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Despite advances in reducing HIV-related mortality, persistently high HIV
incidence rates are undermining global efforts to end the epidemic by 2030.
The UNAIDS Fast-track targets as well as other preventative strategies, such
as pre-exposure prophylaxis, have been identified as priority areas to reduce
the ongoing transmission threatening to undermine recent progress.
Accurate and granular risk prediction is critical for these campaigns but is
often lacking in regions where the burden is highest. Owing to their ability to
capture complex interactions between data, machine learning and artificial
intelligence algorithms have proven effective at predicting the risk of HIV
infection in both high resource and low resource settings. However,
interpretability of these algorithms presents a challenge to the understanding
and adoption of these algorithms. In this perspectives article, we provide an
introduction to machine learning and discuss some of the important
considerations when choosing the variables used in model development and
when evaluating the performance of different machine learning algorithms,
as well as the role emerging tools such as Shapely Additive Explanations may
play in helping understand and decompose these models in the context of
HIV. Finally, we discuss some of the potential public health and clinical use
cases for such decomposed risk assessment models in directing testing and
preventative interventions including pre-exposure prophylaxis, as well as
highlight the potential integration synergies with algorithms that predict the
risk of sexually transmitted infections and tuberculosis.
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Introduction

Since the start of the HIV epidemic, the virus has infect an estimated 76 million

people worldwide, roughly 33 million of whom have died (1). While there has been a

roughly 60% reduction in estimated AIDS-related annual deaths this progress has not

been reflected in HIV incidence with only a 17% decrease in HIV incidence across a

similar period leading to a significant rise in the number of people living with HIV

(1–3). In recognition of the limited successes in reducing HIV infection incidence

globally, the UNAIDS “Fast-track” targets of 95–95–95 have become accepted as

foundational for accelerating HIV incidence reductions to achieve the goal of ending

the HIV epidemic by 2030 (4). The updated targets seek to have 95% of people living

with HIV know their status (diagnosis), 95% of those diagnosed on antiretroviral
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therapy (ART), and 95% of those on ART virally suppressed by

2030 (4). Fundamental to achieving this goal in Sub-Saharan

Africa is comprehensive diagnosis including populations

unaware that they are at high risk of having HIV (5).

However, a major challenge to this is that the relative

importance of different at-risk and missed groups varies

significantly both between and within different countries.

Beyond the Fast-track targets other preventative strategies

remain vital to the global efforts to end the HIV epidemic, with

Pre-Exposure Prophylaxis (PrEP), behaviour change

communication, and early ART as prevention considered to be

the three most effective strategies for preventing HIV

transmission (6). When taken correctly, both PrEP and ART as

prevention has been shown to be up to 100% effective in

preventing HIV transmission (7–10). Critical to directing both

HIV testing campaigns (required to meet the first goal of

95–95–95) as well as PrEP prescription and other targeted

preventative strategies is a capacity for granular HIV risk

estimation. This unmet need coupled with the initial successes

of more traditional modelling techniques in delineating HIV risk

(11), has led to a growing interest in the role machine learning

(ML) and artificial intelligence (AI) could play in helping

quantify individual risk of HIV infection. To this end, various

ML models and AI algorithms have been developed using

diverse datasets from both data-rich high income settings and

more data-sparse low-to-middle income countries (LMICs) (12–

19). In this perspective article we seek to describe the benefits

and limitations to using ML for HIV risk prediction as well as

discuss some of the potential future use cases of ML-guided

HIV risk prediction algorithms in both meeting the UNAIDS

targets as well as guiding the roll-out of other preventative

strategies such as PrEP.
Machine learning for HIV risk
prediction

Machine learning (ML) can be described as a collection of

scientific techniques that focus on how computers learn

relationships between data (20, 21). The automated pattern

recognition of ML has found growing utility in medical statistics

owing to the increasing size and complexity of medical data

(22). ML can be classified into supervised or unsupervised

learning by whether the algorithm is trained on labelled data or

the algorithm self-defines the data structure from unlabelled data

(20, 23, 24). Supervised learning can then be further subclassified

into classification and regression algorithms based on whether

the outcome being predicted is a categorical or continuous

variable respectively (24). Common examples of classification

problems include email spam filters (25), movie or online

shopping recommendations (26), differentiating malignant and

benign skin lesions (27), modelling the risk of ICU admission

(28), and chest radiograph pneumonia detection (29).
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The output of a classification algorithm is typically

