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Decidualization of human
endometrial stromal cells
requires steroid receptor
coactivator-3
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William E. Gibbons2, San-Pin Wu3, Bert W. O’Malley1,
Francesco J. DeMayo3 and John P. Lydon1*
1Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United
States, 2Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United
States, 3Reproductive and Developmental Biology Laboratory, National Institute of Environmental
Health Sciences, Research Triangle Park, Durham, NC, United States

Steroid receptor coactivator-3 (SRC-3; also known as NCOA3 or AIB1) is a
member of the multifunctional p160/SRC family of coactivators, which also
includes SRC-1 and SRC-2. Clinical and cell-based studies as well as
investigations on mice have demonstrated pivotal roles for each SRC in
numerous physiological and pathophysiological contexts, underscoring their
functional pleiotropy. We previously demonstrated the critical involvement of
SRC-2 in murine embryo implantation as well as in human endometrial
stromal cell (HESC) decidualization, a cellular transformation process required
for trophoblast invasion and ultimately placentation. We show here that, like
SRC-2, SRC-3 is expressed in the epithelial and stromal cellular compartments
of the human endometrium during the proliferative and secretory phase of
the menstrual cycle as well as in cultured HESCs. We also found that SRC-3
depletion in cultured HESCs results in a significant attenuation in the
induction of a wide-range of established biomarkers of decidualization,
despite exposure of these cells to a deciduogenic stimulus and normal
progesterone receptor expression. These molecular findings are supported at
the cellular level by the inability of HESCs to morphologically transform from a
stromal fibroblastoid cell to an epithelioid decidual cell when endogenous
SRC-3 levels are markedly reduced. To identify genes, signaling pathways and
networks that are controlled by SRC-3 and potentially important for
hormone-dependent decidualization, we performed RNA-sequencing on
HESCs in which SRC-3 levels were significantly reduced at the time of
administering the deciduogenic stimulus. Comparing HESC controls with
HESCs deficient in SRC-3, gene enrichment analysis of the differentially
expressed gene set revealed an overrepresentation of genes involved in
chromatin remodeling, cell proliferation/motility, and programmed cell death.
These predictive bioanalytic results were confirmed by the demonstration that
SRC-3 is required for the expansion, migratory and invasive activities of the
HESC population, cellular properties that are required in vivo in the formation
or functioning of the decidua. Collectively, our results support SRC-3 as an
important coregulator in HESC decidualization. Since perturbation of normal
homeostatic levels of SRC-3 is linked with common gynecological disorders
diagnosed in reproductive age women, this endometrial coregulator—along
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with its new molecular targets described here—may open novel clinical avenues in the
diagnosis and/or treatment of a non-receptive endometrium, particularly in patients
presenting non-aneuploid early pregnancy loss.
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Introduction

After embryo aneuploidy, parental chromosomal

translocations, maternal thrombophilic anomalies,

immunological disorders, and obvious uterine ultrastructural

abnormalities are excluded as etiologic contributors,

implantation failure intrinsic to the endometrium is

commonly suspected as an underlying cause of early

pregnancy loss [EPL (1)] and recurrent pregnancy loss [RPL

(2)], the latter defined as the loss of two or more consecutive

pregnancies in the first trimester (2–5). Accordingly,

pregnancy success rates currently achieved by natural or

assisted conception for women at high-risk for EPL or RPL

can only be increased by an improved understanding of the

cellular and molecular mechanisms that control endometrial

function during the periimplantation period.

Soon after embryo attachment and the early stages of

implantation, further invasion into the maternal compartment

requires a functional decidua (6). Formation of the decidua

entails progesterone-dependent transformation of endometrial

stromal fibroblasts into specialized polygonal epithelioid

decidual cells with ploidy; a process termed decidualization (7).

Encapsulating the invading embryo, tightly adherent decidual

cells form a decidual matrix that supports the development of

the hemi-allogeneic conceptus. Decidual support includes

providing histotrophic nutrition, protecting against

physiological stressors, and promoting an immunotolerant

microenvironment. Superimposed on these functions, the

human decidua acts as a biosensor in which non-viable

embryos are negatively selected (8, 9). Moreover, the decidua

recruits innate immune cells [particularly uterine natural killer

(uNK) cells (10)] to control the orderly invasion of the

trophoblast into the maternal compartment and to orchestrate

spiral arteriole remodeling that is essential for normal

uteroplacental perfusion (11). In addition, uNK cells target and

clear acute senescent decidual cells from the mature decidual

cell population to maintain a healthy decidua (12).

During the first trimester, the above decidual functions

emerge early in a series of cellular and molecular events that

sequentially progress in the endometrium to advance the

implanting embryo to hemochorial placentation. Accordingly,

inadequate decidualization not only causes fetal demise at an

early stage of gestation but is linked to a broad range of

gestational complications that manifest in subsequent
02
trimesters; these include early fetal miscarriage due to placental

insufficiency, placenta accreta, fetal growth restriction,

preeclampsia, and pre-term birth (13). Therefore, identifying

new molecular signals that are essential for decidualization is

critical to furnishing novel mechanistic insights that may lead

to the development of more efficacious mechanism-based

molecular diagnostics and/or precision therapies to improve the

outcome of natural pregnancies as well as pregnancies

conceived through assisted reproductive technologies.

The steroid receptor coactivator (SRC)/p160 family is

composed of three pleiotropic coactivators (SRC-1, SRC-2, and

SRC-3) (14), also known as NCOA1, NCOA2, and NCOA3

respectively. Members of the SRC/p160 family control a broad

spectrum of physiologies that include (but are not limited to)

metabolism, circadian rhythms, immunology, and parturition

(15–20). Such SRC multifunctionality is attained through a

complex functional domain structure, encompassing diverse

protein-protein interaction regions that are highly responsive to

posttranslational modifications (PTMs) (21, 22). Originally

discovered as coactivators for nuclear receptor mediated

signaling (23), SRCs are now known to control numerous non-

nuclear receptor signaling pathways (14, 24). As documented

for other physiological systems, members of the SRC family

have been shown to play important roles in uterine biology and

pathobiology (24). Here, we report that SRC-3 is critical for

decidualization of human endometrial stromal cells (HESCs) in

culture. Apart from a block in the signature morphological

cellular changes that normally accompany HESC

decidualization, SRC-3 depletion results in a markedly

diminished induction of the majority of molecular biomarkers

implicated in the decidualization process. Analysis of RNA

profiling experiments underscores the importance of SRC-3 as a

transcriptional coregulator that enables the pre-decidual HESC

to appropriately respond to the deciduogenic stimulus through

coregulator support of a genome-wide transcriptional program.
Materials and methods

Human endometrial tissue and
immunohistochemistry

Using a pipelle suction curette, human endometrial biopsies

were collected under sterile conditions from the uterine fundus of
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healthy women of reproductive age (27–38 years old). Participants

had a normal uterus as evaluated by transvaginal ultrasound and

were not receiving hormone treatment for at least 3 months

before tissue biopsy. Endometrial tissue was biopsied during the

proliferative (n = 6) or secretory (n = 5) phases of the cycle. The

timed cycle phase was determined by the study participants using

home ovulation test kits, and cycle stage of the resultant biopsy

tissue was confirmed by histological analysis (25–27). Written

informed consent was provided by the volunteers before the

biopsy procedure, which was conducted in accordance with a

protocol prospectively approved by the Institutional Review Board

(IRB) at Baylor College of Medicine and in accordance with the

guidelines of the Declaration of Helsinki (28).

