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HIV/AIDS is an ongoing global pandemic, with an estimated 39 million infected

worldwide. Early detection is anticipated to help improve outcomes and prevent further

infections. Point-of-care diagnostics make HIV/AIDS diagnoses available both earlier

and to a broader population. Wide-spread and automated HIV risk estimation can

offer objective guidance. This supports providers in making an informed decision when

considering patients with high HIV risk for HIV testing or pre-exposure prophylaxis (PrEP).

We propose a novel machine learning method that allows providers to use the data from

a patient’s previous stays at the clinic to estimate their HIV risk. All features available in

the clinical data are considered, making the set of features objective and independent

of expert opinions. The proposed method builds on association rules that are derived

from the data. The incidence rate ratio (IRR) is determined for each rule. Given a new

patient, the mean IRR of all applicable rules is used to estimate their HIV risk. The

method was tested and validated on the publicly available clinical database MIMIC-IV,

which consists of around 525,000 hospital stays that included a stay at the intensive

care unit or emergency department. We evaluated the method using the area under

the receiver operating characteristic curve (AUC). The best performance with an AUC

of 0.88 was achieved with a model consisting of 53 rules. A threshold value of 0.66

leads to a sensitivity of 98% and a specificity of 53%. The rules were grouped into

drug abuse, psychological illnesses (e.g., PTSD), previously known associations (e.g.,

pulmonary diseases), and new associations (e.g., certain diagnostic procedures). In

conclusion, we propose a novel HIV risk estimation method that builds on existing clinical

data. It incorporates a wide range of features, leading to a model that is independent of

expert opinions. It supports providers in making informed decisions in the point-of-care

diagnostics process by estimating a patient’s HIV risk.

Keywords: HIV, risk estimation, association rules, bias, clinical data, machine learning, artificial intelligence,

incidence rate ratio
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1. INTRODUCTION

HIV and AIDS are an ongoing global pandemic. For the
year 2020, the Joint United Nations Programme on HIV/AIDS
(UNAIDS) reported an estimated 38 million HIV-positive people
worldwide, with 1.7 million new infections and 690,000 deaths in
2019 alone (1).

In the face of these numbers, it is evident that significant
efforts are needed to combat the spread of HIV. One of the
measures needed to achieve this goal is the extensive use of
diagnostic methods to detect infections as early as possible (2).
The earlier an HIV infection is detected, the better the outcome
(3), the fewer infections can occur (4), and the less of a financial
burden on the healthcare system develops from this infection (5).
One major challenge in the wide-spread provision of diagnostic
procedures are the high costs of providing point-of-care (POC)
diagnostics to every patient (6).

Machine learning (ML) and artificial intelligence (AI)

methods have recently been used to estimate the HIV risk
of individual patients to aid providers in bringing diagnostic
services to their patients (7). These methods offer the benefit
of providing fast and objective estimations of a patient’s risk

of getting infected with HIV or, similarly, the potential of this
patient benefitting from pre-exposure prophylaxis (PrEP).

Many studies are concerned with particular groups of patients

(such as women, men who have sex with men, or drug
users) or contexts other than clinical care. In contrast, the
present study is concerned with general-population HIV risk
estimation based on the patients’ clinical history. Notable studies
in this field include the following. Ridgway et al. developed
a predictive analytics system based on information available
when the patient is first triaged. The system prompts HIV
prevention counselors to discuss PrEP usage with patients
predicted to meet the official criteria for PrEP usage (8).
Krakower et al. evaluated various ML models on large clinical
datasets, with LASSO, a form of linear regression, outperforming
other methods (9). Marcus et al. also built upon LASSO
(10). They showed that, in addition to sexual orientation
and sexually transmittable diseases, other features in clinical
data could improve the method’s performance. Ahlstrom et al.
used national registry data from Denmark to train various
ML models (11). In their study, random forests achieved the
best results.

One common point of discussion in these studies are the
biases and disparities contained in the corresponding models.
This reflects the bias inherent in HIV prevention (7) and should
be considered when approaching patients with the subject of
HIV. To cite Lazarus, "patients do not like to feel that they are
being singled out" (2). For example, an ML prediction model
that decides that a person is HIV-positive based on one single
socio-demographic factor would be problematic.

