathway [78].

and modulates the apoptotic behavior of neutrophils [91].
Studies found that LL-37 is able to suppress the effect of P.
gingivalis-induced proinflammatory responses of human gingival
fibroblasts in a paracrine manner, suggesting that inflammatory
responses to P. gingivalis in the gingival tissue are suppressed by
LL-37 in vivo [91]. Moreover, LL-37 has the ability to suppress
periodontopathogenic LPS-induced IL-8 production in both
human periodontal ligament fibroblasts and gingival fibroblasts
[92]. However, after stimulation with F. nucleatum, LL-37 is
only weakly expressed in an organotypic dento-epithelial model,
which is used to mimic the dento-gingival junction in vitro [93].
That is a coherent observation since LL-37 is mostly released by
neutrophils and doesn’t originate from epithelial cells [94].

F. NUCLEATUM AND IMMUNE
RESPONSES

The gingival epithelium is the tissue that is primarily challenged
by plaque-associated bacteria [86]. Mucosal epithelia not only
are a passive protective barrier but also can initiate immune
responses over secretion of a number of cytokines and

chemokines [79, 86]. F. nucleatum can induce significant changes
in the expression of genes related to immune defense responses
[95]. Here, we reviewed the inflammatory and immune responses
due to F. nucleatum.

Gingival epithelial cells gene expression was investigated
after the stimulation with a commensal FnCW preparation and
hBD2 peptide. The results revealed significant changes in the
expression levels of genes associated with immune and defense
responses. The 20 most highly up-regulated genes included CC
chemokine-ligand 20 (CCL20), calcium-binding protein S100A7,
skin-derived antileukoprotease (SKALP), IL 1 family member
9 (IL1F9), IL-8, chemokine (C-X-C motif) ligand (CXCL) 5,
complement factor 3 (C3), IL-32, serum amyloid A (SAA) 1,
small proline-rich protein (SPRR) 2C, and CXCL1. Fourteen
out of 20 are cytokines, components of the innate immune
system or inflammatory markers, antimicrobials, or protease
inhibitors. Two genes that were also strongly up-regulated (small
proline-rich proteins, SPRR2B, and SPRR2C) are associated
with structural issues of the epithelial barrier. The most
obvious down-regulated genes included cell cycle regulatory
genes cell division cycle (CDC) 20, S-phase kinase-associated
protein (SKP) 2, proliferating cell nuclear antigen (PCNA),
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polymerase epsilon (POLE) 2), and ubiquitin-proteasome-
associated genes [ubiquitin associated protein 2 like (UBAP2L),
proteasome 26S subunit, non-ATPase 11(PSMD11)] [96]. Genes
up-regulated by FnCW include encoding antimicrobial peptides
and proteins. Up-regulated genes of defense responses included
chemokines IL-8, CXCL1, CXCL3, CXCL5, and CXCL10, which
attract neutrophils, monocytes, macrophages, and lymphocytes.
Furthermore, colony-stimulating factor (CSF) 2, and CSF3 that
stimulate neutrophil development were up-regulated [96].

Neutrophils are involved in inflammatory processes and
release proteases that induce tissue damage. Numerous protease
inhibitors are strongly up-regulated as a reaction to FnCW
[96]. The targets of these inhibitors are proteases released by
neutrophils. This promotes the control of tissue damage and
represents a protective mechanism if commensal bacteria are
present [96, 97]. In addition to providing protection against
neutrophil proteases, these protease inhibitors may also protect
against bacterial proteases released by pathogens, such as P.
gingivalis [96]. Genes that reduce NF-κB function, a major
transcription factor participating in inflammatory responses, are
up-regulated in GECs after stimulation with FnCW [96].

In conclusion, F. nucleatum not only induces the
antimicrobial peptide hBD2 but also affects immune responses
over the induction of chemokines as well as the apparent
impairment of NF-κB function. F. nucleatum supports the
maintenance of an intact mucosal surface by enhancing the
transcription of a number of protease inhibitors that, when
translated, work as active inhibitors that impede tissue
damage by proteases secreted from neutrophils, which
constantly migrate into the oral cavity by passing through
the gingival crevice.

CCL20 is a 70-amino-acid chemokine that attracts immature
dendritic cells and T cells via the chemokine receptor CCR6.
It plays a role in the specific differentiation of lymphocytes,
such as developing Th17 and Treg cells that migrate into
inflamed periodontal tissues [98, 99]. Ghosh et al. detected
that primary oral epithelial cells release CCL20 as a reaction
to F. nucleatum [100]. They also demonstrated in vitro that
the inducible defensins hBD-2, hBD-3, tumor necrosis factor-
α (TNF-α), and IL-1 β could induce the release of CCL20
by human oral epithelial cells. ERK 1/2 and p38 are required
in this process [100]. Interestingly, Yin et al. provided a
new aspect of the bacteria-specific innate immune responses
by epigenetic regulation [101]. They demonstrated that DNA
methyltransferase (DNMT) and histone deacetylase expression
were impaired in GECs treated with the oral pathogens P.
gingivalis and F. nucleatum [101]. Pretreatment with DNMT
inhibitor 5’-azacytidine enhanced hBD2 and CCL20 expression
in F. nucleatum infected GECs [101].

