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Introduction: Homocysteine (Hcy) is a cellular poison, side product of the
hydrolysis of S-Adenosyl Homocysteine, produced after the universal
methylation effector S -Adenosylmethionine liberates a methyl group to
recipient targets. It inhibits the methylation processes and its rising is associated
with multiple disease states and ultimately is both a cause and a consequence
of oxidative stress, affecting male gametogenesis. We have determined hyper
homocysteinhemia (HHcy) levels can be reliably reduced in hypofertile patients
in order to decrease/avoid associated epigenetic problems and protect the
health of future children, in consideration of the fact that treatment with high
doses of folic acid is inappropriate.
Methods: Homocysteine levels were screened in male patients consulting for
long-standing infertility associated with at least three failed Assisted
Reproductive Technology (ART) attempts and/or repeat miscarriages. Seventy-
seven patients with Hcy levels > 15 µM were treated for three months with a
combination of micronutrients including 5- MethylTetraHydroFolate (5-MTHF),
the compound downstream to the MTHFR enzyme, to support the one carbon
cycle; re-testing was performed at the end of a 3 months treatment period.
Genetic status for Methylenetetrahydrofolate Reductase (MTHFR) Single
nucleotide polymorphisms (SNPs) 677CT (c.6777C > T) and 1298AC (c.1298A > C)
was determined.
Results: Micronutrients/5-MTHF were highly efficient in decreasing circulating
Hcy, from averages 27.4 to 10.7 µM, with a mean observed decrease of 16.7 µM.
The MTHFR SNP 677TT (homozygous form) and combined heterozygous
677CT/1298AC status represent 77.9% of the patients with elevated Hcy.
Discussion: Estimation HHcy should not be overlooked in men suffering infertility
of long duration. MTHFR SNPs, especially 677TT, are a major cause of high
homocysteinhemia (HHcy). In these hypofertile patients, treatment with
micronutrients including 5-MTHF reduces Hcy and even allows spontaneous
pregnancies post treatment. This type of therapy should be considered in order
to ensure these patients’ quality of life and avoid future epigenetic problems in
their descendants.
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Introduction

Homocysteine (Hcy) is a cellular poison that accumulates from

hydrolysis of S-Adenosyl Homocysteine, produced after the

universal methylation effector S -AdenosylMethionine liberates a

methyl group to recipient targets. Elevated Hcy is associated with

multiple disease states (1, 2) and ultimately is both a cause and a

consequence of oxidative stress (3). It must be recycled to

methionine via the One-Carbon Metabolism (OCM, Figure 1) by

re-methylation from either of 5-Methyltetrahydrofolate (5-MTHF),

resulting from the folates cycle, or from betaine, resulting from

choline oxidation in mitochondria. These pathways are subject to

numerous polymorphisms that affect their efficiency, the most

common being those that affect the MTHFR (Methylene

TetraHydroFolate Reductase) enzyme. This enzyme catalyses

formation of 5MTHF, the final methyl donor that allows

generation of methionine via Methionine Synthase (MS).

Homocysteine can also be converted to cysteine via the

Cystathionine beta synthase (CBS) pathway. This alleviates the

HHcy burden, but jeopardizes the cell’s methylation capacity, in

particular DNA and histone methylation, resulting in

hypomethylation and DNA instability (4–6). Hcy elevation is

greater in men than in women, essentially due to androgen

inhibition of the CBS pathway and its stimulation by estrogen (7)

In terms of fertility, Hcy is related to sperm quality via generation

of oxidative stress (8); however, perhaps even more importantly, it
FIGURE 1

The one carbon and the folate cycles; indicating the MTHFR bottleneck and the
doses when excessive unmetabolized metabolite is present upstream from MT
and at the level of MTHFR itself]. A further negative effect occurs due to
(UnMetabolized folic acid).
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inhibits methylation processes (9), known to be regulators of