For immunohistochemical analyses, tissues were fixed

overnight in 4% paraformaldehyde in phosphate-buffered

saline (PBS) before paraffin embedding and sectioning onto

slides. Immunohistochemical detection of SRC-3 was achieved

using a primary rabbit monoclonal antibody against human

SRC-3 [Cell Signaling Technology Inc., Danvers, MA (#2126);

diluted 1 : 400] followed by incubation with a horseradish

peroxidase (HRP)-conjugated goat anti-rabbit antibody

[Vector Laboratories Inc., Burlingame CA (P-1,000); diluted

1 : 200]. Peroxidase activity was detected with the Vectastain

Elite ABC-HRP kit (Vector Laboratories Inc.). Following

immunostaining, tissue sections were counterstained with

hematoxylin before applying Permount mounting solution

(Fisher Scientific Inc. (SP 15–500) to affix coverslips.
Mouse xenograft studies

As previously described (29), singly dispersed endometrial

cells [SDECs (containing stromal and glandular epithelial cells)]

were prepared from human endometrial tissue biopsied during

the proliferative phase of the cycle (n = 6). Using a Hamilton

microliter syringe [Hamilton Company, Reno, NV (#95-901)],

5 × 105 SDECs in 5–10 ul of sterile Dulbecco’s Modified Eagle

Medium (DMEM) were injected beneath the renal capsule of

both kidneys of ovariectomized scid-beige immunocompromised

host mice [Taconic Biosciences Inc., Rensselaer, NY

(#CBSCBG)]; n = 3 per biopsy sample. Two weeks prior to

injection, host mice were ovariectomized and subcutaneously

implanted within the intrascapular region with a 90 day slow

release pellet containing (1.5 mg 17 β-estradiol (E2)/pellet;

Innovative Research of America Inc. Sarasota FL (#E-121)) (29).

For E2 plus progesterone (P4) treatment, host mice were treated

with E2 for 8 weeks before receiving a daily injection of P4

(1 mg P4/100 ul sesame oil) for 14 days. Following hormone

treatment, reconstituted human endometrial tissue engrafted

within the murine kidney capsule were fixed and processed for

immunohistochemical analysis as described above.

Accredited by AAALAC (Association for the Assessment

and Accreditation of Laboratory Animal Care), scid beige host
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mice were housed in a germ-free facility in the vivarium at

Baylor College of Medicine, which is operated and controlled

by the Center for Comparative Medicine. Studies with mice

followed the guidelines detailed in the Guide for the Care and

Use of Laboratory Animals [published by the National

Research Council (Eighth Edition 2011)]. Prior to conducting

experiments, animal research protocols were approved by the

Institutional Animal Care and Use Committee (IACUC) at

Baylor College of Medicine.
Cell culture

The immortalized human endometrial stromal cell (T-

HESC) line was obtained from the American Type Culture

Collection [ATCC (CRL4003)] and maintained in phenol-red

free DMEM/F12 medium supplemented with 10% charcoal/

dextran-treated (stripped) FBS (sFBS: Sigma-Aldrich Inc.,

St. Louis, MO), 1% ITS-A (insulin, transferrin, selenite and

sodium pyruvate), 500 ng/ml puromycin, 100 units/ml

penicillin, and 0.1 mg/ml streptomycin (ThermoFisher

Scientific Inc., Waltham, MA); medium was changed every

other day. The authenticity of the T-HESC line was confirmed

by short tandem repeat (STR) profiling by the ATCC cell line

authentication service.
Transfection of small interfering RNAs
and in-vitro decidualization

Cells were cultured in six-well plates in triplicate before

transfection with sixty picomoles of the non-targeting [NT

(scrambled control sequence)] siRNA [GE Healthcare

Dharmacon Inc., Lafayette, CO (D-001810-10-05)] or siRNA

targeting SRC-3 [Dharmacon Inc., (L-00 3759-00-0005)], using

the Lipofectamine RNAiMAX transfection reagent (Invitrogen

Inc., Carlsbad CA) (30). Forty-eight hours post-transfection of

siRNAs, T-HESCs were cultured in deciduogenic medium to

stimulate decidualization (100 nM 17β-estradiol [Sigma-

Aldrich Inc. (E1024)], 10 μM medroxyprogesterone acetate

(MPA [Sigma-Aldrich Inc. (M1629)], and 50 μM N6, 2′-O-
dibutyryladenosine 3′, 5′ cyclic monophosphate sodium salt

[Sigma-Aldrich Inc. (D0260)] in 1× Opti-MEM reduced serum

medium, containing 2% charcoal-stripped FBS (hereon referred

to as EPC medium); EPC medium was changed every 48 h.
Immunocytochemistry

After transfection with either NT or SRC-3 siRNAs, T-

HESCs were cultured in EPC medium on coverslips coated

with poly-L-lysine [Sigma-Aldrich Inc. (P4707)]. Following a

specified time period of culture, T-HESCs were fixed on
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TABLE 1 List of human taqman expression assays used in these studies.

Gene ID Catalog number

CCN2 1,490 Hs00170014_m1

CCN3 4,856 Hs00159631_m1

IGFBP1 3,484 Hs00236877_m1

H2AC21 317,772 Hs00602439_s1

H3C1 8,350 Hs00543854_s1

H3C7 8,968 Hs00851863_s1

H3C10 8,357 Hs00818527_s1

H4C3 8,364 Hs00543883_s1

H4C4 8,360 Hs00371424_s1

HAND2 9,464 Hs00232769_m1

HOXA10 3,206 Hs00172012_m1

INHBA 3,624 Hs01081598_m1

PGR 5,241 Hs01556702_m1

PRL 5,617 Hs00168730_m1

SCARA5 286,133 Hs01073151_m1

SST 6,750 Hs00356144_m1

NCOA1 8,648 Hs00186661_m1

NCOA2 10,499 Hs00896109_m1

NCOA3 8,202 Hs00180722_m1

Maurya et al. 10.3389/frph.2022.1033581
coverslips with 4% paraformaldehyde in PBS for 15 min at

room temperature. Following fixation, cells were washed three

times with PBS before permeabilization with 0.1% Triton X-

100 in PBS at room temperature for 20 min. Permeabilized

cells were washed with PBS, then blocked with 2% bovine

serum albumin in PBS for 1 h at room temperature before

incubation overnight at 4°C with a primary antibody against

human SRC-3 [Cell Signaling Technology, Inc. (#2126); 1 :

200 dilution]. After washing with PBS, T-HESCs were

incubated with the Alexa Fluor 594-conjugated secondary

antibody [Life Technologies, (A21207); 1 : 500 dilution] and

Alexa Fluor 488 Phalloidin [Invitrogen Inc., (A12376)] for 1 h

at room temperature, washed, and then mounted with

Vectashield Antifade mounting medium with 4′, 6′-
diamidino-2-phenylindole [DAPI; Vector Laboratories Inc.,

(H-1200-10)]. Raw images were captured using a color chilled

AxioCam MRc5 digital camera attached to a Carl Zeiss

AxioImager A1 upright microscope equipped for

epifluorescence detection (Zeiss Inc., Jena, Germany). Post

image processing and annotation for the purposes of data

presentation were performed using the latest versions of the

Photoshop and Illustrator software programs provided within

Adobe Creative Suite (Adobe Systems Inc., San Jose CA).

