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Background: Gonadal toxicity following chemotherapy is an important issue among the

population of young cancer survivors. The inhibitor of DNA topoisomerase I, irinotecan

(CPT-11), is widely used for several cancer types. However, little is known about the effect

of irinotecan on the fertility of both genders. Thus, the aim of the present study was to

evaluate irinotecan gonadotoxicity, using a mouse model.

Methods: Mature male and female mice were injected intraperitoneally with either saline

(), irinotecan (100 mg/kg) or cyclophosphamide (100 mg/kg); and sacrificed one week or

three months later for an acute or long-term toxicity assessment, respectively. We used

thorough and advanced fertility assessment by already established methods: Gonadal

and epididymal weights, as well as sperm count and sperm motility were determined;

serum anti-Müllerian hormone (AMH) was measured by ELISA. Immunohistochemistry

(Ki-67), immunofluorescence (PCNA, CD34), terminal transferase-mediated deoxyuridine

5-triphosphate nick-end labeling (TUNEL) and computerized analysis were performed to

examine gonadal proliferation, apoptosis and vascularization. qPCR was used to assess

the amount of testicular spermatogonia (Id4 and Gafra1 mRNA) and ovarian primordial

oocytes reserves (Sohlh2, Nobox and Figla mRNA).

Results: Females: Irinotecan administration induced acute ovarian apoptosis and

decreased vascularity, as well as a mild, statistically significant, long-term decrease

in the number of growing follicles, ovarian weight, and ovarian reserve. Males:

Irinotecan administration caused an acute testicular apoptosis and reduced testicular

spermatogenesis, but had no effect on vascularity. Irinotecan induced long-term

decrease of testicular weight, sperm count and testicular spermatogonia and caused

elevated serum AMH.

Conclusion: Our findings imply a mild, though irreversible effect of irinotecan on

mice gonads.

Keywords: fertility, irinotecan, CPT-11, gonadotoxicity, testis, ovary

INTRODUCTION

Irinotecan (7-Ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecin; CPT-11), alone
or in combination with other drugs, has been used clinically, showing high response rates in the
setting of uterine cancer, ovarian cancer, lung cancer, gastric cancer and malignant lymphoma
(1). Irinotecan is a pro-drug, which is bio-activated to 7-ethyl-10-hydroxy-camptothecin (SN-
38) by carboxylesterase, located mainly in the serum of rats and mice and in the liver of
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humans (2). SN-38 is detoxified to SN-38 glucuronide
by the polymorphic enzyme uridine diphosphate
glucuronosyltransferase isoform 1A1 (2). Irinotecan and its
more active derivative, SN-38, is a powerful S phase-specific
inhibitor of DNA topoisomerase I, a key nuclear enzyme
for the relaxation of DNA double helix super-coiling during
replication. Irinotecan shows strong clinical antitumor effects
by antagonizing DNA synthesis and is used widely for cancer
treatment, particularly metastatic colorectal cancer, and for the
treatment of solid tumors (3). Bone marrow suppression, such as
neutropenia and thrombocytopenia, are well known as frequent
severe adverse effects of irinotecan.

Recent advances in cancer treatment have significantly
increased life expectancy, especially for young patients. Several
studies, including ours, suggest possible mechanisms involved
in gonadal-toxicity induced by cancer chemotherapeutic agents
such as vascular toxicity, oxidative toxicity in somatic or
germ cells micro-environment, direct anti-mitotic toxicity and
apoptosis of germ cells or endocrine somatic cells in the testis,
inflammation caused by possible breach of blood follicular
or testicular barrier, chemotherapy-induced signal transduction
leading to dedifferentiation of Sertoli cells or down-regulation of
testosterone secretion by Leydig cells, and burn-out of follicular
reserve by intra-ovarian cascade initiated by the activation
and depletion of growing follicles (4–19). We have previously
demonstrated that different classes of chemotherapeutic drugs
display variable degrees andmodes of gonadal toxicity. Due to the
lack of evidence regarding gonadal effect of irinotecan, we aimed
to evaluate irinotecan in vivo gonadotoxicity in a mouse model.