In human epithelial cells, infection with F. nucleatum induces
the upregulation of 12 kinases involved in cell migration,
proliferation, and cell survival signaling, as assessed by the
Kinetworks immunoblotting system [40, 102]. IL-1, IL-6, and
IL-8 are pro-inflammatory cytokines induced in immune and
non-immune cells, like gingival keratinocytes [54]. F. nucleatum
effectively stimulates inflammatory cytokines, IL-6, IL-8, and
TNF-α [3, 36, 103, 104]. F. nucleatum infection in gingival

epithelial cells can also activate NF-κB, which as consequence
translocates to the nucleus, and there stimulates the expression
of pro-inflammatory genes, such as genes encoding pro-IL-1β
[39, 65]. Inflammatory cytokines such as IL-1β, IL-6, and TNF-
α mainly cause periodontal tissue damage. IL-1β may also be
involved in bone resorption and attachment loss which are
characteristic properties of periodontitis.

Lipopolysaccharides from F. nucleatum is responsible for
activating the immune system at the cellular level in periodontitis
[33]. It can drive the production of inflammatory cytokines, such
as IL-1α, IL-1β, IL-6, IL-8, and MMPs through the activation of
the translocation of the NF-κB gene into the nucleus, activating
immunological response and leading to the loss of periodontal
attachment and tissue damage [6, 33, 104–108].

A recent study revealed that periodontitis enhanced
gingival levels of IL-6 and CXCL2 in an animal model.
Orthodontic tooth movement enhanced microbial-induced
periodontal destruction and gingival IL-6 gene expression.
Enhanced IL-6 and CXCL2 levels have also been detected in
the gingiva in human periodontitis. Moreover, mechanical
stress enhanced the stimulatory impact of F. nucleatum on IL-6
production in vitro [109].

Fusobacterium nucleatum infection can induce some DAMPs
that mediate the formation of inflammasomes such as the
high-mobility group box-1 protein (HMGB1) and apoptosis-
associated speck-like protein (ASP) with a similar time-course
as caspase-1 activation [6, 65, 110]. These data are consistent
with animal studies in BALB/c mice infected with F. nucleatum,
which suggested that infection with F. nucleatum is followed
by fast induction of inflammation, the release of DAMPs, and
macrophage infiltration in gingival tissues. The results also
suggested that osteoclasts possibly drive bone resorption in
the early stages of the inflammatory process [111]. HMGB1, a
DNA-binding nuclear protein, is released actively after cytokine
stimulation and passively during cell death; it is involved in
several inflammatory disorders, cell adhesion, and cell migration
[112]. HMGB1 can link with other molecules, including
cytokines and TLR ligands. It activates cells by the differential
engagement of numerous surface receptors such as TLR2, TLR4,
and receptor of advanced glycation end-product (RAGE) [112].
RAGE is a receptor that binds structurally diverse molecules, and
its signaling pathway includes the activation of MAPKs, NF-κB,
PI3K/AKT, JAK/STAT [6]. The interaction between HMGB1 and
RAGE may contribute to oral inflammation and oral cancer [6].

A disintegrin and metalloproteinase 8 (ADAM8), which
is localized within the gingival epithelium, exhibits enhanced
expression in inflamed tissues affected with chronic periodontitis
[113]. ADAM8 mRNA expression in GECs is significantly
induced by stimulation with F. nucleatum [113]. These findings
suggest a possible role of ADAM8 in the innate immunity
of periodontal tissues [113]. Moreover, ADAM8 is found
significantly elevated in the gingival crevicular fluid of patients
with chronic periodontitis [114] and synovia of patients with
rheumatoid arthritis [115]. This is consistent with previous
experiments which demonstrated that overexpression of ADAM8
may increase in vitro osteoclast development and function
and cause bone resorption in mouse models [116, 117],
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implying a possible role of ADAM8 in the promotion of bone
destruction [113].

THE ROLE OF F. NUCLEATUM IN ORAL
CANCER

It is not a new idea that the microbiota plays a role in
cancer. Bacteria, parasites, and viruses are all linked to the
initiation and progression of cancer [15]. Chronic infections
and persistent inflammation are linked to an augmented risk
of cancer [1]. Persisting bacterial components may lead to
up-regulation of immune-suppressing receptors, which can
facilitate the ability of cancer cells to escape from anti-
tumor responses of the host [1]. During the past decade,
it was shown that oral bacteria might promote different
oral diseases. The role of F. nucleatum as an inflammation-
causing and cancer-inducing agent in oral epithelial cells is
still emerging.

