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In the current era of noisy intermediate-scale quantum (NISQ) devices, research on
the theory of open system dynamics has a crucial role to play. In particular,
understanding and quantifying memory effects in quantum systems is critical to
gain a better handle on the effects of noise in quantum devices. The main focus of
this review is to address the fundamental question of defining and characterizing
such memory effects—broadly referred to as quantum non-Markovianity—utilizing
various approaches. We first discuss the two-time-parameter maps approach to
open system dynamics and review the various notions of quantum non-
Markovianity that arise in this paradigm. We then discuss an alternate approach
to quantum stochastic processes based on the quantum combs framework, which
accounts for multi-time correlations. We discuss the interconnections and
differences between these two paradigms and conclude with a discussion on
the necessary and sufficient conditions for quantum non-Markovianity.
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1 Introduction

A quantum system is said to be open when it interacts with its environment (Breuer and
Petruccione, 2002). As such a system evolves, it builds up correlations, such as entanglement,
with the environment (de Vega and Alonso, 2017). This in turn results in decoherence and
dissipation (Breuer et al., 2016a), which are known to be generally detrimental to quantum
information tasks. The study of open system dynamics has thus become more important
than ever in today’s era of noisy intermediate-scale quantum (NISQ) devices (Preskill, 2018).
Of particular interest is the characterization of memory effects, or quantum non-
Markovianity, that arises due to strong system–environment (S-E) coupling. A precise
and universal definition of non-Markovianity has remained elusive, and understanding its
origins and characteristics is pertinent for emerging quantum technologies.

The study of open quantum system dynamics has been formalized in a number of
approaches, from traditional approaches (Breuer and Petruccione, 2002; Banerjee, 2018) to
operational characterizations (Pollock et al., 2018a) and, more recently, approaches based on
quantum collision models (Campbell and Vacchini, 2021; Ciccarello et al., 2022). From the
quantum information theory point of view, system dynamics are represented by quantum
dynamical maps, which are linear, completely positive (CP), and trace-preserving (TP)maps.
Such maps, referred to as quantum channels, can be described using an operator-sum
representation (the so-called Kraus representation) (Nielsen and Chuang, 2010), which can
be derived by tracing out the environment degrees of freedom from the full S-E unitary
dynamics.
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Open system dynamics may be broadly classified as Markovian
and non-Markovian. In the natural sciences, a process is said to be
Markovian if the future outcomes of the measurement of the system
are independent of the past ones, conditioned on the present. When
such past–future independence fails, or when the environment
retains the history of the system, then the process is said to be
non-Markovian. Over the past decade, there have been significant
efforts to characterize, witness, and quantify non-Markovianity in
the quantum domain. A number of witnesses and measures have
been proposed, based on divisibility (Rivas et al., 2010),
distinguishability (or trace distance) (Breuer et al., 2009), fidelity
(Rajagopal et al., 2010), quantum channel capacity (Bylicka et al.,
2014; Pineda et al., 2016), accessible information (Fanchini et al.,
2014), mutual information (Luo et al., 2012), quantum discord
(Alipour et al., 2012), interferometric power (Dhar et al., 2015),
and deviation from semigroup structure (Wolf et al., 2008; Utagi
et al., 2020b), to name a few.

However, a precise and universal definition of quantum (non-)
Markovianity continues to remain one of the unsolved problems in
open systems theory (Li et al., 2018). The traditional approach to
quantum non-Markovianity does not have a well-defined classical
limit and lacks a clear operational interpretation (Pollock et al.,
2018b). In fact, the traditional approach characterizes dynamical
processes either via one-parameter semigroups of dynamical maps
or two-parameter families of maps that are divisible and indivisible,
thus incorporating only two-time correlation functions of the
environment. The results emerging from such approaches cannot
necessarily be generalized to situations where multi-time correlations
become prominent. A new approach, known as the process tensor
formalism, promises a solution to this problem through complete
tomographic characterization of a quantum stochastic process by
taking into account multi-time correlations as well as the (possibly
unknown) initial S-E correlations (Modi, 2012), offering an
operationally motivated characterization of open systems that the
previous approaches need not provide.