MATERIALS AND METHODS

Experimental Design in Mice
Mature ICR male and female mice (2 months old; Envigo,
Jerusalem, Israel), five in each group, were housed in air-
conditioned, light-controlled animal facilities of the Sackler
Faculty of Medicine in Tel-Aviv University. Our experience
with ICR strain of mice in anti-cancer treatments and gonadal
toxicity, provided us the knowledge and perspective to assess
the relative severity of irinotecan treatment on the gonads (7,
10–12, 14, 15, 20). ICR mice are one of the most popular
strains of outbred mice used in in pharmacology and oncology
studies. This strain have been used extensively in toxicology
and pharmacology studies and is often used for product safety
testing (21–26). Animal care and all experiments were in
accordance with institutional guidelines and were approved
by the Institutional Animal Care and Use Committee, Sackler
Faculty of Medicine, Tel-Aviv University, ID TAU-R 100106.
Mice were weighted, injected intraperitoneally with either saline,
irinotecan (100 mg/kg; CPT-11; Teva Pharmaceutical Industries,
Petah Tikva, Israel) or cyclophosphamide (100 mg/kg; positive
control for folliculogenesis; Endoxan; Baxter Oncology GmbH,
Halle, Germany). Irinotecan non lethal, but highly effective
treatment was according to Morishita et al. (2) and Lucić
Vrdoljak et al. (27). Cyclophosphamide dose and administration
method were according to Xie et al. (28) and Park et al. (29).
Animals were euthanized with Isoflurane (Pharmal Healthcare,
India) 1 week or 3 months later. Ovaries and testes were

excised, weighed and further processed. Epididymides were also
excised and weighed for assessment of spermatogenesis. Cauda
epididymides were punctured and sperm were allowed to swim
into M2 medium (M-7167; Sigma Chemical, St. Louis, MO,
USA) at 37◦C in 35mm Petri dishes. Sperm concentration and
motility were assessed byMakler counting chamber (SefiMedical
Instruments, Haifa, Israel).

Enzyme-Linked Immunosorbent Assay for
AMH
Blood was drawn from the inferior vena cava of mice. Samples
were centrifuged (6,000 rpm, 10min, 4◦C) and sera were stored
at −80◦C. AMH levels were determined by ELISA AMH gen
II kit (Beckman Coulter, Chaska, MN, USA) according to
the manufacturer’s instructions and served as marker for both
ovarian reserve and testicular toxicity (10).

Immunohistochemistry,
Immunofluorescence, Terminal
Transferase-Mediated Deoxyuridine
5-Triphosphate Nick-End Labeling and
Histomorphometric Computerized Analysis
of Testes and Ovaries
Sections of paraffin-embedded testes and ovaries were processed
for IHC as previously described (11) with the following primary
antibodies: rabbit anti-Ki-67 (1:300; Spring Bioscience, CA,
USA; E1871), rabbit anti-proliferating cell nuclear antigen
(PCNA; 1:100; Santa Cruz Biotechnology, Santa Cruz, CA, USA;
sc-7907) and rat anti-cluster of differentiation (CD34; 1:100;
Cedarlane, Ontario, Canada; CL8927AP). We used Hoechst
33280 (1µg/ml; Sigma Chemical) for DNA staining, mixed
with the following secondary antibodies: HRP-conjugated
donkey anti-rabbit (1:200; Abcam, Cambridge, MA, USA;
ab16284), Alexa-488-conjugated donkey anti-rabbit (1:200;
Abcam; ab150073), Alexa-555-conjugated donkey anti-rat
(1:200; Abcam; ab150154). DNA fragmentation was examined
by TUNEL according to manufacturer’s instructions (Dead End
fluorometric TUNEL system; Promega, Madison, WI, USA).
Saline group sections were exposed for 10min to DNase I (6
units/ml; Invitrogen, Carlsbad, CA, USA). Bright-field images
were recorded by a digital-camera (Canon pc1089 CCD, Tokyo,
Japan) connected to an Axiovert 200M inverted microscope
(Carl Zeiss MicroImaging; Oberkochen, Germany) equipped
with an Apochromat 20X objective. Florescence images were
photographed by LSM-510 confocal laser-scanning microscope
(CLSM; Carl Zeiss MicroImaging) equipped with Plan-Neofluar
25X objective. Offset calibration of the photomultiplier was
performed with sections stained with secondary antibodies
only. Ki-67 staining of tonsil tissue served as positive control
for immunoperoxidase staining. Twenty randomly selected
transverse sections of testes or ovaries of three mice from each
experimental group and from each immunostaining were used
for analysis. The average number of Ki-67 positive cells, PCNA
positive cells, TUNEL positive cells or CD34 positive staining
area for quantifying incidence of blood vessels were automatically
analyzed by Fiji software (National Institutes of Health, Bethesda,
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USA). The average numbers of primordial, primary, secondary
and antral follicles were counted as previously described (20).

