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The Kibble-Zurek mechanism (KZM) captures the essential physics of

nonequilibrium quantum phase transitions with symmetry breaking. KZM

predicts a universal scaling power law for the defect density which is fully

determined by the system’s critical exponents at equilibrium and the quenching

rate. We experimentally tested the KZM for the simplest quantum case, a single

qubit under the Landau-Zener evolution, on an open access IBM quantum

computer (IBM-Q). We find that for this simple one-qubit model, experimental

data validates the central KZM assumption of the adiabatic-impulse

approximation for a well isolated qubit. Furthermore, we report on extensive

IBM-Q experiments on individual qubits embedded in different circuit

environments and topologies, separately elucidating the role of crosstalk

between qubits and the increasing decoherence effects associated with the

quantum circuit depth on the KZM predictions. Our results strongly suggest that

increasing circuit depth acts as a decoherence source, producing a rapid

deviation of experimental data from theoretical unitary predictions.
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Characterizing the non-equilibrium dynamics in noisy intermediate-scale quantum

(NISQ) devices plays an important role in developing both hardware and architecture

designs in the search for scalable quantum computers. NISQ devices have recently

attracted tremendous interest, resulting in rapid progress in fundamental studies of novel

hardware and architecture together with promising potential for quantum computing

(Preskill, 2018; Bharti et al., 2022). For example, advancements in NISQ devices

demonstrate a “quantum advantage” in solving sampling problems (Arute et al., 2019;

Zhong et al., 2020; Mooney et al., 2021). To further improve quantum advantage, it is

desirable that devices show important features such as high-fidelity gates, qubits with long

coherence times, control of state preparation and measurement. (Flammia and Liu, 2011;

da Silva et al., 2011; Proctor et al., 2019). Open-access/online NISQ devices have recently

become readily available, such as those provided publicly by the IBM Quantum

Experience platform (IBM-Corporation, 2022), showing a significant improvement in

the last few years. Despite suffering from noise and scalability limitations, this platform
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offers a unique possibility to experiment with actual few qubit

quantum devices in order to carry out a rigorous study of

dynamical quantum properties in different settings along the

real time-dynamics of quantum hardware. A key feature of merit

in the current NISQ regime is the ability to simulate non-

equilibrium quantum dynamics. The Kibble-Zurek mechanism

(KZM) (Kibble, 1976; Kibble, 1980; Zurek, 1985; Zurek, 1993) is a

prominent paradigm to unravel signatures of universal dynamics

in the scenario of a finite-rate spontaneous symmetry breaking.

The KZM predicts the production of topological defects (kinks,

vortices, strings) or in general, non-equilibrium excitations (in

both short- and large-ranged interacting systems) in the course of

either quantum (Dziarmaga, 2005; Zurek et al., 2005; Acevedo

et al., 2014) or classical (Kibble, 1980; Zurek, 1985) phase

transitions. The key result of KZM is concerned with the fact

that the mean value of density of topological defects scales as a

power law of the quench rate. Furthermore, new evidence of

scaling in the high-order cumulants has also been recently shown

(Del Campo, 2018; Gómez-Ruiz et al., 2020). These theoretical

predictions have been observed in various experimental

platforms such as Bose Gas (Goo et al., 2021), trapped ions

(Cui et al., 2020), quantum annealer (Bando et al., 2020; King

et al., 2022), Bose-Einstein Condensate (Damski and Zurek,

2007; Anquez et al., 2016) and Rydberg atoms (Keesling et al.,

2019).

Damski et al. (Damski, 2005; Damski and Zurek, 2006;

Cucchietti et al., 2007) established a close relationship

between second order quantum phase transitions and avoided

level crossing evolutions, thus establishing the Landau-Zener

(LZ) model itself as the simplest paradigmatic scenario for

probing KZM (Landau, 1932a; Landau, 1932b; Majorana,

1932; Stückelberg, 1932; Zener and Fowler, 1932). The density

of topological defects can be expressed as a transition probability

for a two-level system. Therefore, this relationship can be tested

in generic single qubit platforms. This relationship has been

probed by using optical interferometry (Xu et al., 2014),

superconducting qubits (Wang et al., 2014; Gong et al., 2016)

and trapped ion systems (Cui et al., 2016).