Hence, the features included in risk estimation models play a
vital role and need to be chosen objectively. Different approaches
to the feature selection process have been used, namely literature
research (10), the consultation of experts or guidelines (8–10), or
the use of results from previous studies (11). To the best of our
knowledge, this is the first study to analyze HIV risk estimation

based on a patient’s previous clinical records while including a
wide range of features without relying on expert knowledge.

The role of expert knowledge in ML and AI-based HIV
prevention has previously been described (7). While these
features sets lead to powerful predictive models, it is unclear
if features previously not considered in these studies might
carry predictive power with respect to HIV risk. There could,
unknowingly, exist features with high predictive power. The
use of these features in HIV risk estimation could reduce the
disparities in PrEP usage and PrEP indication (12) and the biases
and disparities discovered in the models mentioned above.

This approach of taking a limited set of features is in part
necessary to work with many of the ML and AI methods that are
widely used. These expect data in the form of a table. Including
all potential features in such a table is infeasible due to their high
number, which reaches into the hundreds of thousands.

In data mining, a field that is concerned with detecting
patterns in large amounts of data, association rules are often used
to detect rules in heterogeneous data. These rules describe sets of
items that frequently occur together. While initially developed to
analyze large and heterogeneous datasets (13), such rules can also
be used as a method of classification, a field known as associative
classification (14).

We propose to use association rules to detect objective rules
that describe a patient’s HIV risk. As these rules are derived
from the set of all available features, they allow providers to
analyze the biases in clinical data. This allows them to use the
rules as an objective first evaluation of a patient’s HIV risk,
solely based on their clinical history. We envision this evaluation
as being implemented in existing clinical information systems,
making their wide-spread use automated and readily available.
This makes the automated assessment a cost-effective first line of
a POC diagnostics method (assuming that an electronic health
record system is already available), where the automated HIV
risk estimation informs the next diagnostic steps such as an
HIV test or PrEP counseling. Additionally, the rule based nature
allows providers to understand the algorithm’s decision and the
evidence recorded in the data set that resulted in this decision.
As an HIV infection is often met with stigmatization, knowledge
and careful consideration of ML model’s inner workings will
be important factors if automated algorithms are to be used in
real-world contexts.

Apart from the use as a risk estimation method, another
important aspect is which features are identified as beneficial in
the estimation. This sheds light on which clinical data could be
considered when assessing HIV risk factors.

2. MATERIALS AND METHODS

2.1. Data
We used data from the MIMIC-IV project, version 0.4 (15).
MIMIC-IV is a publicly available dataset with around 525,000
hospital stays that included an intensive care unit or emergency
department stay, containing various features. To model a clinical
dataset as it would be available in general contexts (i.e., not only
in an intensive care unit or emergency department), we limited
the types of features used in this study. A list of all feature types
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TABLE 1 | A list of all feature types used in this study with a description and the

number of features of that type that are available in MIMIC-IV.

Feature type Description Number of features

Diagnosis Diagnoses as ICD codes 86,751

DRG Case group 2,059

Ethnicity Patient’s ethnicity 8

Gender Binary: male/female 2

Insurance type Medicare, Medicaid, Other 3

Language Binary: English/other 2

Marital status Single, married, divorced,

widowed, missing

5

Procedure Procedures as ICD codes 82,763

Service Clinical services like

medical, psychological

21

Ward Clinical wards like

emergency department,

surgery

43

Overall 171,657

DRG, Diagnosis-Related Group; ICD, International Classification of Diseases.

TABLE 2 | A list of all HIV diagnoses recorded in MIMIC-IV.