Quantitative Real-Time PCR (qPCR)
Mice testicular and ovarian RNAs were isolated and quantified
(14); first-strand cDNA was created by RT (Applied biosystems,
Foster City, CA, USA) in 35 cycles with 0.4µM gene-specific
primers using ready-mixmixture (Sigma Chemical). The amount
of mRNA was assessed by SYBR green reagent (SYBR Green
PCR Master Mix, ABI, Carlsbad, CA, USA) on an ABI Prism
7900 Sequence PCR machine. In each run, 20 ng of cDNA per
reaction were used as an amplification template and the primers
used were as follows: mouse inhibitor of differentiation
4 (Id4) forward 5′ AGGGTGACAGCATTCTCTGC 3′;
mouse Id4 reverse 5′ CCGGTGGCTTGTTTCTCTTA 3′;
mouse GNDF family receptor alpha-1 (Gfra1) forward 5′

GCGTGTGAAGCACTGAAGTC 3′; mouse Gfra1 reverse 5′

GGTTCAGTTCCGACCCAAC 3′; mouse spermatogenesis- and
oogenesis-specific basic helix-loop-helix transcription factor
2 (SOHLH2) forward 5′ TCTCAGCCACATCACAGAGG 3′;
mouse SOHLH2 reverse 5′ GGGGACGCGAGTCTTATACA
3′; mouse newborn ovary homeobox gene (NOBOX)
forward 5′ CATGAAGGGGACCTGAAGAA 3′; mouse
NOBOX reverse 5′ GGAAATCTCATGGCGTTTGT 3′;
mouse factor in the germline alpha (FIGLA) forward
5′ ACAGAGCAGGAAGCCCAGTA 3′; mouse FIGLA
reverse 5′ TGGGTAGCATTTCCCAAGAG 3′. The house-
keeping gene selected for the qPCR calibration was
hypoxanthine-guanine phosphoribosyl transferase (HPRT1)
and the primers used were as follows: HPRT1 forward 5′

CTCATGGACTGATTATGGACAGGAC 3′; mouse HPRT1
reverse 5′ GCAGGTCAGCAAAGAACTTATAGCC 3′. Data
was recorded and analyzed by StepOne 2.1 software (Applied
biosystems, ThermoFisher Scientific, USA).

Statistical Analysis
Quantitative measurements are presented as mean ± standard
error of mean (SEM). Data were evaluated by independent, two-
sample t-test for unequal sample sizes and unequal variances with
significance of P < 0.05. A correlated one-way ANOVA statistical
analysis showed similar results.