interpreted as a probability which is then binarized by means

of a threshold that can be altered to increase either the

sensitivity or specificity based on the model’s clinical

requirements (30). This makes classification models

particularly useful in risk prediction. Given the persistent

global burden of infectious diseases, there has been growing

interest in the use of ML in risk prediction in this field

(31, 32). Within HIV specifically there has been substantial

attempt to try and identify individuals at high risk of

infection. Initially people were classified using single risk

factors, such as sero-discordant spouses (12). Subsequent

approaches have largely focused on risk scores calculated via

traditional clinical prediction tools based on regression

modelling (33), with different models attempting to quantify

risk of HIV seroconversion among different risk groups

including men-who-have-sex-with-men (MSM), women, and

sero-discordant couples (11, 34–38). Most recently, various

authors have used ML approaches to attempt to quantify the

complex relationships between risk factors that contribute to

HIV risk (12–19). Balzer et al. directly evaluated these three

approaches by comparing traditional risk factors, a risk score

estimated by logistical regression, and an ML model estimated

using the Super Learner algorithm and showed that ML

significantly improved both the efficiency and sensitivity in

identifying HIV seroconversions (12).
ML: model development and
evaluation

Feature selection and model building

The predictor variables used in a ML model are called

features. While the ability to handle higher numbers of features

and learn the complex associations between them is one of the

inherent advantages of ML, in general fewer features reduces

the risks of model overfitting and leads to improved

generalisability of the algorithm (39). Model overfitting is

where a model’s predictions are too finely tuned to the

statistical noise or spurious statistical correlations in the dataset

used to build the model and leads to significant limitations

with generalising the model’s output to new data (40). For this

reason, parsimonious inclusion of features is important. Some

supervised learning algorithms inherently only select the most

predictive features, while for other algorithms this process

needs to be made explicit (41). In addition to careful feature

selection and design, another fundamental component of ML

model building that helps prevent overfitting is the random

splitting of the initial dataset into training, validation, and test

datasets (24). Different models are then developed (trained)

and compared using the validation dataset with the final model

applied to the features of the holdout test dataset to evaluate
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the model’s performance. This explicit separation of data

attempts to select for models that have extracted useful features

that at a minimum generalise across unseen subsets of the

dataset. Variants of this such as a bootstrapping or cross

validation exist with the overall gold standard being the use of

an external dataset for testing (42).

Within HIV, exact risk factors for transmission vary

significantly by population but are typically behavioural and

socio-demographic in nature (43). This has led to such factors

featuring prominently in ML algorithms attempting to estimate

HIV risk (19). The propensity of these features to have complex

and poorly understood interactions has given ML-based

approaches a distinct advantage in adjusting and quantifying

aggregate infection risk but simultaneously introduces particular

risk of overfitting. In addition, a significant challenge with

modelling HIV risk is that incidence varies significantly by

population impacting the prior or baseline probability of

infection. A possible way to manage this challenges across

difference populations is to include geography as a feature either

as a ZIP/postal code (13) or as a longitude, latitude, and

altitude (44). Finally, ML is increasingly used in combination

with other AI techniques such natural language processing to

assist with extracting important features from the narrative text

of electronic health records to further enhance an automated

process of HIV risk prediction (17).
Performance metrics

In contrast to traditional statistics where the primary purpose

is inference, in classification ML the primary focus is on accurate

prediction (24). Given that prediction is the primary concern, the

confusion matrix (Figure 1) is a useful method to assess the
FIGURE 1

Performance metrics calculated from a confusion matrix.
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performance of a given model. To generate a confusion matrix,

the model is applied to the features of the holdout test dataset

and the predicted outcomes (at a set probability threshold) are

compared to the actual outcomes seen in the dataset. From

there the performance metrics of sensitivity, specificity,

accuracy, precision, and negative predictive value are calculated.

However, one of the challenges with the confusion matrix is

the fact the predictions are made at a particular threshold

probability and thus it is difficult to assess what would happen

at different probability cut-offs. In this respect receiver operator

curves (ROCs), and particularly the area under the ROC

(AUROC), provides a useful way of visualising and describing

the trade-off between sensitivity and specificity in a model at

all probability thresholds and is considered among the gold

standard measures of ML model performance when applied to

clinical risk prediction (45). The AUROC is especially relevant

to healthcare applications as the results are not dependent on

the relative prevalence of the outcome.
Understanding the model

ML’s advantage in predictive performance often comes at the

expense of the more typical research goal of interpretability.