TIMP1 7,076 Hs01092512_g1

WNT4 54,361 Hs01573504_m1

18S rRNA ThermoFisher Scientific Inc. 4319413E
Quantitative real-time polymerase chain
reaction

Cells were lysed in RNA lysis buffer before total RNA was

isolated with the Purelink RNA Mini Kit [ThermoFisher Scientific

Inc. (#12183020)]; the Nano-Drop 2000 UV/Visual

spectrophometer (ThermoFisher Scientific Inc.) was used for

RNA quantification. Total RNA (1 µg) was reverse transcribed

using the High-Capacity cDNA Reverse Transcription Kit

[ThermoFisher Scientific Inc. (#4368814)]. Amplified cDNA was

diluted to a concentration of 10 ng/µl before quantitative real time

PCR (qPCR) was performed; qPCR was performed using the Fast

TaqMan 2X Mastermix (Applied Biosystems/Life Technologies,

Grand Island, NY). The TaqMan assays used in this study are

listed in Table 1. All qPCR experiments were performed using the

7,500 Fast Real-time PCR system (Applied Biosystems/Life

Technologies, Grand Island, NY); the delta-delta cycle threshold

was used to normalize expression to the 18S reference.
Genome-wide RNA expression profiling

Genome-wide RNA-sequencing (RNA-seq) and analysis were

performed as described (30, 31). Briefly, total RNA purity and

integrity were assessed using the NanoDrop spectrophotometer

(ThermoFisher Scientific Inc.) and the 2,100 Bioanalyzer with

RNA chips (Agilent Technologies, Santa Clara, CA) respectively.

Only RNA samples scoring a RNA integrity number (RIN) of 8
Frontiers in Reproductive Health 04
or greater were included in subsequent RNA profiling

experiments. For each experimental group, RNA samples from

two replicates were used. Total RNA was reverse transcribed

using the Ovation RNA-seq System V2 [Tecan Genomics Inc.,

Redwood City CA (#7102-32)]. For these experiments, cDNA

libraries were generated with the Nextera DNA Flex Library Prep

and the Nextera DNA CD indexes Kits [Illumina Inc., San Diego

CA (#20018704)]. Using the Illumina NovaSeq 6,000 system,

cDNA libraries were sequenced to a 50-nucleotide read length in

the paired end format. Raw reads were processed using the

Partek Flow Genome Analysis Software [Partek Inc., St. Louis,

MO (version 10.0.21.0801)]. Reads for ribosomal and

mitochondrial DNAs were removed by Bowtie 2 software

(version 2.2.5), followed by base trimming with reference to

quality scores with default parameters. Read alignment to the

human genome hg38 was carried out using HISAT2 software

(version 2.1.0). Both singleton and unaligned reads were

removed using the default parameters set within the Partek Flow

Genomics Analysis Software (Partek Inc.). Aligned and filtered

reads were quantified to the National Center for Biotechnology

Information RefSeq Transcripts 100 (2021-11-01), using the

quantify-to-annotation model [(Partek E/M) function with

default parameters] in Partek Flow (Partek Inc.). Gene counts

were normalized to fragments per kilobase of exon per million

mapped fragments (FPKM). For hierarchical clustering, the

pheatmap package in R was used to draw the clustered heatmap
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based on FPKM values. Principal component analysis (PCA) and

lists of differentially expressed genes were generated by the Partek

Genomics Suite 7.0 (Partek Inc.).

The Bioconductor package EdgeR identified differentially

expressed genes between the control and test group (32). The

false discovery rate (FDR) of differentially expressed genes

between the two groups was determined by Benjamini and

Hochberg analysis (33). Differential gene expression between the

two groups with a FDR value ≤0.05 and an absolute fold change

(IFCI)≥ 1.5 was considered significant and used further to

identify affected pathways (34). Gene ontology enrichment

analysis was conducted using the DAVID (Database for

Annotation, Visualization, and Integrated Discovery) functional

annotation clustering tool (http://david.abcc.ncifcrff.gov/) (35).

Overrepresented established gene sets were identified by Gene Set

Enrichment Analysis (GSEA; http://software.broadinstitute.org/

gsea/) (36, 37). Hallmark gene sets from the Molecular Signatures

Database (MSigDB) were used in these GSEA studies (38).
Immunoblotting

Protein (20 μg) from cell lysates was resolved on 10% or 4%–

15% sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) gels

before transfer to polyvinylidene difluoride (PVDF)

membranes. After protein transfer, PVDF membranes were

blocked for 1 h with 5% non-fat dry milk [Santa Cruz

Biotechnology Inc., Dallas, TX; (# SC-2324)] in Tris-buffered

saline with Tween 20 (TBS-T) and incubated overnight at 4°C

with the following primary antibodies: anti-SRC-3 [Cell

Signaling Technology, Inc., (#2126)] diluted 1:1,000 and anti-β-

actin [Novus Biologicals, Piscataway, NJ; (#NB10056874T)]

diluted 1:10,000 in 5% non-fat milk in TBS-T. Immunoblots

were then probed with anti-rabbit IgG secondary antibody

(ThermoFisher Scientific Inc.; [#A27036 (1:5,000 dilution)] or

anti-mouse IgG [Cell Signaling Technology, Inc.; #7076

(1:10,000 dilution)] secondary antibodies conjugated with HRP

in 5% non-fat milk in TBS-T for 1 h at room temperature. The

following primary antibodies were used to detect SRC-1 (anti-

human SRC-1 rabbit monoclonal; Cell Signaling Technology

Inc., #2191) and SRC-2 (anti-human SRC-2 mouse monoclonal

antibody; BD Biosciences Inc. #610984). The primary antibody

against the phospho-serine (S857) residue in human SRC-3 was

obtained from Cell Signaling Technologies Inc. (#P57249 PP5).

Chemiluminescence was detected with the SuperSignal West

Pico PLUS Chemiluminescent Substrate (ThermoFisher

Scientific, Inc.; #1863097). Immunoreactive bands were digitally

imaged using the Azure 600 Imaging Systems (Azure

Biosystems, Sierra Court, Dublin, CA). Densitometric analysis

of immunoreactive bands corresponding to SRC-3 and β-actin

(loading control) was performed using ImageJ software [version

1.53t (https://imagej.nih.gov)], a publically available Java-based

image processing program.
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Cell proliferation/viability assay

At a density of 3 × 103 cells per well, cells were seeded in 96-well

culture plates in triplicate. Cells transfected with siRNAs for 48 h

were further cultured for 0, 24, 48, 72 or 96 h before cell

proliferation was measured using the CellTiter 96®

Non-Radioactive Cell Proliferation Assay kit [Promega Inc.

Madison, WI; (#G4000)] (30). Following a predetermined time

period in culture, 15 μl of 3-(4, 5-dimethylthiazol-2-yl)-2,

5-diphenyltetrazolium bromide (MTT); Promega, Madison, WI)

was added to each well to a final concentration of 0.5 mg/ml. In

the dark, cells were then incubated at 37 °C for an additional

three hours. Following supernatant removal, formazan crystals

were dissolved by the addition of the stop/solubilizing solution

{100 µl [dimethyl sulfoxide (DMSO)/well]}. The absorbance of

the final mixture was recorded at 570 nm (the formazan

absorbance maximum) using the Multiskan FC Microplate

Photometer (Thermo Scientific Inc., #51119000). The mean

absorbance at “N” time point/mean absorbance at 0 h (N = 24, 48,

72, and 96 h) calculated relative cell proliferation (30). Each

experiment was repeated three times with at least three to five

technical replicates for each treatment group.
Cell migration assay

As previously described (30), comparative cell migration was

quantified using the in vitro wound-healing assay. Cells were

seeded in six-well culture plates and cultured to 70%–80%

confluency prior to siRNA transfection. A 200-μl sterile pipette

tip generated a linear scratch (wound) in the middle of the cell

monolayer within each well. After gentle washing to remove non-

adherent cells, digital images were captured using an inverted

phase-contrast microscope [EVOSTM XL Core Imaging System

(ThermoFisher Scientific Inc. #AMEX1000)]. Following forty-

eight hours of culture, the degree of wound closure per time point

was recorded by digital image capture. The wound area was

calculated by manual tracing the cell-free area within each

captured image per experimental group using ImageJ software

(https://imagej.nih.gov/ij/). Results were recorded as a percent of

wound closure in comparison to control after a forty-eight hour

culture period (percent cell migration area = wound width at 0 h

– wound width at 48 h/wound width at 0 h). Each experiment

was repeated three times with triplicates for each treatment group.
Transwell cell invasion assay