RESULTS

Irinotecan-Induced Ovarian Toxicity
We examined the effect of irinotecan on mouse gonads, 1 week
or 3 months after drug administration, for assessment of gonadal
short- and long-term effects, respectively. First, we examined the
effect on several conventional markers of ovarian function and on
ovarian reserve, which are known to be affected by chemotherapy
insult. We used cyclophosphamide, which is considered a
prototype for gonadotoxic chemotherapy, as a reference. Our
findings demonstrate a long-term decrease of ovarian weight
(Figure 1A) and serum AMH level (an indirect indicator
of ovarian reserve; Figure 1B) after irinotecan treatment,
similar to the decrease induced by cyclophosphamide treatment
(Figures 1A,B). Next, we assessed the specific effect of irinotecan
on the morphology, apoptosis and vascularity of ovarian follicles,
by means of immunohistochemistry, immunofluorescence and
TUNEL assay. For these assays we used randomly selected
transverse sections of ovaries from mice in each experimental
group of each staining and of each time points. We used
histomorphometric and automatic computerized analysis of the
acquired images. We did not observe changes in proliferation per
follicles, but a significant change in follicle count. In the following
groups: Saline 1W, 3M, CPT-11-1W, 3M, CTX-1W and CTX-
3M, number of positive Ki-67 cells in antral follicles were 102.5
± 34.2, 96.4 ± 27.3, 110.9 ± 29, 104.6 ± 8, 96 ± 21.14, 103 ±

26.9 (mean ± SEM), respectively; number of positive Ki-67 cells
in secondary follicles were 85.3 ± 25.8, 92.4 ± 23.1, 89.7 ± 26.8,

FIGURE 1 | Irinotecan mild ovarian toxicity. Mature female mice (2 months old) were weighted, injected intraperitoneally with saline, irinotecan (100 mg/kg; CPT-11) or

cyclophosphamide (100 mg/kg; CTX). Mice were sacrificed 1 week (5, 5 and 5 mice, respectively; white bars) or three months (4, 5 and 5 mice, respectively; gray

bars) later. Ovary weight (A) and Serum AMH (B) were measured. Bars are mean ± standard error of mean. (*), significantly different from saline value (P < 0.05).

CPT-11, irinotecan; CTX, cyclophosphamide.
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97.5 ± 30.7, 89.5 ± 31, 79.2 ± 24.6 (mean ± SEM), respectively;
number of positive Ki-67 cells in primordial and primary follicles
were 23.1± 6.5, 25.6± 8, 21.9± 7.3, 26.4± 9.5, 22.5± 7.6, 28.5
± 9.4 (mean ± SEM), respectively. Our findings indicate short-
and long-term decrease in the number of primary and primordial
follicles, 1 week and 3 months after irinotecan treatment,
respectively (Figures 2Ac,d,B). A greater decrease in the number
of primary and primordial follicles was also observed 1 week and
3 months after cyclophosphamide treatment (Figures 2Ae,f,B),
which also caused a significant long-term decrease in the number

of secondary follicles. Neither irinotecan nor cyclophosphamide
affected the total number of antral follicles. Additional qualitative
examination showed that ovaries exhibit less Ki-67 or PCNA
positive proliferating follicles, 3 months after irinotecan or
cyclophosphamide treatment (Figure 2Ad,d’,f,f ’).

To examine whether the irinotecan-induced ovarian and
follicular toxicity is caused by apoptosis or by vascularization
damage, we employed TUNEL assay, as well as immunostaining
and immunofluorescence of CD34, respectively. Our
data demonstrate a similar degree of increased apoptosis

FIGURE 2 | Ovarian follicles, proliferation, apoptosis and vascular state in mice after irinotecan treatment. Mature female mice were treated as described in the legend

of Figure 1. Ovaries were excised from mice 1 week (1W) or 3 months (3M) after treatment, fixed, paraffin-embedded and serially sectioned for immunohistochemistry,

immunofluorescence and terminal transferase-mediated deoxyuridine 5-triphosphate nick-end labeling (TUNEL) assay. (A) Representative bright field images of ovaries

stained with Ki-67 (brown; Aa-f) and representative florescence images of ovaries stained anti-PCNA (green; Aa’-f’), TUNEL (green; Aa”-f”) or CD34 (red; Aa”’-f”’).