sperm fertility potential/developmental capacity (10–13). As a

consequence, there is a risk of transmitting problems associated

with epigenetics/imprinting (14–17). Patients affected by MTHFR

Single nucleotide polymorphisms (MTHFR SNPs), especially

A1298C and C677T, have a reduced capacity to generate 5-MTHF,

thus leading to accumulation of Hcy. This has a significant effect

on fertility (6, 18–20), either due to decreased enzyme activity

directly or in relation to Hcy elevation. Several molecules have

been proposed/tested (21) in order to overcome methylation

problems and associated epigenetic risks. Treatment with high

doses of folic acid is not suitable, as this causes deterioration in

the sperm methylation profile (22, 23): folic acid has poor

metabolic capacity (4), leading to accumulation of unmetabolized

folic acid (UMFA) upstream from MTHFR, with a negative

impact on metabolic capacity of the enzyme. It also saturates the

receptors for MTHF, the natural product in food, preventing its

entry into cells (24, 25). Folinic acid lies upstream from MTHFR

and may also accumulate. 5-MTHF, located downstream from the

MTHFR enzyme, is the natural molecule that allows methionine

to be regenerated from Hcy. In the present study, 77 male patients

consulting for infertility of long duration and showing high levels

of Hcy [>15 micromolar] were treated for three months with a

full dose of 5-MTHF complemented with other micronutrients in

support of the pathway and then tested again for Hcy levels. Their

MTHFR SNP status was also recorded.
two severe Michaelis and Menten effects induced by folic acid (FA) at high
HFR: at the level of DHFR (DiHydrofolate reductase) [Bailey and Ayling (4),
saturation of the solute carrier for the natural folate 5MTHF by UMFA
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Materials and methods

Ethical considerations

In our units, testing for Hcy and MTHFR SNPs has been

standard practice for patients with a history of ART (Assisted

Reproductive technology) failures and recurrent miscarriage since

2019. The study follows classical ethics guidelines recommended

by the French “Agence de BioMedecine” in accordance with the

Declaration of Helsinki; no specific approval is required, but all of

the tests must be prescribed for patients seeking fertility

treatments by certified andrologist, endocrinologist or obstetrician/

gynaecologist. The test must be performed in licensed laboratories

with additional license for genetic testing. Informed patient

consent must be co-signed by the patient, the clinician and the

laboratory. Testing for the purpose of building a control group in

a fertile population is not permitted. Patients may decline testing.

Based upon our first preliminary data as well as scientific

literature, we recommended testing for both partners (19, 20, 26).
Patients and treatments

Homocysteine levelsweremeasured in 77male patients consulting

for long-lasting infertility associated with three failed ART attempts

and/or repeat miscarriages referring to the participating clinics

during the last 18 months. Patients with HHcy were offered a

nutritional support containing a full dose of 5-MTHF (400 µg) and

physiologic amounts of the other two physiologic methyl donors,

methyl cobalamin and betaine. The supplements also contained

other essential co-factors for the pathway, namely vitamin B2, B3

and B6, conjugated zinc and a cysteine donor (ImprylTM

Parthenogen, Switzerland; TetrafolicTM, Nurilia, France). Hcy is

tested 3 months after the beginning of treatment, then patients can

enter ART attempts under nutritional support.
TABLE 1 Variations in circulating homocysteine, post treatment with 5
MethylFolate associated with a support of the one carbon cycle in 77
patients.

Homocysteine (µM) Mean SD
Before treatment 27.4 16.7

Post treatment 10.7 3.1

Overall decrease observed 16.7 (−61%)
Genetic testing

The techniques have been previously described (27, 28). Tests are

carried out on 5 µl venous blood samples, using the LAMP human

MTHFR mutation kit (LaCAR, MDx, Belgium; https://www.

lacar-mdx.com/kit/thrombophilic-profile/mthfr-c677t; https://www.

lacar-mdx.com/kit/thrombophilic-profile/mthfr-a1298c) based on

selective hybridization. Six specific primers covering the locus of

the mutation are used for the 677CT SNP. The same protocol

was applied for 1298AC SNP, with the same number of specific

primers covering the mutation region. Two loop primers are

used in both, and the probes used simultaneously amplify the wild

type gene. The results were evaluated by comparing the curves

obtained by fluorescence: Optic source, 470 and 590 nm dual color

led with high quality interference filter (band pass 40 nm);

detection optics: photodiodes with HQ interference filters (510–

560 nm long pass, 620 nm long pass) The percentage of each SNP

status was recorded.
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Homocysteine

