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Introduction

During the last century, the term “quantum engineering” has adopted very different

meanings. In early appearances it often implied the construction quantum systems—e.g.,

engineering of optical properties through controlled quantum dynamics (Rosencher et al.,

1996), atom-by-atom design of nanostructures (Fernández Rossier, 2013), or

hybridization of existing quantum objects (Wallquist et al., 2009)—or to the

preparation of specific quantum states—e.g., engineering of intrinsically quantum

states in trapped ions (Poyatos et al., 1997) or cavity-QED setups (Haroche, 1999).

More recently, the quantum engineering have begun to denote a field of reserach, covering

either narrow scopes around quantum information tasks (Smith, 2018; Asfaw et al., 2022)

or a very broad description that includes all quantum technologies (Dzurak et al., 2022).

In this work we refer to quantum engineering as the field devoted to the fabrication,

control and characterization of quantum systems with an intrinsically quantum

dynamics. In this sense, quantum engineering traverses all areas of quantum

technologies, including communication, computing, simulation, metrology and

sensing, and also impacts other areas of basic and applied science, where the control

of the quantum dynamics and quantum systems brings out new phenomena. Quantum

engineering uses the language of quantum information science as a toolbox to understand

and design complex quantum states and quantum operations, but it also builds on the

tools from quantum control, quantum optics and many-body physics.

Inspired by other areas of engineering, as in the work by Zagoskin (2017), one may

structure quantum engineering in a bottom-up approach (c.f. Figure 1), according to the

degree of complexity of the objects involved: 1) the design and operation of individual

quantum units, 2) the engineering of interactions between such units, 3) the combination

of those structures into operational devices for communication, computing or sensing, or

new emerging structures, 4) and the creation of interfaces between quantum, classical or

hybrid devices according to systems engineering. Alternatively, we can focus on the tasks

at hand: 1) fabrication, 2) operation and control, and 3) characterization. In the following

text we highlight different challenges in several of these possible subdivisions.

Quantum units

The starting point of all quantum technologies is the “isolation” of elementary

quantum degrees of freedom that can be prepared, controled and measured. Quantum
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information theory introduced the notions of qubits and

continuous variables as paradigms that can be engineered

and operated in systematic ways, and which may be

reproduced in various physical systems. Indeed, the

literature is now abundand in physical realizations of

qubits using trapped ions, quantum dots, Rydberg atoms

and other nonlinear quantum systems, and of continuous

variables using photonic, phononic and optomechanic

systems, to name some platforms.

The present challenges in this scale of complexity revolve

around the optimization of existing qubits, improving their

coherence properties and their operation speeds and

fidelities. For instance, while superconducting circuits

seem to be ahead of the quantum computing race in terms

of scalability and reproducibility, they would still benefit

from better readout fidelities (Sunada et al., 2022) and

qubit coherence times (Place et al., 2021). However, we

must accept that some platforms might face unsolvable

obstacles, such as the impact of cosmic radiation in solid-

state qubits (Cardani et al., 2021), that require still unforeseen

paradigm shifts.

We must therefore continue searching for newer and

better quantum units. A promising path for this is looking

for emergent of robust quantum units arising from the

combination of large numbers of imperfect components.

Such is the case of topological systems, including the well-

known Majorana modes and other anyonic fermionic systems,

platforms that may sustain universal and intrinsically

protected quantum information processing (Lahtinen and

Pachos, 2017). Equally interesting is the engineering of

higher-dimensional quantum systems, such as magnetic

molecules (Gaita-Ariño et al., 2019) and the prospect for

building self-assembled qudit arrays with them. However,

this is an area of development that is held back by our

limited understanding of qudit-based quantum information

processing.

Engineering of interactions and
quantum materials

Most quantum technologies are based on combining

multiple quantum units, through connections or interactions

that augment their capabilities, with the help of an

exponentially larger Hilbert space and the available

entanglement.

In some cases, the challenge of this composition lays in

the engineering of simple but selective interactions that are

very accurately controlled in time and space. We achieve

selectivity in time, for instance by developing tuneable

couplers that enable isolated pairs of superconducting

qubits to correlate with each other, cancelling other

spurious crost-talk interactions (Arute et al., 2019). We

achieve spatial control of interactions, for instance by

using tweezers to bring ultracold atoms close together, to

enable topologies that are consistent with the

desired algorithms or error correction models (Bluvstein

et al., 2022).

A notch up in complexity we find quantum simulations, a

subfield centered around the difficult task of engineering

more complex interactions to reproduce Hamiltonian that

address important theoretical challenges: e.g., understanding

many-body localization, the mechanisms for high-Tc

superconductivity, dynamical lattice gauge theory models

with complex many-body interactions, or topological order

beyond topological insulators. The realization of such models

has been long centered around AMO setups that can flexibily

implement fermionic and bosonic, matter and field degrees of

fredom (Zohar et al., 2015). Despite great progress in recent

experiments (Schweizer et al., 2019), the quest for new

models is always an open problem, as it is facing the

practical challenges of preparing ground states, or

combining interactions with Floquet engineering, as

explained below.

However, while the search for complex models has

strongly focused on the AMO platforms, the state-of-the-

art in quantum fabrication and engineering justifies

considering the development of new ad-hoc quantum

materials that fulfill some of the above mentioned

tasks—from emergent qubits, to quantum simulators and

quantum sensors. This new field of research sports a

variety of technologies such as the atom-by-atom design of

structures—from implanting NV centers in diamond or

phosphorous quantum dots in Si, to single-atom

transistors—, functionalizing materials for quantum tasks,

designing and exploring the physics of 2D quantum

materials, or creating hybrid structures that combine many

of above mentioned quantum units—quantum emitters,

nanophotonic structures, superconducting metamaterials

and resonators, etc—for specific purposes or for exploring

emergent phenomena.