IBM-Q currently grants access up to 5-qubit quantum

machines based on superconducting transmon qubits which

are controllable using Qiskit, an open-source software

development kit (Aleksandrowicz et al., 2019; Andersson

et al., 2020). These machines have been successfully utilized in

simulating spin models (Cervera-Lierta, 2018; Rodriguez-Vega

et al., 2022), topological fermionic models (Koh et al., 2022),

quantum entanglement (Choo et al., 2018; Wang et al., 2018;

Cruz et al., 2019; Mooney et al., 2019; Pozzobom and Maziero,

2019), far-from-equilibrium dynamics (Zhukov et al., 2018),

non-equilibrium quantum thermodynamics (Gherardini et al.,

2021; Solfanelli et al., 2021), open-quantum systems (García-

Pérez et al., 2020), among others. One of the future advantages of

IBM-Q is the possibility to do simulation of quantum systems

beyond the maximum limits of classical computer over a wide

range of parameters. In this work, we test the KZM adiabatic-

impulse assumption on the simplest, but important case of a

single qubit (LZ model), through experiments on the Qiskit

(Andersson et al., 2020) simulator and real quantum

hardware, establishing the limits required to obtain accurate

results in each case. We successfully reproduced the LZ

dynamics under a discrete time evolution in current IBM

quantum devices which can provide information about

dynamics state evolution given that error mitigation

procedures were implemented. Additionally, noticeable effects

of decoherence are observed and explained by a simple

phenomenological model of relaxation and dephasing for

open quantum systems. Furthermore, analysis and estimation

of the experimental asymptotic probability allows us to verify the

universal KZM in a timescale appropriate for an almost closed

system under an adiabatic quench regime. In summary, the key

achievement of this work has been the validation of a central

premise of KZM through a protocol to characterize and obtain an

effective time-dependent dynamics on IBM realistic quantum

computers. For reaching such goal we performed LZ evolution

under different annealing times, maintaining a fixed number of

total gates, a basic benchmark procedure on quantum critical

phenomena in near term quantum computers.

This paper is organized as follows. A brief review on KZM,

the LZmodel and its close connection with KZM are presented in

Sect. 1. In Sect. 2 we present the experimental platform. The

contrast between theoretical predictions and experimental results

is collected in Sect. 3. Finally, we summarize the main

conclusions in Sect. 4.

1 Theoretical background

1.1 Brief review of the Kibble-Zurek
Mechanism

The KZM describes the dynamics of a system across a

continuous symmetry breaking second-order phase transition

induced by the change of a control parameter λ. When the system

is driven through the critical point λc, both the correlation length

ξ and reaction time τ diverge as

ξ � ξ0 ϵ| |−], τ � τ0 ϵ| |−z]. (1)
where, ϵ � (λ − λc)/λ marks the separation from the critical point.

The spatial and dynamic equilibrium critical exponents are given by ]
and z, respectively, while the mesoscopic behavior of the system is

contained in the dimensional constants ξ0 and τ0. If the quench varies

linearly in time, ϵ(t) � t/ta, where ta denotes a quench or annealing

time scale, the system reaches the critical point at t = 0. Therefore, the

equilibrium effective reaction time diverges as Eq. 1. This

phenomenon is known as critical slowing down and can be used

to describe the time evolution across a phase transition as a sequence

of three stages. Initially, the system is prepared in the high symmetry
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phase from which it evolves within an adiabatic evolution stage.

Secondly, the evolution enters an impulse stage in the neighborhood

of the phase transition where the system is effectively frozen. Finally,

when the system is far away from the critical point, the dynamics are

adiabatic again. These three regimes are schematically represented in

Figure 1A. The three regions are separated by two points marked as

−t̂KZM and t̂KZM, in such a way that the freeze-out occurs at the

instant t̂KZM ~ (τ0tz]a )1/1+z]. The main point of the KZM argument

is that the size average or correlation length, ξ̂, of domains in the

broken symmetry phase is set by the equilibrium correlation length

evaluated at the freeze-out time. Therefore, the density of excitations

resulting from quench evolution scales as ρ ~ ξ̂
−D

and goes as

ρKZM ~
1
ξ0

τ0
ta

( ) D]
1+z]

, (2)

where D is the dimensionality of the system. This result was initially

derived in the classical domain (Kibble, 1980; Zurek, 1985) and

subsequently extended to quantum systems (Dziarmaga, 2005; Zurek

et al., 2005). Additionally, the KZM has also been extended to novel

scenarios including long-range interactions (Acevedo et al., 2014;

Puebla et al., 2019; Puebla et al., 2020), inhomogeneous systems

(Collura and Karevski, 2010; Dziarmaga and Rams, 2010; Gómez-

Ruiz and del Campo, 2019) and nonlinear quenches (Barankov and

Polkovnikov, 2008; Sen et al., 2008).