The protocol has been previously described. Briefly: fasting blood

samples were collected in the morning, and serum Hcy measured

using the ViTROS® kit (Ortho Clinical diagnostic Vienna), which

allows determination of homocysteine and homocysteine. After a

first reduction step homocysteine is then transformed into

cystathionine in the presence of cystathionine beta synthase (CBS).

Cystathionine is then hydrolyzed and form Hcy, ammonia, and

pyruvate. The reduction of Pyruvate to lactate, by lactic acid

dehydrogenase is proportional to all the homocysteine is

proportional to all the homocysteine present, and is quantified by

the amount of NAD+ produced (measured by spectrophotometry at

340 nm) The assay is linear from 1 to 90 µM-homocysteine. There is

no real consensus for minimal Hcy cut-off values (10 to 15 µM). We

chose a level of 15 μmoles/L as the cut-off for increased risk.
Statistics

The paired t-test was used to determine the difference between

the same variable (Hcy) in the same sample of patients before and

after treatments (Chi consulting® program).
Results

Seventy-seven patients were diagnosed high Hcy and were

prescribed the treatment. Circulating Hcy levels decreased post-

treatment from an average 27.4 µM [SD: 16.7; range 15.2–112,3]

to 10.7 µM [SD: 3.1; range 4.2–18.3] with a mean drop of 16 µM

(t = 9.2 p: over 10−10) (Table 1). The homocysteine level

decreased in all the patients assuming the supplement (Figure 2).

The distribution of MTHFR SNPs is illustrated in Figure 3:

677TT: 58.4%, 677CT: 9.1%, Combined Heterozygoty (combo)

677CT/1298AC: 19.5%; 1298AC and 1298CC both at 3.9% and

5.2% for the wild type patients. The prevalence of the 677 T

mutated allele (patients having at least one 677 T mutated allele)

reaches 87%. HHcy decreased from 32.2 to 10.3 µM for the

homozygous 677TT patients and from 20.4 to 10.4 µM in the

combo 1298AC/677CT patients.
Patient follow up

Results are available for 67 patients; some are waiting for or

entering IVF/ICSI programs. Our preliminary results include 15
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FIGURE 2

Individual variations of the Hcy concentrations in blood (µM), before (blue) and after (orange) treatment.

FIGURE 3

Distribution of 677CT and 1298AC combinations in our population, men with HHcy >15 µM). Combo: double Heterozygoty 677CT/1298AC; WT: wild type
patients 677CC/1298AA, no mutation.
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pregnancies/deliveries, 22%; eight of the pregnancies occurred

spontaneously and two resulted in miscarriage.
Discussion and conclusions

Five major conclusions can be drawn.

1. HHcy in hypofertile males is not “anecdotic” (8, 27). Hcy is

well-known to induce pathology, including cancers (29),

cardiovascular disease (30), dementia (31), and with an

impact on health in general (1, 2). Its role in infertility with

respect to the female gamete is well documented (32–34). In

men, a direct correlation between Hcy and hypofertility is

starting to be recognized (8). Homocysteine and SAH are

both strong inhibitors of methylation. Differently from

women for whom major methylation occurs during the final

stages of follicular growth and oocyte maturation, the final

steps of sperm maturation need continuous methylation

support (14, 15, 35–37). The negative impact on methylation

is also explained by the competition of met and Hcy on the

same transporter leading to a decreased methylation index (38)

2. The secondary impact of Hcy involves its causal effect on

oxidative stress “Homocysteine: cause and consequence of

Oxidative stress” (3), this is especially true in men, as male

hormones inhibit the CBS pathway (see Figure 1) that

generates cysteine from Hcy, subsequently allowing

glutathione synthesis. Amongst other associations, this

provides a link between methylation defects and oxidative

stress in sperm (10, 11). Hcy and cysteine competes also on

the same transporters (38).