The present review attempts to survey this active area of
defining and characterizing quantum non-Markovian
dynamics. While there have been a few good reviews on this
topic in the literature in the past (see, for example, Rivas et al.,
2014; Breuer et al., 2016a; Breuer et al., 2016b; de Vega and
Alonso, 2017; Li et al., 2018), our article focuses on the more
notable recent developments aimed at detecting and quantifying
non-Markovianity via temporal quantum correlations. After
briefly reviewing the well-known definitions based on CP-
divisibility (Rivas et al., 2010) and distinguishability (Breuer
et al., 2009), which are only necessary but not sufficient
indicators of non-Markovianity, we discuss a measure
proposed by Chen et al. (2016) based on temporal steerable
correlations and one subsequently proposed by Utagi (2021)
based on the causality measure arising out of the pseudo-
density matrix (PDM). However, as we note in this review, the
definitions based on quantum temporal correlations are only
sufficient but not necessary indicators of non-Markovianity.
Later, we discuss the recent approaches in which multi-time
correlations are taken into account, specifically the process
tensor framework proposed by Pollock et al. (2018a) and
Pollock et al. (2018b) and a definition of non-Markovianity
based on conditional past–future (CPF) correlations proposed

by Budini (2018b), Budini (2019), and Budini (2022). Specifically,
we address the issue of necessary and sufficient criteria for
quantum non-Markovianity in this review.

Regarding the terminology used in this article: i) we use system
to refer to an open quantum system; ii) environment refers to a
quantum environment having quantum degrees of freedom, unless
otherwise stated; iii) the master equation is an equation that
describes the reduced dynamics of the system alone, after tracing
out the environment degrees of freedom; and iv) correlations implies
quantum correlations, unless otherwise stated.

The remainder of this review is structured as follows: in sections 2.1
and 2.2, we briefly review the well-known master equation and
dynamical map approaches to open system dynamics. In Section 2.3,
we discuss some of the famousmeasures of non-Markovianity, including
those based on the distinguishability of states and CP-divisibility. We
also briefly note some of the measures that are based on quantum
correlations. In Section 2.4, we review some recent measures that are
based on correlations in time, namely, temporal steering and temporal
non-separability, and note an important relationship between the two.
Interestingly, these measures are known not to be strictly equivalent, as
we discuss in Section 2.5, leaving open the question of equivalence
between the measures based on the temporal steerable weight (TSW)
and the causality measure.

Sections 3.1 and 3.2 form an interlude where we discuss some
curious features of open systems and S-E correlations, as well as
mentioning some recent developments. We then move on to Part II
in Section 4, where we mainly focus on the frameworks that
overcome the limitations of the existing two-time maps. Given
that a notion of Markovianity exists, namely, the independence
of future outcomes on past measurement results, non-Markovianity
is commensurate with the notion of causality and the causal
influence of past history on future evolution. In Section 4, we
present the notion of non-Markovianity based on an operational
framework, called the process tensor, and discuss various features, as
well as mentioning recent progress. In Section 4.3, we review the
notion of non-Markovianity based on CPF independence, which is
operationally motivated and yet does overcome the limitations of
previous approaches. In Section 5, we briefly review some of the
aspects of non-Markovian dynamics in experimental settings. We
conclude in Section 6 with a brief discussion of the necessary and
sufficient criteria for a witness and measure of non-Markovianity for
any arbitrary quantum stochastic dynamics and provide a note on
future prospects.

2 Part I: Two-time quantum dynamical
maps and non-Markovianity

2.1 The master equation

Traditionally, the reduced dynamics of a system coupled to an
environment is described by a Nakajima–Zwanzig master equation,
also called the time-non-local equation, which takes the form:

_ρ t( ) � − i

Z
HS, ρ t( )[ ] + ∫t

t0

Kt,τ ρ τ( )[ ]dτ, (1)

where ∀t ≥ τ ≥ 0, _ρ � dρ
dt, and HS is the system Hamiltonian. The

linear map Kt,τ incorporates the non-Markovian memory effects
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that may be present in the system’s evolution. One may go from
the time-non-local equation to a time-local one by assuming that
there exists a linear map Φ which is invertible at all times,
i.e., ΦΦ−1 = I, such that (Andersson et al., 2007):