1.2 Landau-Zener model

Consider a two-level system, with gap Δ, described by the

time-dependent Hamiltonian (Z � 1)

Ĥ t( ) � −ε t( )
2

σ̂z − Δ
2
σ̂x. (3)

With σ̂n the Pauli matrix along the n ∈ x,y, z{ } direction.We define

the diabatic states as the Hamiltonian eigenvectors when Δ = 0 and

consequently eigenvectors for the Pauli operator σ̂z: σ̂z|0〉 � +1|0〉
and σ̂z|1〉 � −1|1〉. The respective (diabatic) energy levels are

E0,1 � ∓ ε(t)/2. Now, the adiabatic instantaneous eigenvalues

E±(t) and eigenstates |E±(t)〉 are solutions of

Ĥ(t)|E±(t)〉 � E±(t)|E±(t)〉. The instantaneous gap energy is

given by ΔE � E+ − E− � ��������
ε2(t) + Δ2

√
(for more details see Ref.

(Ivakhnenko et al., 2022)). In the main panel of Figure 1B, we

depicted the inverse of the energy gap as a function of time while the

instantaneous adiabatic eigenvalues are shown as an inset in the

Figure 1B. The eigenstates are written as a linear combination of the

diabatic states as |ψ(t)〉 � α(t)|0〉 + β(t)|1〉. By solving the

corresponding eigenequation in terms of parabolic cylinder

functions Dp(z), and using the substitution z � t exp[iπ/4]/ ��
ta

√
,

we obtain the transition amplitudes

α z( ) � e−i
3π
4�
δ

√ δχ1D−1−iδ z( ) + χ2Diδ iz( )[ ],
β z( ) � χ1D−iδ z( ) + χ2D−1+iδ iz( ).

(4)

where δ = Δ2ta/4 is the adiabaticity parameter. Moreover, χ1 and χ2
are found from the initial condition at z = zi (see the section:

Supplementary Data for details of the calculations and derivations):

χ1 �
ei

3π
4

�
δ

√
D−1+iδ izi( )α zi( ) −Diδ izi( )β zi( )

δD−1−iδ zi( )D−1+iδ izi( ) −D−iδ zi( )Diδ izi( ),

χ2 �
−ei3π4 �

δ
√

D−iδ zi( )α zi( ) + δD−1−iδ zi( )β zi( )
δD−1−iδ zi( )D−1+iδ izi( ) −D−iδ zi( )Diδ izi( ).

(5)

Notice that, Eqs 4, 5 are valid for any arbitrary initial condition

and final time t. For the experimental implementation discussed

below, we are interested in studying the system’s evolution from

an initial state starting in the anticrossing point at t = 0. In the

FIGURE 1
Connection between KZM and avoided level crossing in a LZ transition. (A) In a continuous second order phase transition, the reaction time
diverges near the critical point. The KZM approximation takes into account the total dynamics divided in three stages (adiabatic, impulse and
adiabatic) represented by the graduated yellow-dark red-yellow colors and separated by the freeze out-time t̂KZM. (B) The inverse of the energy gap
in LZ exhibits a similar behavior of the reaction time. However, it is not divergent at the crossing point. Similarly, we divided the LZ dynamics in
the same three KZM regimes and separated by the Landau-Zener jump time t̂LZ. Inset: Avoided level crossing LZ.
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section: Supplementary Data, the formal solutions for this

particular initial condition are summarized.

1.3 Connection between the KZM and LZ
evolution

Here we demonstrate how we can implement a controllable

evolution using an IBM-Q quantum simulation, in close analogy to

the topological defect formation in KZM. Following the seminal

arguments exposed in Ref. (Damski, 2005; Damski and Zurek, 2006),

topological defects can be built into the LZmodel by being associated

to the diabatic states. Consider one of the states, such as |0〉, to be a
topologically defected phase and |1〉 a defect-free phase. For example,

in the case of vortices, state |0〉 may be an eigenstate of the angular

momentum operator L̂z|0〉 � n|0〉, while L̂z|1〉 � 0. In this

scenario, Damski introduces the normalized density of topological

defects as the average angular momentum

ρKZM � 1
n
〈ψ

∣∣∣∣L̂z ψ
∣∣∣∣ 〉 � 〈ψ|0〉∣∣∣∣ ∣∣∣∣2. (6)

Then, a system evolving in time under the LZ model can be used

to study transitions between the phases through the probabilities

of the diabatic states. The similarity between the reaction time of

a second order phase transition and the inverse of energy gap in

the LZ Hamiltonian is shown in Figure 1B. In analogy with the

KZM, this suggests that the adiabatic-impulse-adiabatic

approximation (AI) may be used to estimate the asymptotic

probability when the system traverses the avoided level crossing,

thus elucidating the link between the KZM and LZ evolution.