The Corning BioCoat Matrigel Invasion Chamber Kit

[ThermoFisher Scientific Inc. (#354480)] was used for cell

invasion assays (30). Following the forty-eight hour siRNA

transfection period, T-HESCs were suspended in Opti-MEM
frontiersin.org

http://david.abcc.ncifcrff.gov/
http://software.broadinstitute.org/gsea/
http://software.broadinstitute.org/gsea/
https://imagej.nih.gov
https://imagej.nih.gov/ij/
https://doi.org/10.3389/frph.2022.1033581
https://www.frontiersin.org/journals/reproductive-health
https://www.frontiersin.org/


Maurya et al. 10.3389/frph.2022.1033581
medium. To the bottom of each transwell of the invasion

chamber plate, culture medium with 20% FBS was added

(0.6 ml). To test migration potential, suspended cells

(8 × 104 cells/250 µl) were added to each transwell insert. After

forty-eight hours, a cotton swab carefully removed cells on

the upper surface of the transwell. Following fixation with 4%

paraformaldehyde in PBS, migrated cells were stained with a

crystal violet solution (30). Washed inserts were digitally

imaged using a Zeiss stereo-microscope with an attached

AxioCam MRC-5 digital camera (Zeiss Inc., Jena, Germany).

Stained migrated cells were counted in four separate cell fields

throughout the insert before an average number of migrated

cells was calculated (30). Each experiment was repeated three

times with triplicates for each treatment group.
Statistical analysis

Two-tailed unpaired Student t-tests with Welch’s correction

were used to estimate the statistical significance of differences

between control and test groups. One-way ANOVA was used

for multiple comparisons to analyze experiments containing

more than two groups. Unless otherwise stated, data were

graphically presented as mean ± standard deviation (SD).

Differences with p-values <0.05 were considered statistically

significant; asterisks represent the level of significance:

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. Prism

software version 9 (GraphPad Software Inc., San Diego CA)

was used for the majority of the reported statistical analyses.
Results

Steroid receptor coactivator-3 is
expressed in human endometrial
epithelial and stromal cells

Immunohistochemical analysis revealed that SRC-3 protein is

expressed in nuclei of glandular epithelial and stromal cells of

human endometrial tissues biopsied during the estrogen-

dominant proliferative phase of the menstrual cycle (Figure 1A).

In addition, SRC-3 expression was detected in the same

endometrial cellular compartments during the progesterone-

dominant mid-secretory phase of the cycle (Figure 1A). Although

a moderate increase in endometrial epithelial and stromal SRC-3

expression is qualitatively observed during the secretory phase of

the cycle, the overall expression profile of SRC-3 does not

significantly change between the two cycle stages. These results

indicate that estrogen and progesterone do not significantly

control SRC-3 expression in the human endometrium. This

conclusion is further supported by xenograft experiments that

entailed using SDECs derived from human endometrial tissue

biopsies transplanted beneath the renal capsule of ovariectomized
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immunocompromised scid beige mice, which were then treated

with estrogen (E2) or estrogen plus progesterone (E2P4)

(Supplementary Figure S1). Using this controlled hormone

treatment model, the SRC-3 expression profile did not markedly

change between E2 and E2P4 treatment (Supplementary

Figure S1). The above conclusions generally agree with

conclusions drawn from previous investigations that used a

different primary SRC-3 antibody (40) or studies that investigated

SRC-3 expression only at the RNA level (41). The expression of

SRC-3 protein was also detected in nuclei of cultured T-HESCs

(Figure 1B). The expression of SRC-3 was detected in all T-

HESCs irrespective of whether these cells were in the pre-decidual

([Day 0 (EPC)] or decidualized [Day 6 (EPC)] state.
Expression levels of SRC-3 in T-HESCs do
not significantly change during the
decidualization process

Although the level of prolactin (PRL; an established decidual

biomarker (42) significantly increases as T-HESCs decidualize

with time, the level of SRC-3 expression does not markedly

change (both at the RNA and protein level) during the time

course of treatment with the deciduogenic hormone stimulus

(EPC) (Figures 2A–D). These results also agree with expression

data obtained from analyzing a publically available RNA-seq

dataset (GEO accession: GSE104721) (44). This study used

cultured primary HESCs either untreated (day 0 EPC) or treated

with EPC for 4 days (44) (Figure 2E). Our analysis of this

dataset shows that SRC-3 mRNA levels do not significantly

change in primary HESCs either in the pre-decidual or

decidualized state. While SRC-3 protein levels do not change in

the pre-decidual and decidualized HESC, the phosphorylation

status of SRC-3 changes in response to the EPC deciduogenic

stimulus (Supplementary Figure S2). These results suggest that

SRC-3 functional activity may be modulated by EPC-induced

PTMs rather than control of the absolute levels of SRC-3

protein. Interestingly, analysis of separate publically available

RNA-seq dataset (GEO accession: GSE65099) (45) showed that

SRC-3 RNA levels are significantly increased in the

endometrium of patients diagnosed with RPL (Figure 2F),

suggesting that perturbation of the homeostatic levels of SRC-3

may be linked to this endometrial pathology. It’s important to

note that dysregulation of SRC-3 expression is known as a

critical causal factor in the genesis and progression of

numerous tissue pathologies, including tumorigenesis and

metastasis (14, 46, 47).
Decidualization of T-HESCs requires SRC-3

Although SRC-3 is expressed in HESCs, the observation

that SRC-3 levels do not significantly change following
frontiersin.org
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FIGURE 1

Expression of SRC-3 in human endometrial cells (A) left column of panels shows low and high power magnification images (top and bottom panels
respectively) of human endometrial tissue biopsied during the estrogen-dominant proliferative phase of the menstrual cycle, which was
immunohistochemically stained for SRC-3 expression. Note that most glandular epithelial (GE) cells express nuclear localized SRC-3 while stromal cells
express lower levels of SRC-3 at this stage of the cycle. Right column of panels displays low and higher magnification images (top and bottom panels
respectively) of human endometrial tissue biopsied during the progesterone-dominant secretory phase and stained for SRC-3 expression. Expression of
nuclear SRC-3 is clearly detected in the GE cells, which exhibit a distinctive tortuous morphology at this stage of the cycle. Nuclear expression of SRC-3
in the stroma is clearly observed in the majority of cells. Scale bars in the top and bottom left panels apply to the top and bottom right panels
respectively. (B) The left two columns show cultured T-HESCs stained with DAPI (blue nucleus) or DAPI (blue) plus phalloidin (green; binds F-actin) on
day 0 and 6 of EPC treatment; arrowhead denotes nucleus of T-HESC. On day 0 of EPC treatment, T-HESCs exhibit a fibroblastic morphology with F-
actin fibers orientated parallel to each other. Following six days of EPC treatment, note the conspicuous spatial disorganization of the F-actin fibers
indicative of cellular transformation from a fibroblastoid to an epithelioid cell morphology (39). The two columns on the right show the same cells
immunofluorescently stained for SRC-3 expression [red (arrowhead)] or SRC-3 (red) plus phalloidin (green). Note that SRC-3 is expressed in all T-HESCs
at days 0 and 6 of EPC treatment with most of its expression localized to the nucleus (arrowhead). Scale bar applies to all panels.
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FIGURE 2