FIGURE 1
The field of Quantum Engineering, organized by the degree
of complexity of the objects it deals with, and by the tasks it aims to
perform.
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Quantum control of quantum devices

In early works, the notion of quantum engineering has been

often associated to the systematic control of a quantum system’s

dynamics. Indeed, it may be argued that control theory is the

most relevant tool in quantum engineering, with applications

that include the cancellation of noise in qubits, the systematic

construction of quantum operations by combination of

elementary gates or the physical implementation of said gates

by controlling qubits with different external fields.

At the lowest level of complexity we find quasi-static and

periodic controls, aiming at simulation of complex quantum

interactions that are both useful and demonstrably hard. In this

area, Floquet engineering has produced remarkable outcomes in

the field of ultracold atoms (Weitenberg and Simonet, 2021), but

as mentioned above, work is still required to increase the

complexity of the models and handle the intrinsic challenges

imposed by these control methods, such as interactions and

cooling.

At a highest level of complexity we find the overwhelming

family of quantum optimal control methods. This is a field that

has grown in ambition, starting from original works that aimed at

controlling isolated states with arbitrary pulses—e.g., those

provided by Krotov methods (Tannor et al., 1992)—, evolving

to work with open systems (Koch, 2016), and incorporate new

technologies that aim for experimentally-friendly controls with

limited bandwidths (Romero-Isart and García-Ripoll, 2007;

Motzoi et al., 2011; Koch, 2016; Machnes et al., 2018; Müller

et al., 2022). In this context one must highlight the development

of new paradigms in the field of control theory, covered by the

umbrella term of shortcuts to adiabaticity (Guéry-Odelin et al.,

2019). Under this denomination we find a large family of

techniques—fast quasi-adiabatic techniques, quantum

invariants, counteradiabatic methods, etc—that create

sometimes arbitrarily fast controls with intrinsic guarantees of

robustness, and often resilient to experimental distortions

(García-Ripoll et al., 2020).

Beyond the theoretical progress in the art of control theory,

we must consider seriously how to integrate these methods with

existing experiments, and whether machine learning methods

may help in this connection. The bridge between theory and

experiments may relay onunifying open and closed loop control

methods with physics-informed machine learning (Weitenberg

and Simonet, 2021) or eventually evolving towards black-box,

computationally intensive methods such as reinforcement

learning (Niu et al., 2019). The answers to these questions are

deeply connected to the systems design issues discussed next.

Quantum systems

The combination of quantum units, with their native and

engineered interactions, and with the protocols to operate them,

gives rise to new quantum devices that are arguably very useful,

both in the lab and as standalone technologies. However, with the

advent of these quantum computers, simulators, networks and

sensors, it also arises the need for a new type of systems

engineering that regards both the interaction between these

devices with our classical world, as well as among quantum

devices themselves.

On the quantum-classical front we already have witnessed

very relevant achievements in the development of cloud-

native quantum computing infrastructures. These highly

scalable stacks integrate the quantum computers with

various layers of software that control everything, from the

design of individual optical or microwave pulses to implement

gates, up to the high-level programming of jobs and user

management (Bandic et al., 2022).

We must remark the intrinsic classical challenge already

posed by piling up multiple quantum units in a single

quantum device, where each of those units requires

individual controls and measurements. Let us consider the

operation of a Rydberg atom quantum computer. While

existing machines may trap 100s of such qubits,

implementing local gates in each of these qubits demands

either long times—if the gates are to be made sequentially—or

huge resources in laser and electronics—if each qubit is to

have its own control. This is not unique to one platform: the

same problems arises in superconducting qubits,

semiconductor qubits, trapped ions, NV-centers, etc.

To address this challenge, we expect deeper levels of

quantum-classical integration, with the advent of in-chip

DACs and control logic (Johnson et al., 2010), that alleviate

the impressive overhead that arises from the local control of

qubits, and improve the scalability. This technology must be

accompanied by further interdisciplinary work where quantum

engineers interact with electronic and software engineers to

systematically address the scalable and robust callibration of

the quantum devices the compilation and implementation of

quantum algorithms as elementary gates, and ultimately the

development of complete quantum operating systems.

On the quantum-quantum front, the central question is

the actual networking and interfacing of quantum systems. On

the short term, we already need quantum links between

quantum processors (Kurpiers et al., 2018; Chang et al.,

2020) that help in scaling up our NISQ resources. On the

long term the consensus vision aims at fully networked

quantum systems, where quantum computers exchange

quantum information among themselves, and also collect

and process the information coming from quantum

memories and quantum sensors. This vision poses relevant

challenges in transducing information in and out of quantum

computers, in routing that information according to quantum

rules (not just classical paradigms), and in storing and

retrieving information from the quantum equivalent of

RAM’s—which may or may not end up looking like the
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formal standards (Giovannetti et al., 2008). How we scalably

store, exchange and route quantum information is a physical,

informational and an engineering problem, the surface of

which have barely scratched.

Conclusion

As briefly discussed above, quantum engineering is an

emergent interdisciplinary area of research that covers all

levels of complexity and application of quantum

technologies, from its fundamental components up to the

development of fully integrated networks of devices. At

each level of complexity and type of application, the field

opens numerous challenges with a great potential impact in

the maturity and scalability of quantum technologies.

Simultaneously, we expect that the systematization of the

tools and language of quantum engineer will provide a

fertile ground for interdisciplinary collaboration between

physicists, material scientists, electronics engineers,

software engineers and other areas of development.
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