We divided the dynamics through the anti-crossing into

three stages like the AI scenario for KZM. Without loss of

generality, we assume that the system starts at ti → −∞ from

the ground state |E−〉, and then it evolves to tf →∞. We define a

natural time scale given by the inverse of the energy gap

1

E+ t̂LZ( ) − E− t̂LZ( ) � ηt̂LZ, (7)

where E±(t) are the adiabatic energy eigenvalues at time t � t̂LZ
and η is a constant. Using Eq. 3, we obtain

t̂LZ
ta

� Δ�
2

√
��������������������������
1 + 4

Δ2ηta( )2√
− 1

√√
. (8)

The AI assumes that the evolution wave function |ψ(t)〉 of

the system satisfies:

• Adiabatic dynamics: from ti = −∞ to t � −t̂LZ

ψ t( )∣∣∣∣ 〉 ≈ eiΦ1 E− t( )| 〉.

• Impulse dynamics: from t � −t̂LZ to t � t̂LZ

ψ t( )∣∣∣∣ 〉 ≈ eiΦ2 E− −t̂LZ( )∣∣∣∣ 〉.

• Adiabatic dynamics: from t � t̂LZ to tf = ∞
〈ψ t( ) E− t( )| 〉
∣∣∣∣ ∣∣∣∣2 ≈ A.

Where Φ1, Φ2 are global phases, and A is a constant.

Following the AI, Damski in Refs (Damski, 2005; Damski and

Zurek, 2006). reported the probability of finding the LZ system in

the excited state at tf≫ tLZ, a calculation we briefly summarize for

the sake of completeness in view of our main experimental in

terest.

From now on, we focus on the LZ dynamics for the evolution

starting in the ground state at the anticrossing point. The initial

state at t = 0 is then expressed as |E−(0)〉 � (|1〉 − |0〉)/ �
2

√
, and

consequently the transition probability PAI �
|〈E+(t̂LZ)|E−(0)〉|2 is given by (Damski, 2005; Damski and

Zurek, 2006)

PAI � 1
2

1 − 1�����
1 + ε̂2

√( )
� 1
2
− 1
2

��������������������������
1 − 2

ηta( )2 + ηta

��������
ηta( )2 + 4

√
+ 2

√√
. (9)

Where we have fixed the two-level system gap to Δ = 1.

Additionally, ε̂ � ε(t̂LZ) is the linear bias at time t � t̂LZ.

Expanding Eq. 9 into aseries of
��
ta

√
, we obtained (Damski,

2005; Damski and Zurek, 2006)

PAI � 1
2
−

�
η

√
2
t1/2a + η

�
η

√
8

t3/2a +O t5/2a( ). (10)

which will be relevant for testing the predictions of the universal

AI for KZM below.

2 Experimental IBM-Q platform

We implemented our experimental studies in two topologies or

processors types. Figure 2A shows the device layout for the IBMQ 5-

qubit ibmq_bogota (Falcon r5.11L topology QC1) and ibmq_lima

(Falcon r4T topology QC2). The topology of the device determines

the possible placement of two-qubit gates. The qubits are furthermore

prone to decoherence, thereby requiring several runs of the

experiment to make up for statistical errors. We measure the LZ,

and concomitant KZM relation, for each one of the IBM-Q

transmons in QC1 and QC2. Each transmon plays the role of a

qubit, evolving with its own dynamics, experimentally showing the

effects of decoherence on the hardware. Generally, the physical

transmon type qubits of the same machine offer a variety of

properties that describe the quality of the qubit, such as thermal

relaxation time (T1), dephasing time (T2), anharmonicity, and error

properties detailed in the section: Supplementary Data, allowing us to
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compare the simulation’s performance with different physical

parameters. In Figure 2A, the times T1 and T2 are depicted for

each considered circuit topology at two different dates, illustrating in

a graphical way how these times change every time that IBM

performed a calibration of every device.