Expression levels of SRC-3 do not significantly change during T-HESC decidualization. (A) Schematic summarizes the experimental design of EPC
decidualization of T-HESCs in culture. Following culture in standard culture medium for forty-eight hours, T-HESCs were switched to EPC
medium to elicit decidualization over time. Cells were harvested at 0, 1, 2, 4, and 6 days following EPC administration for qPCR and western
analysis. (B) As expected, the established PRL biomarker for decidualization (43) is significantly induced following EPC administration with time.
(C) The expression levels of SRC-3 do not markedly change from day 0 to day 6 of EPC treatment. (D) The results in (C) are confirmed at the
protein level by western analysis, which show there is minimal change in the levels of SRC-3 protein during T-HESC decidualization. (E) From a
publicly available GEO dataset [GSE: 104721 (44)], raw transcript scores for SRC-3 (NCOA3) were calculated from HESCs cultured at day 0 (non-
decidualized) and day 4 (decidualized) in deciduogenic medium. Note that SRC-3 transcript levels in T-HESCs do not significantly change
following decidualization; n= 3 samples per treatment group. (F) The SRC-3 raw transcript scores from endometrial RNA obtained from women
diagnosed with RPL compared with patients diagnosed with no RPL (control) (45); endometrial tissue was biopsied at the mid-secretory phase of
the cycle. Original transcript data were obtained from the publically available RNA-seq dataset [GEO accession: GSE 65099 (45)]. Analysis reveals
that SRC-3 RNA is significantly increased in endometrial tissue biopsied from RPL patients when compared to control patients. Results are
displayed as the mean ± SE; n= 10 women per RPL and control groups.
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decidualization raises the question: Is SRC-3 functionally

required for HESC decidualization? To address this

question, we used an established T-HESC line (48–50),

which has been extensively used to study numerous

factors implicated in HESC decidualization (39, 51–54).
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Analysis by qPCR revealed that siRNA mediated silencing

significantly reduced SRC-3 RNA levels in T-HESCs and

resulted in near undetectable levels of SRC-3

protein, even after day 6 of EPC culture (Figures 3A,B).

Importantly, SRC-3 knockdown in T-HESCs did
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FIGURE 3

Decidualization of T-HESCs requires SRC-3 expression (A) siRNA mediated knockdown effectively reduces SRC-3 levels in T-HESCs both at day 0
and day 6 of EPC culture. The histogram’s dark grey bar on the left indicates T-HESCs transfected with NT siRNAs whereas the light grey bars on the
right denote T-HESCs transfected with SRC-3 siRNAs. Note the persistent knockdown of SRC-3 from day 0 to day 6 of EPC culture. (B) Top panel
shows that the western data confirm the results shown in (A). Note the significant knockdown of SRC-3 protein to undetectable levels following
transfection with siRNAs targeted to SRC-3 at day 0 and 6 of EPC treatment; β-actin serves as a loading control. Bottom panel shows that
ImageJ analysis quantitatively confirms the western data shown in the top panel. The black and red dots for each bar in the histogram represent
the number of technical replicates per time point/treatment group. Error bars denote a mean average of densitometric intensity per time point/
treatment group ± standard deviation (SD); ** denote a p-value ≤ 0.01. (C,D) show T-HESCs at day 0 of EPC treatment that are transfected with
siRNAs targeting NT or SRC-3 respectively. Cells were immunofluorescently stained with DAPI (blue nuclei) and phalloidin [green fibers; binds F-
actin (arrowhead)]. Note the typical parallel arrangement of F-actin filaments in the pre-decidual fibroblastic T-HESCs at this early stage of EPC
culture. (E) and (F) display T-HESCs at day 6 EPC treatment, which were transfected with siRNAs targeting NT and SRC-3 respectively. Note in (E)
the expected spatial disorganized pattern of F-actin filaments in NT siRNA transfected T-HESCs as cells transform from a fibroblastoid to an
epithelioid decidual cell morphology following six days of EPC culture. (F) Under similar culture conditions in (E), T-HESCs transfected with
siRNAs targeting SRC-3 fail to show this F-actin disorganized pattern and continue to display the ordered F-actin parallel pattern as observed in
the pre-decidual stromal fibroblast shown in [D (white arrowhead)]. Scale bar in (C) applies to (D–F).
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not significantly change SRC-1 or SRC-2 expression at

the RNA or protein level (Supplementary Figure S3).

This result is important as we have demonstrated that

SRC-2 is essential for decidualization of cultured HESCs

as well as murine endometrial decidualization (55, 56).

Conversely, we found that SRC-1 is not required for T-

HESC decidualization (data not shown). At the cell

morphology level (Figures 3C–F), SRC-3 knockdown

resulted in the inability of T-HESCs to transform from a

fibroblastoid to an epithelioid morphology following

administration of the deciduogenic hormone cocktail

(EPC). For these cell-based studies, phalloidin fluorescent

detection of F-actin was used (39). Isolated from the

“death cap” mushroom (Amanita phalloides), phalloidin

irreversibly binds juxtaposed actin molecules within the

F-actin filament assembly. In the case of NT siRNA

knockdown, T-HESCs change cellular morphology from a

pre-decidual fibroblastic cellular shape with an ordered

parallel organization of F-actin filaments (39) to a

polygonal shape that is typical of the decidual cell,

underscored by a striking disorganized arrangement of

F-actin filaments (Figures 3C,E). With SRC-3 siRNA

knockdown, however, F-actin filaments remain parallel in

T-HESCs following EPC treatment (Figures 3D,F),

indicating that depletion of SRC-3 impairs the ability of

T-HESCs to adopt the cellular morphology that

characterizes a decidualized endometrial stromal cell

(Figures 3D,F). Confirming the above qPCR and western

results (Figures 3A,B), negligible levels of SRC-3

were immunofluorescently detected in T-HESCs

following SRC-3 siRNA transfection (Supplementary

Figure S4).

The above cell morphology results were supported at

the molecular level by the significant reduction by SRC-3

knockdown in T-HESCs in the induction of a gene subset

that has been previously documented as important for

decidualization or for cellular functions of the decidual

cell (Figure 4). These genes include: prolactin [PRL (42)];

insulin like growth factor binding protein-1 [IGFBP1

(57)]; heart and neural crest derivatives expressed 2

[HAND2 (58, 59)]; forkhead box 1 [FOXO1 (12, 60)];

homeobox A10 [HOXA10 (61)]; homeobox A11 [HOXA11

(62)]; SRY-Box transcription factor 4 [SOX4 (63)],;

somatostatin [SST (64)], and scavenger receptor class A

member 5 [SCARA5 (65)]; DECORIN [DCN (39)];

interleukin 15 [IL15 (66)]; and PGR, progesterone

receptor (67). Interestingly, PGR [and WNT4 (68, 69)

(data not shown)] levels did not change with SRC-3

knockdown, indicating that a decrease in PGR levels is

not the mechanism by which the decidual induction of

the above genes is changed as a result of SRC-3 depletion,

and that not all genes associated with decidualization are

affected by SRC-3 depletion.
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Transcriptomic analyses of T-HESCs
depleted of SRC-3 prior to receiving the
deciduogenic stimulus

Given SRC-3 is required for T-HESC decidualization

(Figures 3, 4), RNA-seq analysis was performed to

determine whether the T-HESC transcriptome is

significantly changed as a result of SRC-3 depletion. Such

a transcriptome change is predicted to compromise the T-

HESC’s ability to correctly respond to the deciduogenic

signal and execute normal functions of a decidual cell. The

overall RNA-seq experimental design is shown

(Figure 5A). Briefly, T-HESCs were transfected with NT

siRNA (control) or SRC-3 siRNAs for forty-eight hours.

Instead of switching to the deciduogenic EPC medium,

transfected cells (at day 0 EPC) were processed for RNA-

seq analysis (Figure 5A).