A common heuristic in estimating this trade-off is in the

number of parameters a model utilises to make predictions

(46). A simple logistic regression model has a single parameter

per predictive feature whereas large-scale modern deep neural

networks may have several billion (47). This presents a clear

challenge to utilising ML models in practice as it becomes

difficult to trust predictions that are based off unknown

combinations of features, especially with concerns that models

may automatically learn specific biases inherent to the dataset
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(48–50). Interpretable ML is the domain interested in combining

these two paradigms by providing techniques that enable

explanations to be extracted from models several orders of

magnitude more complex than is typically feasible (51).

A method that has gained substantial popularity in recent

years for this task is the Shapley Additive exPlanations (SHAP)

framework (52). These tools utilise an approach rooted in game

theory to provide so called ‘SHAP values’. These values indicate

the influence each predictive feature exerted on the final model

prediction and can be used to gain substantial insight into the

most discriminative features a model may utilise. In addition,

this assists in model trust by enabling an individual to sanity

check the model’s feature attribution in making a final

determination. This decomposition allows for model utilisation

beyond simple prediction, and can be employed to, for example,

provide separate estimates of modifiable and non-modifiable risk

factors despite the use of a more complex model.

The authors have developed a ML model using socio-

demographic and behavioural data collected prospectively with a

digital survey as described in the published protocol (53). The

cohort is described in detail in a manuscript currently under review

and Figure 2 is a sub-analysis of this data presented as a visual

explanation of the potential utility of SHAP-based metrics in

decomposing HIV risk at both an aggregate (Figure 2A) and

individual (Figure 2B) level. Given that the social and behavioural

risk factors for HIV vary by context (43), the relative predictive

value of these features seen in Figure 2 is specific to this cohort

and likely varies across cultures and regions. This underscores the

importance of local validation and fine-tuning of any risk
FIGURE 2

Examples of a SHAP-based feature explanation for a ML model showing (A) o
example individual at high risk for contracting HIV.

Frontiers in Reproductive Health 04
prediction algorithm that utilises socio-behavioural features prior

to deployment emphasises the importance of model decomposition

in understanding the contributors to risk in a given population.

The main limitation of SHAP-based metrics is that while they

provide explanations of how a model reached a particular

prediction, they do not quantify how accurate that prediction is

(52, 54). Multiple methods exist that attempt to determine the

relationship between the inclusion of a variable and overall

model performance. Permutation Importance (PIMP) is one

such tool that attempts to provide a structured approach to

determine variable importance (54). This method randomly

shuffles one column of the dataset at a time for several thousand

iterations, one set with the outcome preserved and another with

the outcome also shuffled. This provides two distributions the

overlap of which provides a measure of significance and scale to

which a variable improves a model. The main challenges with

this methodology are that it can be computationally intensive to

run enough replications and that certain variables may be highly

correlated and may need to be shuffled together to gain an

accurate estimation of importance (54).
Discussion

Modifying the public health response:
community and individual orientated care

A major limitation to the use of ML models in HIV risk

prediction thus far has been the limited interpretability of
verall model risk output for all individuals in the test dataset and (B) an
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these models beyond their predictive capacity. However, we

argue that tools such as PIMP and particularly SHAP allow

these models to have clinical implications beyond simple

prediction. Specifically, these tools allow for the

decomposition of the features that make up “risk” at both an

aggregate level (Figure 2A) and an individual level

(Figure 2B). We believe this can translate into clinical

practice by facilitating more efficient and targeted use of the

interventions currently available.

If a model is appropriately contextualised and locally

validated, a feature decomposition such as that presented in

Figure 2A should provide an overview of the most important

contributors to risk in a given community. In this example,

age, duration since last HIV test, and the number of male

sexual partners appears to convey the largest risk component.