3 Results

3.1 Simulation of the Landau-Zener
evolution on IBM-Q

Unitary dynamics.– We are interested in the experimental

determination, and respective simulation, on a digital open-access

IBM-Q of a single qubit evolution under a linearly time-dependent

Hamiltonian (LZ problem). At time ti, a qubit in the processor is

initialized in the state |ψ(ti)〉 � Ûn̂(θ)|0〉, where Ûn(θ) �
cos[θ/2]Î − iσ̂n sin[θ/2] is a unitary rotation along the axis

n ∈ x,y, z{ } with σ̂n the usual Pauli matrix along the n-direction.

The whole evolution from ti to tf is performed by sampling the

Hamiltonian at regular intervals dt = (tf − ti)/NtwhereNt denotes the

number of time steps or the total circuit depth (see blue region in

Figure 2B). The equivalent circuit for the experimental IBM-Q

realization, and its simulation, is shown in Figure 2B. Assuming

an evolution governed by a time-independent Hamiltonian and for

small enough intervals of duration dt, the time evolution operator at

time t = N dt, with 1 ≤ N ≤ Nt, can be approximated by

Û t, ti( ) ≈ ∏N−1

k�0
e−iĤkdt, (11)

where Ĥk � Ĥ(ti + kdt).
Since we are interested in the evolution from an initial condition

where the LZ system is prepared in an equal weight superposition at

the anticrossing point, we start by applying the unitary rotation

Ûy(−π/2). The approximate time evolution operator is constructed

with general unitary gates. A general unitary single qubit gate

describes rotations on the Bloch sphere and is defined by three

Euler angles

Û θ,ϕ, λ( ) � cos
θ

2
( ) −eiλ sin θ

2
( )

eiϕ sin
θ

2
( ) ei ϕ+λ( ) cos θ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (12)

IBM-Q devices are equipped with the finite and complete set

{CX, I,Uz,
��
X

√
,X} of basis gates on which any quantum circuit

must be decomposed into. The general unitary gate can then be

expressed using the previous set as

U(θ, ϕ, λ) � eiγÛz(ϕ + π) ��
X

√
Ûz(θ + π) ��

X
√

Ûz(λ), where γ �
(λ + ϕ + π)/2 is a global phase factor. Using this decomposition,

small time progressions as defined in Eq. 11 are simulated and finally

the state |ψ(t)〉 is measured.

As already stated, the Landau-Zener dynamics can be exactly

solved (see Supplementary Data), thus allowing a direct benchmark

FIGURE 2
Decoherence times in different IBM-Q and IBM-Q circuit simulation of the Landau-Zener process. (A) In the pie-like chart, we contrast the
thermal relaxation time (T1) and dephasing time (T2), in (μs), for two different topology circuits, simply calledQC1 andQC2 (see text for details). Due to
in situ IBM machine calibration routines the times T1 and T2 may change. Every pie-like chart is divided into two sectors by a dashed line, where the
upper and lower sectors corresponding to decoherence times at two different dates. (B) Quantum circuit for the LZ simulation starting at the
state |ψ(ti)〉 � Ûn(θ)|0〉, where Ûn(θ) is a unitary rotation along the axis n. (C) Schematic representation of the LZ transition probability: the solid line
corresponds to the exact result given by Eq. 13, with Δ= 1, ta= 2, ti=0 and tf= 10, while the symbols illustrate expected results for a grid of points with
separation dt = tf − ti/Nt, beingNt the total circuit depth. The filled dots correspond to: the shortest circuit with depth 1 (gray dot) and an intermediate
circuit depth N (black dot). The inset shows the discrete approximation of the time-dependent component ε(t) of the LZ Hamiltonian.
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test of the experimental results on a realistic quantum device against

exact results. For a LZ evolution starting at the anticrossing ground

state, we obtain the LZ transition probability PLZ(t) at time t given as

PLZ t( ) � |χ1D−iδ z( ) + χ2D−1+iδ iz( )|2, (13)

with the amplitudes χ1 and χ2, see Eq. 5, given by:

χ1 � −2
k exp iπk[ ]
4

��
ik

√
���
2ik

√
Γ k( ) + 1 + i( )Γ 1

2 + k( )
Γ 2k( )⎡⎣ ⎤⎦, (14)

χ2 �
exp iπk[ ]
2k+1

2ikΓ 1
2 − k( ) + 1 − i( ) ���

2ik
√

Γ 1 − k( )
Γ 1 − 2k( )⎡⎣ ⎤⎦. (15)

Where z and δ are given in Section 1.2.