Diagnosis ICD version ICD code

HIV disease 9 042

HIV, type 2 9 079.53

Asymptomatic HIV infection status 9 V08

HIV disease 10 B20

HIV, type 2 as the cause of diseases

classified elsewhere

10 B97.35

HIV disease complicating pregnancy, first

trimester

10 O98.711

HIV disease complicating pregnancy,

second trimester

10 O98.712

HIV disease complicating pregnancy, third

trimester

10 O98.713

HIV disease complicating pregnancy,

unspecified trimester

10 O98.719

HIV disease complicating childbirth 10 O98.72

HIV disease complicating the puerperium 10 O98.73

Asymptomatic HIV infection status 10 Z21

ICD, International Classification of Diseases.

used in this study can be found in Table 1. We included 171,657
different features x in this study. In this context, a feature x can
be any item that was recorded during the clinical stay. Examples
include diagnoses, procedures, socio-demographic factors like
gender, insurance type, and marital status, as well as the services
and wards that the patient has visited. There was no further
feature selection process. This high number of features reflects
the complexity of both clinical care and HIV symptoms.

The goal is to estimate the HIV risk of patients based on
their clinical history. Thus, only patients with at least two
stays were included. The HIV infection must not have occurred
in the first stay of the patient. This resulted in 85,216 study

patients, out of which 38,765 were male and 46,451 female.
These patients account for 349,111 hospital stays.We determined
all HIV-positive patients by filtering for the patients that have
one of the twelve HIV diagnoses in MIMIC-IV, see Table 2. No
AIDS diagnosis was recorded in MIMIC-IV. As the HIV-positive
patients will eventually contract HIV during the time recorded
in MIMIC-IV, these patients are considered to have a high risk
of contracting HIV prior to the infection. This choice of 12
diagnoses resulted in 521 HIV-positive patients, out of which 411
were male, and 110 were female.

2.2. Incidence Rate Ratio
The association between the features x and HIV was measured
using the incidence rate ratio (IRR). It is commonly used in
epidemiology as a causal metric that measures how a risk factor
influences an outcome. An IRR of 1.0 denotes no association,
while higher or lower IRRs denote a positive or negative
association, respectively.

As a fictional example, suppose we ran a study with ten
patients. Five of the patients were smokers, the other five non-
smokers. The smokers spent 60 life-years in the study, and three
out of the five smokers were infected with HIV during their
time in the study. After their infection, the patients’ lifetime
was not included in the 60 life-years. Among the non-smokers,
there were 50 life-years recorded in the study, with two patients
being infected within the study duration. These two patients were
also excluded from the life-years calculation from this point on.
In summary, the incidence rate for HIV was 3/60 person-years
among smokers and 2/50 person-years among non-smokers. The
incidence rate ratio for smoking andHIV is then calculated as the
ratio of the incidence rates, i.e.,

IRR(Smoking) =
3/60 person-years

2/50 person-years
= 1.25. (1)

This indicates that there is a slight positive association between
smoking and an HIV infection in this fictional example.

While the present study is concerned with association and
not causality, we use IRRs to measure an association between
different features and an HIV infection. They capture temporal
effects and measure the strength of an association, which allows
us to assess the predictive value of a feature in terms of HIV risk.

2.3. Rule Mining
Let the dataset be denoted by D. It is a collection of patients,
each of which is a collection of hospital stays. Each hospital
stay is modeled as a collection of feature values and a
timestamp denoting the date and time of the admission. Clinical
documentation might not occur at the same time as some event
occurs. This is why we assume all clinical items in one stay to
occur at the time of admission. The difference in admission times
is expected to be larger than the different event times in one stay,
i.e., the intra-stay time differences are expected to be negligible
compared to the inter-stay time differences of each patient.

As the IRR is aggregated from values calculated for every
single patient P and every single feature x, we can look at one
patient and one feature at a time. The different variations we
can find in the history of that patient are depicted in Figure 1.
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FIGURE 1 | Examples of all different possibilities of how one patient can be categorized into the groups x occurred, x did not occur, positive, and negative. The thick

lines denote the time in which x occurred resp. did not occur, while the dashed lines denote the time that does not contribute to this patients time span.

We first consider whether the patient was HIV-positive, i.e., if
one of the twelve diagnoses in Table 2 occurred. If this is the
case (1 and 2 in Figure 1), we denote the first stay in which
the outcome occurred as the "last stay of interest" and count
that patient as HIV-positive. If this is not the case (3 and 4 in
Figure 1), we take the actual last stay recorded for the patient as
the "last stay of interest" and count that patient as HIV-negative.
This "last stay of interest" is the point in time when the patient
was diagnosed with HIV, after which we do not need to estimate
the HIV risk anymore, or when there is no further information
on the patient available.