_ρ t( ) � ∫t

t0

dτ Kτ,t◦Φτ( ) ρ 0( )[ ]
� ∫t

t0

dτ Kτ,t◦Φτ◦Φ−1
t( )Φt ρ 0( )[ ] � Lt ρ t( )[ ], (2)

whereLt is the time-local generator or the Lindbladian, which is a
linear super-operator on the space of density operators. When
the corresponding dynamical map is non-invertible, it is not
necessary that a time-local master equation should exist
(Andersson et al., 2007), although one may make use of the
Moore–Penrose pseudo-inverse (Rivas et al., 2014) or generalized
inverse and still be able to construct a generator, at least for
divisible dynamics (Chakraborty and Chruściński, 2021). In
other words, the existence of a master equation is sufficient to
imply the existence of a corresponding dynamical map; however,
the converse is not true (Li et al., 2018).

In order to arrive at an exact LindbladianL, one uses the famous
Born–Markov (BM) approximation (see Section 2.2), under which
the time-local evolution of the open system is described by the
famous Gorini–Kossakowski–Sudarshan–Lindblad (GKSL)
equation (Sudarshan et al., 1961a; Lindblad, 1976), which in its
canonical form reads:

_ρ � L ρ[ ] � ∑
j

γj LjρL
†
j −

1
2

L†
jLj, ρ{ }( ). (3)

Here, _A � dA
dt for any time-continuous operator A and the linear

operators Lj are called the Lindblad operators or simply the jump
operators. The dynamics described by Eq. 3 are referred to as time-
homogeneous Markovian. Generally, the decay rates γjmay be time-
dependent. In this case, the BM approximation does not hold, but
the rotating approximation is retained, so that the master equation
modifies to the time-dependent GKSL-like equation (in the
canonical form):

_ρ � L t( ) ρ[ ] � ∑
j

γj t( ) Lj t( )ρL†
j t( ) − 1

2
L†
j t( )Lj t( ), ρ{ }( ). (4)

Now the jump operators themselves are time-dependent along
with the decay rates γj(t). The process in Eq. 4 is termed time-
inhomogeneous Markovian when all the decay rates γj(t) are
positive for all times. When at least one of the decay rates is
negative for a certain interval of time-evolution, then the process
is termed non-Markovian (Garraway, 1997; Breuer and
Petruccione, 2002).

The price one pays for going from a non-local to a local
description is that the generator may become highly singular
(Chruściński and Kossakowski, 2010), which makes the solution
to dynamics analytically hard. Indeed, the non-local equation
might be more natural and easier to handle in certain physical
situations (see Megier et al., 2020a; Megier et al., 2020b). The
distinction between the notions of Markovianity in Eqs 3, 4
becomes clearer when one looks at the properties of the
corresponding dynamical maps, which we discuss next.

2.2 Quantum dynamical maps

From a quantum information theoretic perspective, the general
time evolution of a quantum system is described by a quantum
dynamical map, which takes density operators to density operators.
Since the environment is generally a many-body system with many
degrees of freedom, it becomes difficult for an experimenter to fully
control it. Therefore, studying the reduced dynamics of the system in
a consistent manner becomes useful.

Figure 1 depicts a simple example of an open quantum system,
namely, qubit interacting with an environment. Let us denote the
system Hamiltonian (also called the free Hamiltonian) asHS and the
environment Hamiltonian as HE. The interaction Hamiltonian Hint

determines the nature of S-E interaction and the coupling with the
environment. The total S-E evolution may be represented by a global
unitary U � exp{− i

Z (HS +HE +Hint)t}. The effect of the
environment on the system is often called quantum noise in the
context of quantum information processing and the open-system
evolution is termed noisy evolution, in contrast to closed-system
evolution, which is unitary.