Our first aim is to benchmark our LZ experimental results with

the above exact theoretical prediction. This is schematically illustrated

in Figure 2C where we display the exact result, see Eq. 13, and a

hypothetical grid of points representing expected target data with a

separation dt = (tf − ti)/Nt, being Nt the total circuit depth. For every

experimental data, 5,000 shots have been realized on each quantum

circuit,QC1 andQC2.The unit of energy is set by choosing Δ = 1 in

the LZ Hamiltonian (see Eq. 3). Therefore, in the following, we

express energy parameters and time as dimensionless quantities (Z =

1). Using the quantum circuits QC1 and QC2, we implemented the

corresponding gates in all qubits available on parallel and we did a

sweep of parameters in annealing time ta from 0.05 to 2.0.

Additionally, for both theoretical and experimental results, the

final evolution time tf was chosen according with: tf = 4 for

annealing times in the interval 0.05 ≤ ta ≤ 0.17 and tf = 10 for

0.17< ta≤ 2. These particular choices have been supported by the fact
that as we are mainly interested in the asymptotic LZ probability

transition, a good asymptotic collapse is reached for these parameter

regimes. We also represent the experimental results PLZ(N) as a
function of the number of layers in the circuit instead of time. We

emphasize that an N-deep circuit corresponds to a physical qubit

interaction time tInt = 2tSXN, where tSX is the gate length property for��
X

√
and it is fixed by IBM-Q as tSX = 35.555 ns. In Figure 3, we

present a contrast of the LZ transition probability for both the

theoretical and experimental results. In the panel Figure 3A, we

choose the most robust qubit that better reproduced the theoretical

PLZ. Specifically, we found that the qubit 3 and 2 for ibmq_bogota

and ibmq_lima, respectively, have the best performance. In order to

better appreciate the experimental agreement and differences for

every single-qubit over QC1 and QC2, we show the LZ transition

probability as a function of the number of applied gates in Figure 3B.

In the next subsection, we address the influence of the number of

layers in the LZ simulation circuit and the role of decoherence.

Open system dynamics.- The performance of the hardware

worsens with an increasing depth of the circuit. The assumption

of a closed quantum system rapidly breaks down for qubits with

short relaxation (T1) and dephasing (T2) timescales, thus

requiring for a theoretical analysis that resorts to a quantum

open system approach. The effects of quantum decoherence are

noticeable in the measured probability when scaling the number

of gates due to the increase in computing times. We model every

qubit on IBM-Q as a two-level system coupled to a Markovian

bath. The system evolution is described by a continuous map

ρt � etLρt0, t ≥ 0 generated by the Lindbladian L[•] � −i[Ĥ, •] +∑n(L̂n•L̂†n − 1
2 L̂

†

nL̂n, •{ }) (Breuer and Petruccione, 2007), where,

Ĥ is the Hamiltonian and L̂n{ } are Lindblad operators that

describe the system-bath interactions. Dissipative processes in a

superconducting qubit such as relaxation, i.e., transitions from

the higher energy level |1〉 to ground state |0〉, can be described

phenomenologically by the operator L̂1 �
�
Γ

√ |0〉〈1| and

dephasing by rotations around the z axis L̂2 � �
γ

√
σ̂z.

Additional transitions such as thermal excitations from the

ground state |0〉 to |1〉 may also be considered (Marquardt

and Püttmann, 2008), although for a superconducting

transmon qubit this process is negligible. The rates Γ = 1/T1

and γ = 1/T2 − 1/2T1 are related to the characteristic times of each

physical qubit.

In Figure 4, we establish a contrast between the unitary exact

dynamics, numerical Lindblad dynamics (QuTip) and the

experimental results obtained for qubit 4, the noisiest qubit in

both quantum machines. QuTiP is an open-source framework for

Python that allows for numerical simulations of quantum dynamics

of open systems under different solvers (Johansson et al., 2012;

Johansson et al., 2013). Specifically, we depicted the Landau-Zener

probability as a function of the number of layers in the circuit,N, for

two specific annealing times ta = 1 (colors green/purple) and ta = 0.1

(colors blue/orange). Additionally, we show as an inset the ratio

between T2/T1, the bar scale shows the value of this proportion from

0 to 2. Although, ibmq_lima quantum computer has the ratio T2/T1
almost constant, qubit 4 is the most prone to decoherence.