Bars = 100µm. Twenty randomly selected transverse sections of ovaries of three mice from each experimental group, each staining and each time point (1 week,

white bars; 3 months, gray bars) were used for automatic analysis by Fiji software. The average amount of primordial and primary (white bars), secondary (gray bars)

and antral (black bars) follicles (B) and the average amount of ovarian TUNEL positive cells/mm2 as a measure of apoptosis (C) and CD34 positive blood vessels/mm2

as a measure of blood vessels vascularity (D) per ovary 1 week (1W) or 3 months (3M) after treatment were measured. Bars are mean ± standard error of mean. (*),

significantly different from saline value (P < 0.05). (**), CPT-11 significantly different from CTX value (P < 0.05). CPT-11, irinotecan; CTX, cyclophosphamide.
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(Figures 2Ac”,e”,C) and of reduced CD34-positive blood
vessels (Figures 2Ac”’,e”’,D), 1 week after irinotecan or
cyclophosphamide administration. Most apoptosis was
found in granulosa follicular cells. Next, we examined the
effect of irinotecan on the ovarian reserve, using quantitative
real-time PCR of mRNA of key genes expressed primarily
in oocytes of primordial follicles: Sohlh2, Nobox and Figla
(direct indicator of ovarian reserve; 13). Our findings show a
significant decrease of all three indicators 1 week and 3 months
after irinotecan administration, with the exception of Nobox 3
months after irinotecan or cyclophosphamide administration
(Figure 3). The observed irreversible effect of irinotecan on

FIGURE 3 | Ovarian reserve in mice after irinotecan treatment. Mature female

mice were treated as described in the legend of Figure 1. Ovaries were

excised from mice 1 week (white bars) or 3 months (gray bars) after treatment

and ovarian SOHLH2 (A), NOBOX (B) and FIGLA (C) mRNAs were measured.

Bars are % of control ± standard error of mean. (*), significantly different from

saline value (P < 0.05). CPT-11, irinotecan; CTX, cyclophosphamide.

loss of ovarian reserve was similar to the effect observed after
cyclophosphamide administration.

Irinotecan-Induced Testicular Toxicity
Our findings demonstrate that irinotecan treatment results in a
moderate long-term effect on the testes, similar to the effect on
the ovaries. Irinotecan administration decreased testicular weight
(Figure 4A) and sperm count (Figure 4C) 3 months after drug
administration. Interestingly, cyclophosphamide administration
resulted in a similar effect on both parameters; but unlike
irinotecan, it also reduced epididymal weight (Figure 4B). Both
drugs had no effect on sperm motility (Figure 4D), but caused
a moderate increase in serum AMH level (Figure 4E). We
assessed the specific effect of irinotecan on testicular function
by examining spermatogenesis, apoptosis and vascularization
using immunohistochemistry, immunofluorescence and
TUNEL assay as well as automatic computerized analysis of
randomly selected testicular sections. Our findings indicated
a transient decrease in markers of proliferation (Ki67 and
PCNA) in the testis 1 week and 3 months after irinotecan
treatment (Figures 5Ac,d,c’,d’,B,C). Irinotecan treatment
caused a transient increase in apoptosis (Figures 5Ac”,D), but
had no effect in the amount of CD-34 positive blood vessels
(Figures 5Ac”’,d”’,E). Apoptosis was found in dividing germ cells
such as spermatogonia and spermatocytes. Cyclophosphamide
treatment displayed similar effect on the abovementioned
parameters, but showed a more significant decrease in Ki-67
level. Positive proliferating cells were almost absent from
seminiferous tubules 3 months after drug administration
(Figures 5Af,B). Finally, we used qPCR to measure mRNA of
transcription factors indicating undifferentiated spermatogonia,
namely Id4 and Gfra1, which serve as markers of testicular
reserve (14). The amount of Id4 decreased significantly 1
week after irinotecan administration (Figure 6A), whereas
the amount of Gfra1 decreased 3 months after irinotecan
administration (Figure 6B). The irreversible effect on
testicular reserve loss was similar to the effect observed after
cyclophosphamide administration.