Duplicate samples per treatment group were used for the

RNA-seq experiment; cells were isolated from two wells of a

six-well plate per sample. The complete list of genes

differentially expressed between the two groups is reported in

an Excel sheet in the supplementary section (Supplementary

Folder S1). A total of 795 (499 upregulated and 296

downregulated) expressed genes were identified by RNA-seq

were significantly changed (Supplementary Folder S1); 153

upregulated and 73 downregulated genes in this gene set

reached the predetermined FDR (≤0.05) and FC (≥1.5)
cutoffs. The FKPM values for all 795 genes were analyzed by

PCA [Supplementary Folder S1 (PCA tab)]. The PCA

showed that the NT siRNA- and SRC-3 siRNA-treatment

groups were significantly separated in terms of their respective

duplicates. Tables 2, 3 list the top 50 genes down and up

regulated respectively that met the FDR (≤0.05) and FC

(≥1.5) cutoffs whereas the expression heatmap (Figure 5B)

shows the top 226 genes (153 upregulated and 73

downregulated) between the NT siRNA and SR-3 siRNA

treatment groups. The above RNA-seq datasets were deposited

in the NCBI GEO repository (GEO accession number:

GSE210936).

Using the agglomeration and gene ontology (GO) tools

in DAVID, genes in the differentially expressed gene set

were grouped according to GO terms, which were further

stratified into the following biological modules: biological

processes, cellular components, and molecular functions

(Figures 6A–D). Our analyses revealed a significant

enrichment in the differentially expressed gene dataset for

genes involved in mitotic phase cycle transition, chromatin

remodeling, nucleosome organization, and DNA replication

dependent nucleosome assembly (Figures 6A–D). Related

to the above, the use of KEGG (Kyoto Encyclopedia of

Genes and Genomes) pathway annotation software showed

that protein families involved in genetic information

processing scored the highest in terms of number of genes
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FIGURE 4

Depletion of SRC-3 in T-HESCs results in a significant attenuation in the induction of established decidual cell markers following EPC culture.
Quantitative real-time PCR reveals that siRNA mediated SRC3 knockdown resulted in a marked reduction in the induction of the following
established molecular targets: PRL, prolactin; IGFBP-1, insulin growth factor binding protein-1; HAND2, heart and neural crest derivative
expressed 2; FOXO1, forkhead box 1; HOXA10, homeobox A10; HOXA11, homeobox A11; SOX4, SRY-Box transcription factor 4; SST,
somatostatin; SCARA5, scavenger receptor class A member 5; DCN; decorin; IL15, interleukin 15; and PGR, progesterone receptor.

Maurya et al. 10.3389/frph.2022.1033581
assigned to a given biological process (Supplementary

Figure S5). Interestingly, a review of the differential gene

expression table (Supplementary Folder S1) uncovered a
Frontiers in Reproductive Health 11
significant overrepresentation of genes encoding members

of the core histone class of proteins, a subset of which was

validated by qPCR (Figure 6E).
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FIGURE 5

The SRC-3 dependent transcriptome in T-HESCs prior to receiving the deciduogenic hormone stimulus (A) the experimental design of the RNA-seq
experiment showing that T-HESCs were transfected with NT or SRC-3 siRNAs for forty-eight hours prior to being harvested for total RNA isolation;
note: T-HESCs did not receive the EPC medium. Cells were harvested from two wells of a six well plate for each replicate; two replicates per NT and
SRC-3 siRNA treatment group were used for these RNA-seq experiments. (B) Heatmap of clustered genes with the same expression level
differentially expressed (up or down) between the NT siRNA and SRC-3 siRNA groups. Using a FDR <0.05 and an IFCI > 1.5 cutoff, 226 genes
were differentially expressed (73 down and 153 up) between the NT and SRC-3 siRNA groups. The 226 genes were clustered and displayed as a
heat map, in which each horizontal row represents a single gene. Warmer and cooler colors (i.e. reds and blues respectively) represent higher
and lower expression respectively: the vertical color key on the right indicates the color intensity with normalized expression values.
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TABLE 2 Top 50 downregulated genes with > 2 log2FC and ≤ 0.05 FDR
in SRC-2 knockdown THESCs line.

GENE
SYMBOL

GENE ID GENE NAME log2FC

CCN2 1,490 cellular communication network factor 2 −9.65 × 10102

H4C3 8,364 H4 clustered histone 3 −2.56 × 1024

INHBA 3,624 inhibin subunit beta A −7.00 × 106

AMIGO2 347,902 adhesion molecule with Ig like domain 2 −264,526

H2BC11 8,970 H2B clustered histone 11 −3112.61

PEA15 8,682 proliferation and apoptosis adaptor protein 15 −2324.81

H2AC21 317,772 H2A clustered histone 21 −2322.8

VAMP2 6,844 vesicle associated membrane protein 2 −1162.73

H4C4 8,360 H4 clustered histone 4 −840.643

RFLNB 359,845 refilin B −558.069

RGS4 5,999 regulator of G protein signaling 4 −452.524

PSME3 10,197 proteasome activator subunit 3 −243.068

ZFP36L2 678 ZFP36 ring finger protein like 2 −226.152

SMIM10 644,538 small integral membrane protein 10 −166.513

PURA 5,813 purine rich element binding protein A −132.028

H3C7 8,968 H3 clustered histone 7 −49.0812

C11orf68 83,638 chromosome 11 open reading frame 68 −37.1825

UACA 55,075 uveal autoantigen with coiled-coil domains
and ankyrin repeats

−34.6828

RPN2 6,185 ribophorin II −17.2915

IGIP 492,311 IgA inducing protein −13.4947

H3C1 8,350 H3 clustered histone 1 −11.9711

H2BC6 8,344 H2B clustered histone 6 −11.8612

TMED10 10,972 transmembrane p24 trafficking protein 10 −11.8282

FOXC2 2,303 forkhead box C2 −9.9483

TMEM200A 114,801 transmembrane protein 200A −8.96914

CAMK2N1 55,450 calcium/calmodulin dependent protein
kinase II inhibitor 1

−8.49212

EIF2S3 1,968 eukaryotic translation initiation factor 2
subunit gamma

−8.42607

MAPK1IP1l 93,487 mitogen-activated protein kinase 1
interacting protein 1 like

−7.82586

PORCN 64,840 porcupine O-acyltransferase −6.91333

CCN3 4,856 cellular communication network factor 3 −6.27663

SCARNA9l 100,158,262 small Cajal body-specific RNA 9 like −6.16203

FERMT2 10,979 FERM domain containing kindlin 2 −5.33035

SF3B4 10,262 splicing factor 3b subunit 4 −4.9419

H3C10 8,357 H3 clustered histone 10 −4.92587

RNF11 26,994 ring finger protein 11 −4.71412

TCEAL7 56,849 transcription elongation factor A like 7 −4.35703

FOXL1 2,300 forkhead box L1 −4.04063

DIMT1 27,292 DIM1 rRNA methyltransferase and
ribosome maturation factor

−3.36136

TCAF1 9,747 TRPM8 channel associated factor 1 −3.19254

DCAKD 79,877 dephospho-CoA kinase domain containing −3.17144

ARRDC3 57,561 arrestin domain containing 3 −3.15592

ASNSD1 54,529 asparagine synthetase domain containing 1 −3.11208

FYTTD1 84,248 forty-two-three domain containing 1 −3.09781

GTF3C6 112,495 general transcription factor IIIC subunit 6 −3.00018

PNPO 55,163 pyridoxamine 5′-phosphate oxidase −2.63178

DTX3l 151,636 deltex E3 ubiquitin ligase 3l −2.62797

(continued)