3.2 Simulation of the Kibble-Zurek
mechanism on IBM-Q

The main purpose of this work is to validate the adiabatic-

impulse approximation of the Kibble-Zurek mechanism through the

nonequilibrium dynamics of the Landau-Zener model on IBM-Q.

Using Eq. 13 with Δ = 1, the asymptotic probability can be exactly

calculated as

PLZ t → ∞( ) � 1 − 1
δ
exp −3πδ

2
[ ]|χ2|2. (16)

Expanding the asymptotic probability into series, we obtain

(Damski, 2005; Damski and Zurek, 2006)

PLZ t → ∞( ) � 1
2
−

��
π

√
4
t1/2a +

��
π

√
32

π − ln 4( )( )t3/2a +O t5/2a( ).
(17)

We find the value of η by directly comparing the adiabatic-impulse

approximation given by Eq. 10 and the expansion of the LZ

asymptotic probability at first-order (η = π/4). However, non-

trivial corrections for high-order terms appear. In both main
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FIGURE 3
Measurement of LZ probabilities on IBM-Q. In panel (A), we establish a contrast between the exact and experimental results for the LZ transition
probability as a function the number of layers or circuit depthN, and the annealing time ta. In this panel, all figures share the same color vertical scale.
The initial condition, PLZ(t � 0) � 0.5, is represented by a red dashed line. Note that in some region of parameters a probability larger than 0.5 for the
experimental results is obtained. In panel (B), the behavior of the LZ probability for every qubit available in each processor is shown, identifying in
this way the most isolated (larger decoherence time) qubit in each case. We fixed the maximum number of layers in the circuit as Nt = 50.

FIGURE 4
Contrast between close and open quantum dynamics for LZ on IBM-Q. The Landau-Zener transition probability is shown as a function of the
number of layers N in the circuit implemention for qubit 4, the noisiest qubit for each QC1 and QC2 quantum circuit. We contrast the theoretical
prediction for a close system (unitary dynamics) given by Eq. 13 (dashed line), the decoherent dynamics given by the numerical solution of the
Lindblad equation (solid line) and experimental results (symbols). The experimental results clearly depart from the unitary evolution prediction
as the number of layers Nt increases in the circuit (see Figure 2B blue region). Additionally, in every panel, we present as inset the ratio between the
dephasing time (T2) and the thermal relaxation time (T1).
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panels of Figures 5A,B, we depict the agreement of the theoretical

prediction for the adiabatic-impulse approximation (Eq. 9) and

asymptotic Landau-Zener probability (Eq. 16). We note the role

of the corrections for large quench times. For finite-time LZ

simulations, estimating the asymptotic transition probability

becomes challenging and similar to experimental data. To this

end, we introduced the Landau-Zener jump-time t+ as the fist

zero in the second derivative of the Landau-Zener probability, thus:

d2PLZ t( )
dt2

∣∣∣∣∣∣∣∣t�t+ � 0. (18)

In this way, we propose that the estimated finite-time

asymptotic Landau-Zener probability can be approximated by

the average of all values of PLZ(t) with t ≥ t+. In the inset of

Figure 5B, we display the protocol implemented to calculate the

finite-time asymptotic Landau-Zener probability. Therefore, we

establish a finite-time error regime depicted in the main panel of

Figures 5A,B as error bars using the experimental values of the

annealing time. The estimation of the Landau-Zener jump-time

t+ has been implemented uniquely from the theoretical

prediction, assuming it will be the same for the experimental

data. Note that the adiabatic-impulse approximation and the

asymptotic Landau-Zener probability are equivalent in the

regime of our experimental data giving confidence in our

validation of the KZM on the IBM-Q platform.

For the qubit with the largest decoherence T1 and T2 times (the

best qubit from now on), the experimental data show an excellent

agreement with the theoretical predictions for the impulse-adiabatic

approximation. For large annealing time ta, the experimental data has

a significant deviation for some qubits in the ibmq_bogota quantum

computer. Indeed, the adiabatic-impulse approximation relationship

with the Landau-Zener problem assumes a close system’s quantum

dynamics. However, since IBM-Q is benchmarked as an open-

quantum system, deviations are to be expected.