Whether x occurred for the patient is determined by whether
the patient had a stay with the feature value x before the last
stay of interest. If this is the case (1 and 3 in Figure 1), the
patient is counted as one patient for whom x occurred and the
time between that first occurrence and the last stay of interest is
the time in which x occurred of that patient. This time span is
denoted as a thick line in Figure 1. For the patients for which
there is no stay with x before the last stay of interest (2 and 4 in
Figure 1), the time between the patient’s first overall stay and the
last stay of interest is the time in which x did not occur for that
patient, also denoted as a thick line in Figure 1.

For each patient, x either occurred (thus only contributing
to time in which x occurred) or did not occur (thus only
contributing to time in which x did not occur) If there are stays
before the occurrence of x is recorded, the time until the first
occurrence is not counted as time in which x did not occur. This
is because the occurrence of x might have already been there,
but it was simply not recorded or known, e.g., in the case of an
unknown diagnosis.

After these calculations have been done for every patient P, the
corresponding counts and times are summed up. The incidence
rates are then calculated as

IRx =
|{P ∈ D | x occurred and P is HIV-positive }|

∑
P∈D time before infection

, (2)

and accordingly

IR¬x =
|{P ∈ D | x did not occur, but P is HIV-positive}|

∑
P∈D time before infection

. (3)

The IRR is then the ratio of the incidence rates of patients for
which x occurred vs. those for which x did not occur, i.e.,

IRR(x) =
IRx

IR¬x
. (4)

A statistical test for "IRR(x) 6= 1" can be used to ensure that
the discovered IRRs are statistically significant. The presented
approach uses the approximately normal distribution of the
natural logarithm of the IRR (16). AWald test (17) is executed for
each discovered rule based on this distribution, resulting in a two-
sided p-value. The maximally allowed p-value is configurable.
Bonferroni correction can be applied to accommodate for
multiple hypothesis testing (18). All rules whose p-value lie above
a configured value are filtered out. Additionally, all rules with
less than a configurable minimum number of HIV-positive and
HIV-negative patients are filtered out. This is done to ensure
that the patterns are not caused by a few patients with extremely
short periods between the occurrence of x and an HIV diagnosis,
for example.
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2.4. Risk Estimation
The rules are mined from the dataset D as described above.
Given a new patient, these rules are used to estimate the patient’s
HIV risk.

First, all the rules are evaluated for the new patient. Only
rules that apply to the patient (i.e., rules for which the feature
x occurred in the patient’s clinical history) are kept. Second, the
mean IRR of all applying rules is calculated.

This mean IRR is then used as the HIV risk score. A threshold
has to be set to determine which patients are HIV-positive.
Risk scores above that threshold define high-risk patients.
The choice of a threshold is based on clinical requirements.
With lower thresholds, more patients will be declared as high
risk patients, leading to more false-positive predictions, but
also more true positive predictions. Higher thresholds lead
to more true and false-negative predictions. The use of a
threshold is thus a trade-off between false negative and false
positive predictions.

2.5. Experiments
The data was randomly split into 20% test data and 80% training
data to test and validate themethod. To improve the performance
in the training phase, 90% of the HIV-negative patients have been
randomly filtered out from the training set. This results in around
7,000 training patients, 400 out of which are HIV-positive, and
around 17,000 test patients.

The following hyperparameters were used. First, the
minimum number of HIV-positive and HIV-negative patients
ranged from 0 to 10. For the statistical significance test, the
p-value thresholds p < 1, p < 0.05, and p < 0.001 were used. In
addition, the use of Bonferroni correction was configurable (as a
binary yes/no decision). This results in 11 · 3 · 2 = 66 possible
hyperparameter configurations.

Each experiment was repeated ten times. All experiments were
evaluated via the area under the receiver operating characteristic
curve (AUC), which is commonly used in binary classification.
It shows the sensitivity (identified positive patients divided by all
positive patients) against (one minus) the specificity (identified
negative patients divided by all negative patients) for different
threshold values.

We implemented the method in the programming
language C#.