In a murine model of periodontitis-associated oral
tumorigenesis that Binder Gallimidi et al. used, it was

demonstrated that chronic bacterial infection promotes
oral squamous carcinoma cells (OSCC) and intensified signaling
over the IL-6-STAT3 axis [39]. P. gingivalis and F. nucleatum
can induce tumorigenesis by directly interacting with oral
epithelial cells via TLRs [39]. In contrast to P. gingivalis, which
has been demonstrated to exhibit specific virulence factors that
are probably involved in different stages of carcinogenesis, the
presumed carcinogenic potential of F. nucleatum has beenmostly
explained over its pro-inflammatory effect by inducing different
cytokines, including TNF-α, IL-6, IL-8, IL-10, IL-12, and
production of ROS within the colon lining epithelial cells. This
process ultimately can cause dysplasia and the development of
cancer [3, 118]. F.nucleatum was also highly abundant in salivary
samples and tumor sites of patients suffering from oral/head
and neck squamous cell carcinoma [119, 120]. Tumor lesions
showed a 6% higher abundance of Fusobacterium (95% CI, 3–9)
than in non-tumor lesions and a 2.93 times higher chance of
Fusobacterium being present in lesions [121]. These findings
suggest that Fusobacterium infection might promote oral/head
and neck cancer [121]. Recent studies demonstrated that F.
nucleatum infection might impact cell migration, proliferation,

FIGURE 3 | Different pathways of interaction of F. nucleatum with epithelial cells. (1), FadA binding to E-cadherin activates β-catenin signaling, leads to cell

proliferation, oncogenic, and inflammatory responses. (2), FAD-I can induce hBD2 expression via both TLR-1/2 and TLR-2/6. LPS and cell extracts of F. nucleatum

can also increase production of inflammatory cytokines and chemokines. (3), F. nucleatum binds to CD46 which results in the overexpression of MMP-9. (4), F.

nucleatum triggers the expression of MMP-9 and MMP-13 over the p38 signaling pathway, which causes invasion into the epithelial cell. Activation of the extraregular

regulated protein kinases (ERK) signaling pathway augments the pro-inflammatory cytokine IL-1α levels. F. nucleatum infection-triggered inflammatory response

activates the NLRP3 inflammasome, which is enhanced by NLRX1. (5), Stimulation by F. nucleatum leads to upregulation of ADAM8 expression which is involved in

inflammation and essential for osteoclastogenesis. LPS, Lipopolysaccharides; Fad-I, Fusobacterium-associated defensing inducer; FadA, Fusobacterial adhesion;

NLRP, Nucleotide-binding oligomerization domain-like repeat protein; NLRX, Nucleotide-binding domain and leucine-rich-repeat-containing family member X; ADAM8,

A disintegrin and metalloproteinase 8; ASC, Apoptosis-associated speck-like protein containing a carboxy-terminal CARD; MMPs, Matrix metalloproteinase.
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invasion, and apoptosis, in/of gingival epithelial cells or OSCC
[72, 78, 122].

In 2020, a cellular model of human immortalized oral
epithelial cells (HIOECs) with F. nucleatum infection was
established. The study group reported that F. nucleatum
facilitated the functional loss of E-cadherin, cell migration,
and the up-regulation of Snail family transcriptional repressor
1 (SNAI1) in non-cancerous as well as cancerous oral
epithelial cells, which is regarded as an indicator for epithelial-
mesenchymal transition (EMT) [77]. This model was used to
perform high-throughput sequencing of cells infected by F.
nucleatum. The function of the database of essential genes
(DEGs) and cis targeted genes of differentially expressed long
non-coding RNAs (lncRNAs) were shown to be significantly
enriched in biological processes of DNA-templated transcription.
In contrast, the trans-targeted genes of lncRNAs showed a main
association with cell-cell adhesion and cell division. The tumor-
associated genes were specifically analyzed and the top 10 hub
genes related to tumor progression were identified. Some of the
hub genes were also demonstrated to be aberrantly expressed in
clinical samples of OSCC [123]. F. nucleatum infection was also
found to promote the proliferative ability of oral carcinoma cells
by causing DNA damage through the Ku70/p53 pathway [78].

CONCLUSION

Fusobacterium nucleatum, as one of the resident members of
the oral microflora, plays a significant role in the pathogenesis

and progression of periodontitis. Long-term infection with F.
nucleatum may lead to the development of cancer. Several
studies demonstrated that F. nucleatum could be a causative
constituent of oral squamous cell carcinoma. There are some
underlying molecular mechanisms about F. nucleatum and
oral epithelial cells, but we tried to review almost all known
mechanisms, which are summarized in Figure 3. F. nucleatum
adheres to and invades oral epithelial cells by binding host
receptors, modulating host signaling pathway and cytokine
network. This induced an inflammatory environment in the
host and promoted the secretion of inflammatory factors
and serine proteases, disrupting the immune-inflammatory
balance and damaging periodontal tissue. Moreover, chronic
infections are related to the increased risk of cancer. The
interaction between F. nucleatum and oral epithelial cells
creates a microenvironment that promotes tumor growth.
Although growing evidence has contributed to a better
understanding of the F. nucleatum-GEC interactions and how
this dialog modulates host responses leading to inflammatory
diseases, future studies are needed to identify new potential
molecular targets for preventing and treating F. nucleatum-
induced diseases.
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