TABLE 2 Continued

GENE
SYMBOL

GENE ID GENE NAME log2FC

ATMIN 23,300 ATM interactor −2.59801

USP53 54,532 ubiquitin specific peptidase 53 −2.49268

AP2B1 163 adaptor related protein complex 2 subunit
beta 1

−2.38829

REEP3 221,035 receptor accessory protein 3 −2.37707
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Genes that are involved in cell proliferation, migration,

and invasion were also enriched in the differentially

expressed gene dataset (Figure 7A). For example, the Cell

Communication Network (CCN) family of cysteine-rich

matricellular proteins are extracellular matrix (ECM)-

associated proteins that are active in a wide spectrum of

biologies and pathobiologies (70). In particular, the CCN2

and CCN3 matricellar proteins underpin numerous cellular

activities that range from mitogenesis, differentiation,

survival, adhesion, migration, chemotaxis, angiogenesis,

chondrogenesis, and wound healing (71, 72). Accordingly,

CCN2 and CCN3 dysregulation is causal for a multitude

of human pathobiologies, including tumorigenesis and

metastasis (73, 74). Interestingly, these proteins have been

implicated in female reproductive disorders, such as

preeclampsia (75–77); however, their role in the normal

endometrium is unclear. Also linked to cellular

proliferation, migration and invasion in other physiologies,

inhibin beta A (also known as INHBA) was originally

recognized as a subunit for the closely related activin and

inhibin glycoproteins, which exert opposing functional

effects. However, INHBA perturbation alone has been

associated with aggressive tumor behavior, including

acceleration of cell proliferation, epithelial mesenchymal

transition (EMT), migration and invasion (78–80).

Noteworthy, INHBA has been detected in the human

endometrium and endometrial pathologies (81, 82);

however, the role of INHBA in the endometrial stromal

cell remains an open question. In addition to inhibiting

matrix metalloproteinases, tissue inhibitor of

metalloproteinases 1 (TIMP1) can signal in a cytokine-like

manner to influence numerous biological processes, which

includes cellular proliferation, differentiation, apoptosis,

angiogenesis, and oncogenesis (83–85). Although detected

in murine and human endometrial tissue, TIMP1’s role in

endometrial function is currently unknown.

Although functionally validating these new genes in HESC

decidualization is beyond the scope of the current study, the

various cellular properties attributed to these genes provided

the impetus to test whether SRC-3 controls these cell activities,

specifically cell viability, migration, and invasive properties of

HESCs, especially as SRC-3 controls these cellular functions in

other physiologies and pathologies (86–88). To address the
frontiersin.org
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TABLE 3 Top 50 upregulated genes with > 5 log2FC and ≤ 0.05 FDR in
SRC-2 knockdown THESCs line.

GENE
SYMBOL

GENE
ID

GENE NAME log2FC

TUBA1B 10,376 tubulin alpha 1b 2.94 × 10137

GAPDH 2,597 glyceraldehyde-3-phosphate dehydrogenase 8.54 × 1045

TMSB10 9,168 thymosin beta 10 1.28 × 1038

CCN1 3,491 cellular communication network factor 1 9.64 × 1037

TUBB 203,068 tubulin beta class I 1.55 × 1032

MRFAP1 93,621 Morf4 family associated protein 1 6.04 × 1029

TIMP1 7,076 TIMP metallopeptidase inhibitor 1 1.43 × 1012

PTMA 5,757 prothymosin alpha 2.80 × 107

RPS5 6,193 ribosomal protein S5 1.90 × 107

HSPD1 3,329 heat shock protein family D (Hsp60)
member 1

2.46 × 106

SRM 6,723 spermidine synthase 363,539

EIF4A1 1,973 eukaryotic translation initiation factor 4A1 294,764

FLNC 2,318 filamin C 30,075.5

PPP1R14B 26,472 protein phosphatase 1 regulatory inhibitor
subunit 14B

1757.37

CCT5 22,948 chaperonin containing TCP1 subunit 5 615.43

KIF20A 10,112 kinesin family member 20A 590.523

KLF6 1,316 Kruppel like factor 6 540.256

UCP2 7,351 uncoupling protein 2 275.479

PSMC3 5,702 proteasome 26S subunit, ATPase 3 223.144

VCP 7,415 valosin containing protein 221.506

H2AX 3,014 H2A.X variant histone 146.018

ID3 3,399 inhibitor of DNA binding 3, HLH protein 123.636

TOMM22 56,993 translocase of outer mitochondrial
membrane 22

103.895

CALM1 801 calmodulin 1 44.3066

NGRN 51,335 neugrin, neurite outgrowth associated 41.6473

ARL6IP4 51,329 ADP ribosylation factor like GTPase 6
interacting protein 4

37.8062

BIRC5 332 baculoviral IAP repeat containing 5 28.7831

SOD1 6,647 superoxide dismutase 1 27.475

TPM3 7,170 tropomyosin 3 23.4603

HRAS 3,265 HRas proto-oncogene, GTPase 21.8272

TYMS 7,298 thymidylate synthetase 20.5197

PDZD11 51,248 PDZ domain containing 11 19.2009

PSMC1 PSMC1 proteasome 26S subunit, ATPase 1 18.7238

HDGF 3,068 heparin binding growth factor 17.647

FLOT1 10,211 flotillin 1 17.0194

CENPF 1,063 centromere protein F 12.8586

TUBA1C 84,790 tubulin alpha 1c 12.6358

FLII 2,314 FLII actin remodeling protein 12.3552

TRIP6 7,205 thyroid hormone receptor interactor 6 11.4362

CALM3 808 calmodulin 3 10.8634

RAD23A 5,886 RAD23 homolog A, nucleotide excision
repair protein

9.7879

NES 10,763 nestin 9.33474

TACC3 10,460 transforming acidic coiled-coil containing
protein 3

9.18109

(continued)

TABLE 3 Continued

GENE
SYMBOL

GENE
ID

GENE NAME log2FC

ADRM1 11,047 ADRM1 26S proteasome ubiquitin receptor 8.78648

TSR3 115,939 TSR3 ribosome maturation factor 8.31174

PSMA4 5,685 proteasome 20S subunit alpha 4 8.22639

ENSA 2,029 endosulfine alpha 7.76648

SMC1A 8,243 structural maintenance of chromosomes 1A 7.67597

IK 3,550 IK cytokine 6.87798

JPT1 51,155 Jupiter microtubule associated homolog 1 6.62842
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aforementioned, the MTT assay demonstrated that SRC-3 is

necessary for full proliferative capacity of the T-HESC, and that

the necessity for SRC-3 increases as the duration of culture

lengthens (Figure 7B). In addition, SRC-3 is also essential for

the known intrinsic migratory (Figures 7C–F) and invasive

properties of endometrial cells (Supplementary Figure S6),

cellular properties that are essential for a fully functional

decidua in vivo (89–92).
Discussion

Originally discovered as an oncogenic coactivator (93),

SRC-3 [also known as amplified in breast cancer 1 (AIB1)]

is now recognized as a pivotal coactivator for a broad

spectrum of physiological processes, ranging from

metabolism, circadian rhythms to T cell biology (18, 94–

96). Importantly, SRC-3 is implicated in female

reproductive physiology and pathophysiology (24).

In the case of endometrial pathology, Lessey’s group

reported that SRC-3 levels (along with SRC-2 [also known

as transcriptional intermediary factor 2 (TIF2)] are

markedly elevated in epithelial and stromal cells of

secretory-phase endometrial tissue biopsied from patients

diagnosed with polycystic ovary syndrome (PCOS) (40).

Apart from an increased susceptibility for endometrial

cancer (97), PCOS patients are predisposed to additional

reproductive sequelae, which include low cycle fecundity

and a high miscarriage rate that can reach 60%–70%

(98, 99). Independent studies have also shown that SRC-3

levels are strikingly elevated in hyperplastic and/or

malignant human endometrial tissue (100–104).