In order to further testing the KZM adiabatic-impulse

approximation, from our experimental data, we rewrite the

Eq. 9 in terms of 3 fitting parameters, as

PAI ta( ) ≃ x1 − x2

����������������������������
1 − 2

x3ta( )2 + x3ta

���������
x3ta( )2 + 4

√
+ 2

√√
. (19)

In Figure 6, we depict the comparison of the fitting parameters x1,

x2 and x3 for the best qubit at ibmq_bogota and ibmq_lima. The

structure of the fitting expression allows us a direct comparison

with the theoretical predictions (xT
1 , x

T
2 , x

T
3 ). The first fitting

parameter x1 provides information about how robust the

qubit is to decoherence for fast LZ driving. Note that the

FIGURE 5
Simulation of the Kibble-Zurekmechanism on IBM-Q. In both upper and lower panels, we contrast the adiabatic-impulse approximation (Eq. 9),
asymptotic Landau-Zener probability (Eq. 16), and the experimental data. In panel (A), we show experimental data retrieved from ibmq_bogota. In
panel (B), we present the experimental results from ibmq_lima. In the inset, we present the protocol to calculate the asymptotic experimental
Landau-Zener probability. The error bars with length 2ζEB, calculated from the finite-time effect, are also shown. Solid symbols are consistent
with the best qubit behavior as depicted in Figure 3.

FIGURE 6
KZM adiabatic-impulse approximation fitting parameters.
From the best qubit experimental data (solid symbols in Figure 5),
the fitting to the KZM adiabatic-impulse approximation PAI (ta)
given by Eq. 19 is probed (the dashed gray lines correspond to
the theoretical predictions). The experimental data at
ibmq_bogota and ibmq_lima are depicted in blue and red,
respectively.
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theoretical prediction is xT
1 � 1/2 as it is fixed by the initial

condition at the anticrossing initial point. Moreover, it fixes the

value of the impulse-adiabatic approximation for small annealing

times, PAI(ta → 0) � 1/2. It is evident from Figure 5 that some

qubits deviate from this ideal value in this regime, confirming

that these qubits are already highly sensible to decoherence.

Nonetheless, for these results, we used the smallest number of

layers considered. The second fitting parameter x2 gives

information about the higher annealing time regime, with

theoretical value xT
2 � 1/2. The asymptotic value of the

adiabatic-impulse approximation is zero for large annealing

times. However, large annealing times imply that the LZ

transition probability has several oscillations as a function of

time. Consequently, it is necessary to manage large simulation

times to obtain the asymptotic LZ probability. It is to be expected

that, our results show deviations due to finite simulation time

effects. Finally, the third parameter x3 validates the Kibble-Zurek

scaling in the adiabatic-impulse approximation (xT
3 � π/4). We

found an excellent agreement with the theoretical predictions for

these QC1 and QC2 robust qubits. Thus, by using the close

relationship between the KZM and the LZ transition probability,

we validated and tested the KZM on IBM-Q. These results can be

part of a sequence of major steps to fully understand the strength

and limitations of time-dependent quantum simulations. It may

provide insights for designing top efficient quantum simulation

protocols for more involved out-of-equilibrium and interacting

systems.

4 Conclusion

In this work we explored the dynamics of a two level system

under the time-dependent Landau-Zener Hamiltonian on digital

IBM Quantum computers. Time evolution was simulated by

discretization of the time dependent Hamiltonian and application

of subsequent single-qubit unitary gates representing finite time

progressions. We studied the Landau Zener transition probability as

a function of time by running parallel quantum circuits on 5-qubit

machines ibmq_lima and ibmq_bogota with different topologies.

We find a strong agreement with the theoretical solution of the LZ

problem for robust qubits from both machines. We also considered

the effect of decoherence on an open LZ system, modeling the

dissipation using collapse operators for relaxation and dephasing.

For greater trotterizations of the time evolution operator, increasing

computing time cause noticeable deviations from the theoretical LZ

solution. The numerical solution of the Lindblad master equation

accurately depicts the open system’s relaxation towards the ground

state, supported by the measured probabilities.

The above positive LZ results allowed us to demonstrate the

first simulation on a realistic quantum computer of the universal

Kibble-Zurek mechanism by estimating the asymptotic

transition probability obtained from LZ experimental data.

Results show excellent agreement for the best qubits

considered in each device and low annealing times. We find

that larger annealing times demand a greater time resolution in

the evolution operator discretization, putting practical limits on

the performance achieved, as it becomes limited by the conflict

between computing depth and decoherence times. However, the

rapid rate of quantum hardware advances may soon change this.

Furthermore, an interesting follow-up research direction would

consist in focusing on richer open quantum platforms, where

KZM has been poorly explored. Thus, using real quantum

hardware to test quantum universal dynamical behaviors, in

both closed and open systems, represent an interesting

extension of the results presented in this work.
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