These features can then be considered in terms of modifiable

risk (e.g., low levels of condom usage) or non-modifiable risk

(e.g., high rates of work travel) and the public health response

tailored towards either behaviour change communication or

PrEP as guided by a given population’s overall risk

distribution. Similarly, by identifying specific risks at the

individual level (Figure 2B), one is able to offer directed

counselling and personalised interventions for risk factors that

are most impacting the individual’s chance of contracting

HIV. For example, the major contributors to risk for the

example individual in Figure 2B are non-modifiable and thus

they may well be a good candidate for PrEP and counselling

for this intervention can be directed by the risk profile

generated. By identifying these factors, public health

interventions could be targeted at specific issues rather than

attempting to solve a heterogenous problem with blanket

solutions that are not necessarily applicable to specific

individuals or communities.
Utility in PrEP initiation

PrEP is widely regarded as one of the most effective strategy

in the prevention of HIV transmission (55–57) and has been

shown to be a cost-effective method to address the HIV

epidemic (58). The recent advent of an injectable PrEP

preparation containing cabotegravir heralds much excitement

as the drug persists for long periods in those exposed allowing

long intervals between dosing (56) which is required only

every second month. The ease of administration this enables

promises to alleviate some of the adherence issues faced in

PrEP strategies (56). The agent has recently been approved by

the Federal Drug Administration and is currently under

review by various local agencies including in some LMICs,

providing an opportunity to renew efforts to promote large-

scale global uptake of PrEP.

Much of the current discussion around PrEP strategies

centres around the issue of to whom PrEP should be offered
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(14, 16, 55). Identification of individuals at risk forms the

basis of this discussion. Thus far strategies have directed PrEP

administration at particular population groups such as MSM

or particular geographical regions known to have a high

prevalence of HIV (14), however there is a need to better

identify candidates for PrEP in order to optimize its benefit

(16). Methods in this area have aimed to identify individuals

that would glean the greatest benefit from PrEP

administration by identifying individuals at the greatest risk of

HIV acquisition or seroconversion (14). Recognition of

various individual level data as conferring risk for

seroconversion has been the topic of much literature. These

factors include non-modifiable factors such as age, sex, sexual-

orientation and behaviour, as well as modifiable factors such

as number of sexual partners or condom use (14, 16).

Combinations of various factors of this type have been used

to identify the most at-risk individuals and therefore those

that would benefit most from PrEP. The complex matrix of

data points that arises from analysis of this data is not always

captured by simple calculations of risk. As such, there is

significant benefit to ML as a method to augment the use of

such data (14, 16). These strategies allow the capturing of the

intricate interaction between factors and better identifies

individuals at risk of contracting HIV and seroconverting. By

using these methodologies, the efficient use of PrEP is

increased as its administration is targeted at individuals with a

greater likelihood of contracting HIV.
Future uses of ML in HIV associated
conditions

Given the important interactions between the risk factors

for sexually transmitted infections (STIs) and HIV and ML’s

strength in this area, it is logical to build an integrated tool

that predicts the risk of both conditions. Xu et al. (2022) have

recently built such a tool with a web-based interface that

delivered reasonable predictive performance for HIV

(AUROC = 0.72), syphilis (AUROC = 0.75), gonorrhoea

(AUROC = 0.73), and chlamydia (AUROC = 0.67) (18). Given

the biologically-based increased risk of HIV infection

conferred by STIs (59), as well as the persistent use of

syndromic management in treating STIs in many LMICs (60),

algorithms that incorporate both conditions likely have

significant potential synergies and utility in LMIC settings. In

addition, tuberculosis (TB) is perhaps the most importance

HIV-associated disease as it is estimated be responsible for

around a third of deaths among people living with HIV (61).

ML has been shown to be effective in assisting with both the

screening and diagnosis of TB as well as predicting the risk of

TB drug resistance (62). However, to the best of our

knowledge ML-based TB and HIV risk assessment models

have not yet been integrated into a single tool. While the
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combination of TB and HIV prediction algorithms offers less

potential predictive synergy there is valuable overlap in

possible clinical utility.
Conclusion

As authors, we believe ML as applied to HIV risk prediction

has the potential to make a significant contribution towards

ending the HIV epidemic. Specifically, we see it as a critical

tool in directing testing, behaviour change communication,

and PrEP towards individuals and communities at high risk

of infection in a resource efficient manner. Yet, while these

models have been shown to be scientifically valid there

remain significant barriers to them having a tangible impact.

The most important of these challenges include establishing

the tools for the collection of socio-demographic and

behavioural data, the appropriate contextualisation and local

validation of models, and the successful integration of such

systems into routine HIV prevention services, particularly in

resource constrained LMIC settings.
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