3. RESULTS

We evaluated the experiments using the programming language
R (19) and the tidyverse packages (20).

The results are summarized in Figure 2. Statistical significance
tests did not improve the classification performance. The best
mean results were achieved with p < 1 and no Bonferroni
correction. The minimum number of HIV-positive and HIV-
negative patients, which is needed for a rule to be included in
the model to ensure that the rule is not caused by outliers, had
more impact on the AUC. Up to around a minimum number of
HIV-positive and HIV-negative patients of four, this filter heavily
increases the classification performance, leading to the best AUC
being 0.88. This is comparable to other studies that build on

electronic health records (9, 10). From four onwards, the mean
performance steadily declines.

Figure 3 shows the mean number of rules for the models
contained in Figure 2. It indicates that low minimum numbers
of HIV-positive and HIV-negative patients lead to many rules
which do not contribute to a correct classification. The larger
this hyperparameter is chosen, the fewer misguiding rules are
contained in the model, increasing the AUC. At higher minimum
numbers of HIV-positive andHIV-negative patients, this filtering
includes rules with higher predictive performance, which slowly
reduces the AUC.

In the following, we analyze one model in more detail. It was
created using a minimum number of HIV-positive and HIV-
negative patients of four, no Bonferroni correction, and a p-value
threshold of 0.001. Asmore strict statistical significance tests filter
out more rules, this model contains few rules, namely 53, with 14
positive associations. This model achieved a good AUC of 0.88.
The corresponding receiver operating characteristic curve can be
seen in Figure 4.

A threshold value is used to decide which IRR is high enough
for a patient to be considered positive. The threshold value
affects sensitivity and specificity of the prediction model. We
further examine the model with a threshold of 0.66. It leads to
an accuracy of 54%, a sensitivity of 98%, and a specificity of
53%, with 2 out of 92 HIV-positive patients in the test set being
misclassified as negative. Out of the 16,983 HIV-negative patients
in the test set, 7,907 were incorrectly classified as positive. This
means that if the proposed method flags a patient as high-risk,
the probability that this patient is indeed high-risk is 1.1%. This
is due to the relatively low prevalence of HIV infections among
the population. While almost all high-risk patients are detected,
this also includes many low-risk patients. In contrast, a patient
flagged as low-risk will indeed be low-risk in almost 100% of
all cases. Other threshold values lead to different performance
metrics, which is why the optimal threshold value depends on
the usage context at hand. This is mostly a compromise between
detecting as many HIV-positive patients as possible and avoiding
troubling patients with HIV tests.

There are hyperparameter configurations that lead to slightly
higher AUCs (improvement < 0.01 percentage points) or fewer
rules in the model, but this configuration strikes a good balance
between performance and size.

We chose an interpretable model in order to be able to analyze
the underlying associations explicitly. In addition to the good
performance in HIV risk estimation, the model also sheds light
on features that might hint at an HIV infection but could be
overlooked by providers because of the diffuse manifestations of
HIV. Note that these rules only apply to the patient population of
the hospital in which the dataset was generated. However, many
of the rules reproduce previous studies on HIV.

The model consists of 53 rules, including 14 positive rules.
One pattern spanning several rules is drug abuse (IRR 1.99–
16.41), which also contains the rule with the highest IRR. Drug
abuse has previously been established as a risk factor for HIV
(21). Another high rule is the diagnosis of PTSD (4.33). Other
psychological issues can be found in the negative rules, namely
anxiety (0.13) and depressive disorder (0.32). Other positive
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FIGURE 2 | The mean area under the receiver operating characteristic curve (AUC) for the different experiment configurations. The x-axis shows the minimum number

of HIV-positive and HIV-negative patients, the facets show different p-value thresholds, the color indicates if Bonferroni correction was used, and the y-axis shows the

mean AUC achieved by this configuration, with the error bars indicating plus/minus one standard deviation.

association rules reflect well-known gender and racial disparities
in the United States (7, 22), like the increased prevalence of HIV
in males (2.72) as well as in the black population (1.57).