Tracing out the environment degrees of freedom gives rise to the
operator-sum representation of the effect of noise on the system,
which falls under the broad formalism of quantum operations.
Mathematically, the effect of the environment of the system is
represented by a set of linear operators on the system, called the
Kraus operators, and the reduced dynamics of the system is obtained
as follows:

ρ t( ) � TrE U ρS 0( ) ⊗ ρE( )U†[ ] � ∑
j

〈ej
∣∣∣∣U ρS 0( ) ⊗ e0| 〉〈e0|( )U† ej

∣∣∣∣ 〉,

(5)
where the states {|ej〉} represent environment degrees of freedom.
Equivalently, Eq. 5 can be written for any input system state ρ in the
so-called Kraus form (Sudarshan et al., 1961b; Kraus, 1971; Choi,
1975; Kraus et al., 1983):

ρ t( ) � Φ t( ) ρ[ ] � ∑
j

Kj t( )ρK†
j t( ). (6)

Here, Kj ≡ 〈ej|U|e0〉 are called the Kraus operators, which obey∑jK
†
jKj ≤ I. This operator-sum representation is an important and

powerful tool today in the context of quantum information and
computation (Nielsen and Chuang, 2010). The mapΦ in Eq. 6 obeys
the time-homogeneous (or time-independent) master Eq. 3,
i.e., _Φ � L[Φ], whose solution is given by Φ � exp {tL}, which is
a one-parameter quantum dynamical semigroup. Similarly, a two-
parameter mapΦ(t, t0) [orΦ(t) for simplicity, setting t0 = 0] obeys a
master Eq. 4 of the form _Φ(t) � L(t)[Φ(t)], whose solution is
given by:

Φ t, t0( ) � T exp ∫t

t0

L τ( )dτ{ } , (7)

where T is the time-ordering operator. In a sense, a map that is
derivable from a given generator depends on the nature of L.

Onemust note that Eqs 3, 4, 6 are derived after assuming that the
S-E state factors out at t = 0, which need not be the case generally.
Furthermore, the environment state ρe is assumed to be fixed for all
times, in which case the BM approximation holds. Under the time-
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coarse-grained weak coupling limit, the evolution quickly “forgets”
initial S-E correlations and tends to the Lindblad form (Royer, 1996).
The existence of the time-independent Lindblad form in Eq. 3
implies the following equivalent statements. First, the
environment auto-correlation function is a delta function and
corresponds to the white noise approximation. There is no back-
action on the system due to the static environment state, which also
means that τE ≪ τS, where τE is the environmental correlation time
and τS is the system relaxation time. In other words, the
environment cannot store any information about the system’s
past evolution; this is the famous BM approximation. Second, the
system uniformly couples to all the degrees of freedom of the
environment. Third, the Lindbladian L is time-independent and
the corresponding solution to the equation _Φ(t) � L[Φ(t)] is
Φ(t) � exp {tL}, which is a semigroup satisfying the property
Φ(t + τ) = Φ(t)Φ(τ) for all 0 ≤ τ ≤ t.

Historically, any process that deviates from semigroup structure
has been termed non-Markovian (Breuer et al., 2016a). Later
developments in the quantum information community have
indicated that this is not the complete story, as we will elaborate
in the following sections.

2.3 Measures of non-Markovianity: Spatial
domain

2.3.1 CP-indivisibility
Divisibility is a property of dynamical maps that allows us to

write a map as a concatenation of intermediate maps (Wolf and
Cirac, 2008; Wolf et al., 2008; Rivas et al., 2010; Chruściński et al.,
2011; Chruściński and Maniscalco, 2014; Chruściński et al., 2018;
Davalos et al., 2019). In the classical case, a divisible (hence
Markovian) stochastic process is given by concatenation of
transition matrices. As far as the traditional approach is
concerned, there is no known way of carrying the classical
definition of non-Markovianity over to the quantum case.
However, an approach based on divisibility states that a map Φ(t,
0) =Φ(t, s)Φ(s, 0) is CP-indivisible if the intermediate map Φ(t, s) is
not completely positive (NCP) in the sense that at least one of the
eigenvalues of the matrix:

χ � Φ t, s( ) × I( ) ψ
∣∣∣∣ 〉〈ψ

∣∣∣∣[ ] (8)

is negative, where χ is called the Choi state (Choi, 1975) or
Sudarshan B matrix (Sudarshan et al., 1961a), which is dual to
the intermediate map Φ(t, s), and |ψ〉 � 1�

2
√ (|00〉 + |11〉) is a

maximally entangled state. Based on the aforementioned
considerations, the Rivas–Huelga–Plenio (RHP) measure of non-
Markovianity was introduced by Rivas et al. (2010):

N RHP � ∫tmax

0; χ t,τ( )<0
g t( )dt ; g t( ) � lim

τ→0+
‖χ t, τ( )‖1 − 1

τ
, (9)

where χ is the Choi matrix such that whenever g(t) > 0, the
divisibility condition is broken, and the time integral over the
positive regions of g(t) quantifies the quantum memory in the
dynamics. Note that N RHP goes up to infinity, hence requiring a
suitable normalization so that it falls in the interval {0, 1}, implying
that for Markov processes N RHP � 0.