DISCUSSION

Due to the rising incidence of specific cancer types in
young population, the issue of gonadal effect of anti-cancer
treatments becomes highly relevant for better patient counseling
regarding fertility preservation. Future development is necessary
to minimize gonadal toxicity. The high growth rate of the
germ cell population in testis and somatic cells in ovary
renders the gonads particularly sensitive to chemotherapeutic
drugs whose principal mechanism of action is to impair the
replication ability of cancer cells (1). Irinotecan, a commonly
used chemotherapy is an inhibitor of topoisomerase I, and as
such, impairs cell proliferation. The long-term effect of this
drug on gonadotoxicity and fertility has not been described. In
vitro assay in testicular seminiferous tubules of prepubertal mice
showed that the irinotecan metabolite SN38, at concentrations
that are relevant to cancer patients, reduces germ cell number
and proliferation, whereas it has little if any effect on the
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FIGURE 4 | Irinotecan-mild testicular toxicity. Mature male mice (2 months old) were weighted, injected intraperitoneally with saline, irinotecan (100 mg/kg; CPT-11) or

cyclophosphamide (100 mg/kg; CTX). Mice were sacrificed 1 week (4, 5, and 5 mice, respectively; white bars) or 3 months (4, 5 and 5 mice, respectively; gray bars)

later. Testis weight (A) and epididymis weight (B), epididymal sperm count (C), sperm motility (D) and serum AMH (E) were measured. Bars are mean ± standard

error of mean. (*), significantly different from saline value (P < 0.05).

female germ cell population (30). When mice prepubertal
ovaries were treated with SN38, no effect was observed in
germ cells number, apoptosis or cell proliferation (30). Clinical
results indicate that repeated irinotecan administrations may
frequently induce acute ovarian follicular loss and premature
ovarian failure, even in young women (1). Other studies
showed that irinotecan causes acute granulosa cell-specific
apoptosis partly through Fas ligand interactions in mice ovaries
(1, 31, 32). In accordance with the publications mentioned
above, our findings in the preclinical setting demonstrates,
a mild and partial, but irreversible, long-term decrease of

proliferating follicles, ovarian weight, serum AMH and ovarian
reserve after irinotecan treatment in mice. This effect on
mouse ovary may be the result of acute ovarian apoptosis and
reduction of blood vessels, observed 1 week after irinotecan
treatment (33).

During normal follicular development, the ovary is in a state
of equilibrium. Exposure to ovotoxic agents, disturb this balance
by destroying or removing growing follicles and activating
the PI3K/PTEN/Akt follicle activation pathway. This reduces
the negative suppression of the dormant PMF population,
triggering increased recruitment of primordial follicle, causing
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FIGURE 5 | Testicular proliferation, apoptosis and vascular state in mice after irinotecan treatment. Mature male mice were treated as described in the legend of

Figure 4. Testes were excised from mice 1 week (1W) or 3 months (3M) after treatment, fixed, paraffin-embedded and serially sectioned for immunohistochemistry,

immunofluorescence and TUNEL assay. (A) Representative bright field images of ovaries stained with Ki-67 (brown; Aa-f) and representative florescence images of

ovaries stained anti-PCNA (green; Aa’-f’), TUNEL (green; Aa”-f”) or CD34 (red; Aa”’-f”’). Bars = 100µm. Twenty randomly selected transverse sections of testes of

three mice from each experimental group, from each staining and each time point (1 week, white bars; 3 months, gray bars) were used for automatic analysis by Fiji

software. The average number of Ki-67 (B) and PCNA (C) positive cells per seminiferous tubule were used as a measure of proliferation. The average number of