In agreement with previous studies (40), we show here

that SRC-3 is expressed in the glandular epithelial and

stromal compartments of a healthy endometrium, and that

endometrial SRC-3 expression does not significantly alter

with cycle stage or with changes in hormone exposure (i.e.,

from an E2 to an E2 plus P4 environment). In the case of

cultured T-HESCs, we found that neither SRC-3’s spatial

distribution nor expression level markedly changed during
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FIGURE 6

Gene ontology functional analyses of differentially expressed genes in T-HESCs following SRC-3 knockdown (A) gene ontology (GO) enrichment
analysis of differentially expressed genes was achieved using the DAVID. The six significantly enriched GO terms (p < 0.05) in molecular function
along with the ten top significantly enriched GO terms in biological processes and cellular component branches are presented. The adjusted p-
values of the terms were –log10 transformed. (B–D) Dot plots of enriched genes within the differentially expressed gene set are stratified
according to biological processes, cellular components, and molecular functions respectively. (E) Quantitative real time PCR analysis shows
significant reduction in the induction of the following histone family members: H2AC21, H3C1, H3C7, H3C10, H4C3, and H4C4 in T-HESCs
following SRC-3 knockdown.
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FIGURE 7

Proliferative and migratory properties of T-HESCs are significantly reduced following SRC-3 knockdown. (A) Quantitative real-time PCR analyses
shows a significant reduction in the induction of CCN2, CCN3, INHBA, and TIMP1 following SRC-3 knockdown. (B) The MTT assay demonstrates
that depletion of SRC-3 levels in T-HESCs markedly reduces this cell type’s ability to maintain optimum cell viability/ proliferative capacity over
time. (C) The wound healing assay demonstrated that SRC-3 knockdown resulted in a significant reduction in the migratory abilities of T-HESCs.
Shown is a representative bright-field image of the migrated area (demarcated by dotted line) forty eight hours following the application of the
scratch to the cell monolayer, previously transfected with either NT or SRC-3 siRNAs; scale bar applies to all images. (D) The histogram
quantitatively displays the reduced migratory ability of T-HESCs following SRC-3 knockdown. Migratory ability of T-HESCs is reduced by at least
50% following SRC-3 knockdown (compare black bar (NT siRNA) with red bar (SRC-3 siRNA)). (E,F) Quantitative real time PCR and western
immunoblot analyses confirm efficient SRC-3 knockdown in T-HESCs at the RNA and protein level respectively in these experiments. Results in
(E) are displayed as ± SE and are representative of three independent experiments; *p-value <0.05; **p-value <0.01; ***p-value <0.001; and
****p-value < 0.0001. Western in (F) is representative of three separate experiments; β-actin was used as a loading control.
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decidualization. Notable, however, endometrial SRC-3 levels

are aberrantly elevated in a number of gynecological

morbidities, which include endometrial hyperplasia and

cancer (100, 101), PCOS (40), and endometriosis (105).

Here, our bioinformatic analysis also showed that

abnormally elevated levels of SRC-3 occur in endometrial

tissue biopsied from patients diagnosed with RPL

(Figure 2F). Therefore, these findings furnish tantalizing

support for the proposal that unscheduled elevation of

endometrial SRC-3 levels may serve as a biomarker for the

emergence of these uterine pathobiologies. Interestingly,

SRC-3’s phosphorylation status in T-HESCs is altered

between the pre-decidual and decidualized state. Specifically,

the levels of SRC-3, which harbored phosphorylated serine

residue 857 (S857), increased in decidual cells compared

with pre-decidual cells. As phosphorylation of SRC-3 at

residue S857 is known to modulate and extend coactivator

potency in other physiological systems (22, 106, 107), this

PTM event may signal a change in SRC-3 activation status

between the pre-decidual and decidual cell. Future

investigations will test whether this PTM (as well as other

PTMs singly or in combination) is functionally important

for SRC-3’s role in decidualization and/or in the functional

properties of the decidual cell following its development

from a HESC progenitor.

By depleting pre-decidual HESCs of total SRC-3 protein, we

demonstrated that SRC-3 is essential for these cells to transform

into specialized decidual cells; the decidual defect could not be

compensated by other SRC members. Importantly, the normal

induction of the majority molecular signals tested—hormones,

growth factors, transcription factors, and cytokines, which have

been shown to be functionally important for this cellular

transformation process (or for correct functioning of the

decidual cell once formed), was significantly attenuated in

response to diminished SRC-3 levels. Collectively, these results

underscore the importance of SRC-3 in sustaining the pivotal

transcriptional responses that manifest in HESCs, which ensure

HESC development to a normally functioning decidual cell.

Because the EPC-induction of transcription factors [i.e., HAND2

(58, 66)] and paracrine signals [i.e., IL15 (12, 66, 108–111)] is

significantly attenuated in SRC-3 depleted HESCs, SRC-3 is

required for optimum HESC intra- and extracellular signaling.

The derailment in the induction of these and other known

transcriptional programming events in HESCs with a SRC-3

deficit provided the pretext to identify the early HESC

molecular signals and associated biological processes that are

compromised following reduction of SRC-3 levels. Specifically,

the focus of the transcriptomic analysis was to determine the

extent to which SRC-3 depletion would alter the

transcriptome of the pre-decidual cell prior to receipt of the

deciduogenic stimulus.

Significant reduction of SRC-3 levels in pre-decidual

HESCs over a forty eight hour period resulted in a marked
Frontiers in Reproductive Health 17
change in the transcriptome that normally exists at a time

when these cells receive the deciduogenic hormone stimulus.

Gene enrichment analysis revealed that the expression of

genes involved in chromatin remodeling, organization and

assembly of the nucleosome and control of DNA replication

was significantly reduced in HESCs with reduced SRC-3

levels. Noteworthy was the significant reduction in the

expression levels of core histone variants (i.e., H3AC21;

H3C1; H3C7; H3C10; H4C3; and H4C4). From yeast to

humans, histone homeostasis is essential for avoiding

genomic stress, changes in global transcriptional output,

premature replicative senescence and ageing (112–123).

Normally, strict controls on histone gene expression levels

are in place during the cell cycle to ensure direct coupling of

DNA replication with canonical histone deposition (124–

126). Interestingly, however, scheduled increases in histone

content are associated with cellular differentiation and

ploidy, both cellular processes that underpin HESC

decidualization (127). Following SRC-3 knockdown, the

reduction in the expression levels of core histone variants,

along with other factors implicated in nucleosome

organization and assembly, may in part contribute to the

observed decrease in HESC proliferative capacity as cellular

proliferation followed by differentiation is a requirement for

completion of the decidualization process (7).

It should be noted that the above findings from our cell-

based investigations have yet be confirmed by in vivo model

systems. Female mice, which are deficient in SRC-3, exhibit

dwarfism, delayed pubertal onset, attenuated mammary

gland morphogenesis, striking metabolic impairments, and

a severe subfertility defect (128). Because of the

phenotypic complexity displayed by the whole body SRC-3

knockout mouse, we recently generated a conditional SRC-

3 knockout mouse by crossing our Pgr-cre driver mouse

with a mouse carrying the floxed SRC-3 allele (129, 130).

Interestingly, the conditional SRC-3 knockout female

mouse is infertile, and its endometrium fails to decidualize

(unpublished data), supporting the in vitro studies

described here.

In conclusion, our studies offer compelling support for

an important role for SRC-3, which is independent of the

other SRC family members, in HESC decidualization.

Devoid of SRC-3, HESCs are less viable and lose

significant proliferative, differentiative, motile, and

invasive capabilities, cellular attributes that are necessary

for either the development or function of the decidual

cell. Given decidualization is critical for advancement

of the implantation process toward placentation, further

investigation of endometrial SRC-3 in periimplantation

biology is predicted to furnish new molecular

insights not only into normal endometrial function but

also endometrial dysfunction that leads to early

pregnancy loss.
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