Similarly, social factors play a role, for example in the form of
Medicaid insurance (1.96), which could be due to confounding
factors. This includes the patient’s marital status, as being single
is highly associated with an HIV infection (3.08). To the best
of our knowledge, the association between marital status and
HIV infection has not been studied in a general United States
population, but studies on HIV among military personnel (23)
and HIV mortality in the United States (24) suggest that there
is a positive association between being single and being infected
with HIV, possibly due to having more sexual contacts and lower
social integration (24).

Another pattern are diagnostic procedures of the lung (1.73–
2.58), possibly hinting at pulmonary health problems caused by
HIV (25). Skeletal x-rays of thigh, knee, and lower leg (5.58) and
of wrist and hand (5.78) are highly associated with HIV. These
two rules might hint at the higher risk of falling for HIV-positive

patients (26). The remaining rules are vein punctures (1.75) and
spinal taps (4.25). Both are common diagnostic procedures with
no extraordinary connection to HIV.

Many of the 39 negative rules complement positive rules, such
as being female (0.22), being white (0.46), being married (0.18)
or widowed (0.19), and being insured under Medicare (0.69) or
"other" (0.38).

One more aspect that occurs in various rules is the clinical
services (0.11–0.55) and wards (0.10–0.50) that a patient has
visited. Such associations have previously been established (27).
As the dataset used in this study is focused on intensive care
unit and emergency department stays, the exact findings differ.
However, it is evident from the rules that the information
which clinical services and ward a patient has previously visited
can be used when estimating their HIV risk. Other negative
rules were previously studied, e.g. the use of anticoagulants
(0.13) in HIV prevention (28). The negative rules also contain
some surprises. While most drug abuse rules are positive
associations with HIV, "Personal history of tobacco use" (0.12)
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FIGURE 3 | The mean number of rules in the model for the different experiment configurations. The x-axis shows the minimum number of HIV-positive and

HIV-negative patients, the facets show different p-value thresholds, the color indicates if Bonferroni correction was used, and the y-axis shows the mean number of

rules returned by this configuration, with the error bars indicating plus/minus one standard deviation.

and "Tobacco use disorder" (0.23) are negatively associated
with HIV.

The list of all rules in the model can be found in the
Supplementary Materials.

4. DISCUSSION

The first of the United Nations’ 95-95-95 goals is that 95% of all
HIV-positive persons should know of their HIV infection. To aid
providers in targeting patients with high HIV risk, we proposed
an HIV risk estimation method based on ML techniques, namely
associative classification based on the IRR. As it is based solely
on clinical data, it can automatically run in the background and
provide a first assessment directly in the hospital or clinic. It
can be used as a first-line POC diagnostics method for large
populations to estimate an individual’s HIV risk before assessing
the next steps like an HIV test or PrEP counseling. The goal is
not to automatically prompt an HIV test or PrEP intake based
on the algorithm’s decision, but to inform providers to take these
tools into consideration. With a sensitivity of 98%, the proposed

method is very good at detecting HIV-positive patients, which
can then be targeted by providers.

In contrast to existing methods, the resulting model contains
rules that are objectively discovered from clinical data and
independent of expert knowledge, allowing providers to consider
features that have previously not been used in HIV prevention,
like previous diagnoses or clinical services. Even for experts, the
amount of features and their association to HIV is too much to
memorize, so such rules can clarify which features can be used
to obtain a usable HIV risk estimation model. As the model
takes its information from clinical data, it is also independent
of sensitive information like sexual orientation and transgender
status. Being gay or transgender, for example, is in many parts
of the world punishable. Talking about sexual and gender issues
needs trust between provider and patient, which is not always
given. The proposed method lets providers use more readily
available information about their patients. This information
comes in the form of a risk score that can be binarized, but
the model offers more guidance than that. As it is composed of
rules that may apply to a given patient, the provider can get an
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FIGURE 4 | The receiver operating characteristic curve for the reference

model. The x-axis shows (one minus) the specificity, and the y-axis shows the

sensitivity. Every dot is one possible threshold value. The red line denotes the

curve of a random classifier (i.e., a coin toss).

overview of which HIV-associated features have been recorded in
the patient’s clinical history. If the provider deems these features
suspicious, they can use that information to prescribe HIV testing
independent of the risk score determined by the model.