TUNEL positive cells per seminiferous tubule (D) was used as a measure of apoptosis and the average number of CD34 positive vessels per mm2 (E) was used as a

measure of blood vessels vascularity. Bars are mean ± standard error of mean. (*), significantly different from saline value (P < 0.05). (**), CPT-11 significantly different

from CTX value (P < 0.05). CPT-11, irinotecan; CTX, cyclophosphamide.

the reservoir to burnout (8, 9, 34, 35). Our findings suggest
that burn out is also the mechanism of action of irinotecan
that reduces the number of primordial follicles mainly 3

months after drug administration (long term effect). Our study
indicates that irinotecan treatment resulted in a moderate
long-term effect in mice testes. Irinotecan administration
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FIGURE 6 | Testicular reserve in mice after irinotecan treatment. Mature male

mice were treated as described in the legend of Figure 4. Testes were excised

from mice 1 week (white bars) or 3 months (gray bars) after treatment and

testicular Id4 (A) and Gfra1 (B) mRNA were measured. Bars are % of saline

control ± standard error of mean. (*), significantly different from saline value

(P < 0.05). CPT-11, irinotecan; CTX, cyclophosphamide.

reduced testicular weight, sperm count and testicular reserve
and increased serum AMH, which is considered a surrogate
reciprocal biomarker for testicular toxicity (10). Interestingly,
irinotecan treatment transiently elevated apoptosis in testes and
reduced spermatogenesis, but did not affect the amount of
blood vessels, implying that its testicular toxicity mechanism
of action does not include vascular injury. The reference
cyclophosphamide treatment resulted in a similar moderate
effect in both genders. Stem spermatogonia are damaged by
chemotherapeutic agents at varying degrees and recover only
gradually, resulting in prolonged reductions in sperm count.
Stem spermatogonia cells represent the testicular reserve and
play important part in testicular recovery and repopulation
after induced damage. Several studies showed that the stem
spermatogonia are more sensitive than the differentiating germ
cells to the long-term effects of chemotherapy (36). Anti-cancer
agents as irinotecan and cyclophosphamide, highly affect actively
dividing cells. It has been shown that apoptosis of germ cells is a
major mechanism of testicular damage induced by chemotherapy
(10, 37). Irinotecan derivate, SN38, targeted spermatogonia
in vitro in prepubertal mouse testis, and markedly reduced
germ cells number and increased Sertoli cell-only tubules. The
mechanism of irinotecan-induced gonadotoxicity could include
factors intrinsic to the germ cells or indirect actions via somatic
cells that impair signaling to germ cells, resulting in germ cells

loss. Observations of indirect effects of other chemotherapeutic
agents on spermatogonia proliferation and differentiation via
their effect on testicular specific somatic cells, such as Sertoli
cells, Leydig cells or peritubular myoid cells (30), suggest
that irinotecan may also cause indirect damage to testicular
reserve through its toxicity to these somatic cells. Moreover,
our observation that irinotecan causes vascular damage in the
ovaries, but not in the testes, also strengthens the hypothesis
of distinct mechanisms of irinotecan-induced gonadotoxicity
that are gonad-driven. Vascular toxicity, a major factor of
chemotherapy-induced ovarian toxicity (7, 38) may play an
important part in ovarian irinotecan toxicity. The evolution
of vasculature in the gonads is differential between ovaries
and testes. Whereas, ovaries recruit vasculature by a typical
angiogenic process, testes recruit and patterns vasculature by
a novel remodeling mechanism, beginning with breakdown
of an existing mesonephric vessel followed by individual
endothelial cells that migrate and re-aggregate in the coelomic
domain to form the major testicular artery (39). Furthermore,
physiological function of adult ovary and uterus depends on
neovascularization (39). The use of amilder gonadotoxic regimen
for adjuvant or neoadjuvant chemotherapy may be considered
in young cancer patients with favorable tumor stages who
are in their reproductive years (33). In conclusion, our study
indicates mild ovarian toxicity and moderate testicular toxicity
induced by irinotecan. Further studies are warranted in the
clinical setting to validate current findings for tailored patient
counseling for infertility risks and fertility preservation in
cancer patients.
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