3. The HHcy in our patients is largely dependent upon the

MTHFR SNP 677CT, carried by more than 85% of them,

which is in agreement with scientific literature related to

cardiovascular and psychiatric disorders. This vouches for

5MTHF as the key player in the positive effect from our

treatment. However, we decreased homocysteine also in ten

patients not carrying the 677CT variant (4 of them wild

type), from 19.4 µM to 12.1 µM for (significant, p < 0.0001).

These patients are likely carriers of other genetic weaknesses

not tested in the present study and affecting other genes of

the pathway, whose SNPs may as well occur in double digit

prevalence (37) Our results, i.e. 100% response rate, are

backed by those from Schiuma et al. (39) they tested the

same treatment in women with PCOS and reported decrease

of circulating homocysteine in all the exposed patients. On

this basis, although 5MTHF seems to play a major role, the

availability of a full support to all the 3 pathways for

homocysteine removal provided by the treatment may give

advantages over plain folate administration by enlarging the

rate of responding patients. Moreover, the association of

vitamin B12, in its soluble and active methylated form, is of

particular relevance, say mandatory, to avoid the so-called

folate trap: Briefly, without B12, 5MTHF is not able to

release the methyl group to homocysteine, accumulates and

does not generate THF, essential for the synthesis of nucleic
Frontiers in Reproductive Health 05
acids (necessary for DNA repair activity), leading to

macrocytic anemia.

4. Homocysteine also has toxic effects on mitochondria, at least in

part due to its competition with methionine (40–42), but also to

its generation of oxidative stress (3) Mitochondrial is the main

effector of energy metabolism drastically involved in sperm

motility and vitality; Low Hcy regulation during spermatogenesis

is mandatory. However paternal mitochondria are rapidly

degraded in the oocyte/early embryo, by autophagy/allophagy,

post fertilization.

5. 5-MTHF is a potent and efficient means of decreasing Hcy; this

is reinforced by the fact that spontaneous pregnancies/

deliveries (>10%) can be achieved post treatment. However,

safety is another concern with these treatments, especially if

long lasting treatments are in place. Noteworthy, we achieved

homocysteine reduction in all our patients by using

physiological doses of 5-MTHF, which is a clear-cut

advantage compared to the administration of high doses of

Folic acid (FA). Indeed, FA has a weak capacity to be

metabolized to the physiologic, soluble and active methylated

form because requiring a double reduction by DHFR (see

Figure 1) and results in the occurrence in circulation of

unmetabolized folic acid (UMFA: UMFA syndrome) (4).

Excess of FA/UMFA creates negative feedback in the activity

of the folate cycle, due to a Michaelis and Menten effect,

linked to substrate overloading. It may also lead to saturation

of the folate receptor SLC 19A1, which then impairs entry of

the “natural” folate MTHF from food intake. As a matter of

fact, high doses of FA may mimic a syndrome of total folate

deprivation (21, 25, 43, 44), potentially jeopardizing the

quality/stability of the germ line (24, 45): the negative impact

of FA excess on sperm methylation has been described,

which may impact the epigenetic programming of gametes,

especially in carriers of MTHFR SNPs (22, 23). 5-

Methyltetrahydrofolate does not induce UMFA syndrome

(46). However, the “normality” of sperm methylation profile

is still to be determined and may vary with epigenetic

modifications linked to environment.

The Rotterdam Periconception Cohort (26) recently

recommended that both partners in a couple seeking

pregnancy should be tested for homocysteine levels. Our

work is in complete agreement with this strategy. In those

with increased homocysteine, 5 MTHF should be

recommended in order to achieve full efficacy and to avoid

metabolic and epigenetic perturbations, thus protecting the

health of future generations. The association to 5MTHF of

(methyl)B12 and of other micronutrients in support to the

pathway is likely to increase the efficacy, to enlarge the rate

of responding patients and to avoid safety issues including

the folate trap syndrome.
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