Apart from this advantage of objectivity regarding the
choice of features, the proposed method has some other
major advantages. First, its interpretability has benefits for all
stakeholders. While providers can understand the algorithm’s
decision and question its correctness, patients can see why
providers approach them with the sensitive subject of HIV.
For researchers, the interpretability leads to insights on the
underlying dataset in the form of if-then rules. We have seen
that several rules in the model correspond to previous studies
on HIV, while others might hint at new associations. Second,
the method builds on data that comes from the electronic
health records that are available at the point of care, which is
a hospital or clinic in most cases. As all information that goes
into the model is available, no further equipment is needed.
Access to the underlying database suffices to train the model
and apply it to patients’ data. This makes the proposed method
cost-effective for first screening approaches. Third, the proposed
method outperforms other methods that build upon features
from electronic health record data (AUCs 0.75–0.86) (9, 10, 29).
Note that a direct comparison of these methods is difficult due to
different underlying datasets. Future work is needed to compare
the different models further. Another point of comparison are
manual HIV risk score methods. One example that is often used
in the United States is the Denver HIV Risk Score (30). Similar
to Machine Learning methods, 48 candidate variables have been

determined based on expert knowledge. Using logistic regression,
a pruned model with eight variables was constructed. In various
validation studies in the United States and Canada, the AUCs
ranged from 0.75 to 0.80 (30–33). The proposed method thus
outperforms the Denver HIV Risk Score. Lastly, the proposed
method is able to incorporate thousands of features. While other
approaches build upon features from electronic health record
data use between 81 and 1,583 features (9, 10, 29) and the
Denver HIV Risk Score uses 48 features (30) during training,
our proposed approach incorporates 171,657 features into the
model training. As this necessarily includes features that have
not been considered before, this might be one reason for the
performance improvement.

The proposed method also has some limitations. First, the
dataset used in this study,MIMIC-IV, has a particular population,
as it is focused on intensive care unit and emergency department
stays. More general clinical datasets will lead to different rule
sets. However, the model discussed here had a good performance,
despite the shortcomings of the underlying dataset. Second, the
model itself is dependent on the underlying clinical datasets.
Other clinical datasets (whether on a hospital, hospital network,
or national level) will lead to different rule sets as they have other
coding guidelines and clinical practices. Therefore, the generated
model and the corresponding rules are only valid in the hospital
in which the dataset was generated. The differences in rule sets
from different context themselves will be an interesting object
of study. While rule sets from different hospitals in the same
city and thus with similar patient populations might hint at
differences in the care provided, rule sets from different regions
might give us insight into differences in the distribution of
HIV infections among the populations. The proposed method,
however, is usable in general contexts. While it will lead to
different models, it can still be used to objectively analyze
large amounts of features for predictive qualities with respect
to HIV.

There are several potential directions for future work. First,
the comparison of rule sets created from different databases will
be an interesting point of study. As the rules reflect the underlying
patient population, regional or national differences in the rule
sets can hint at differences in the population, HIV prevention
strategies, and differences in the healthcare systems. Second,
personalization methods as described by Valente et al. (34)
might improve the predictive performance, while also bringing
reliability estimations into the prediction model. Third, the
method might be useful in the prediction of other diagnoses
or in other tasks from different fields altogether, especially
if thousands of features are to be considered. More research
on applications of the proposed method will allow us to
analyze its general usability. Lastly, different models for HIV
prediction based on electronic health records exists. Further
analysis of the strengths and weaknesses of the approaches as
well as their differences and similarities are expected to shed
light on further improvements. Approaches like bagging (35)
could lead to better predictive performance by combining the
models into one aggregate model. This might come at the cost
of reduced interpretability. Further work is needed to study
such approaches.
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5. CONCLUSION

We proposed a novel HIV risk estimation method. It
builds upon large amounts of features to find those that
can be used to estimate a patient’s HIV risk from their
clinical history. It produces a good predictive model that
can be used as a first-line POC diagnostics method for
large and general populations to inform further steps. The
rules detected in this model are easy to interpret. Many
study results on HIV were reproduced. Some rules were
surprising and might be used as a starting point for future
clinical studies.
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