In fact, for any finite d-dimensional open system, the RHP
measure in Eq. 9 is equivalent to the Hall–Cressor–Li–Anderson
(HCLA) measure given by Hall et al. (2014)and Shrikant et al.
(2018):

N RHP � d

2
N HCLA; N HCLA � −∫tmax

0; γ t( )<0
γ t( )dt, (10)

where the integration is carried over only to the negative regions of the
time-dependent decay rate γ(t). Historically, it has been understood that,
when maps generating the dynamics deviate from having a semigroup
structure, one speaks of non-Markovianity (Breuer et al., 2016a). The
condition γj(t) ≥ 0 pertains to the Markovian approximation for the
time-dependent noisy dynamics, and the corresponding dynamical
maps do not belong to a semigroup; such processes are termed time-
dependent Markovian. Note that the dynamics represented by the
Lindblad form in Eq. 3 is strictly Markovian (Hall et al., 2014).
When the decay rates in Eq. 4 are temporarily negative, the
corresponding dynamical maps are no longer CP-divisible.

2.3.2 Information back-flow
As an open system evolves, it generally sets up correlations with

the environment and loses its information content irreversibly.
However, this is true only when the system couples weakly to the

FIGURE 1
Left: A simple representation of a qubit interacting with environment degrees of freedom. Right: A simple model of quantum operation after tracing
out the environment from the global unitary U. Here, ρS and ρE are system and environment states and HS, HE, and Hint are system, environment, and S-E
interaction Hamiltonians, respectively.
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environment. Under the strong coupling limit, the information
might periodically return to the state from the environment,
leading to information back-flow. This also means that the
environment remembers the history of the evolution of the
system. We briefly review here the Breuer–Laine–Piilo (BLP)
approach (Breuer et al., 2009) to quantify this information back-
flow based on the trace distance.

One may find a distance measure on the space of density
operators that is contractive under the given CPTP map. Since
the matrix trace norm is known to be CP-contractive under a CPTP
map (Nielsen and Chuang, 2010), the trace distance is one such
natural candidate1. Mathematically, the trace distance is defined as:

D ρ1, ρ2( ) � 1
2
‖ρ1 − ρ2‖1, (11)

where ‖A‖1 � Tr[ ����
AA†

√ ] is the trace norm of an operator A. A map
Φ(t2, t0), that takes a density operator from t0 to t2, is said to be
Markovian if it satisfies the following data processing inequality:

D Φ ρ1[ ],Φ ρ2[ ]( )≤D ρ1, ρ2( ), (12)
for all times, where Φ[ρ] is given by Eq. 6.

The breakdown of the monotonicity of trace distance shown in
Eq. 12 between any two orthogonal initial states under a CPTP map
has been used as a witness of non-Markovianity. The decrease in the
non-orthogonality of the states is interpreted as the back-flow of
information from the environment to the system. Note that, when
there is information back-flow, the intermediate map Φ(t2, t1) is not
even positive, which in turn implies that the dynamical map Φ(t2,
t0) = Φ(t2, t1)Φ(t1, t0) is positive (P-) indivisible (Chruściński et al.,
2011; Chruściński and Maniscalco, 2014). This is equivalent to
saying that d

dt‖Φ[(ρ1 − ρ2)]‖1 ≥ 0. Note that complete positivity of
the mapΦ(t2, t0) requires that the trace distance only decreases at t =
0, but it can increase and decrease for t > 0 due to P-indivisibility.

Quantum non-Markovianity in the sense of P-indivisibility can
be quantified as follows (Breuer et al., 2009):

N BLP ≔ max
ρ1 ,ρ2

∫
dD
dt>0

dt
dD
dt

, (13)

where integration is carried out over the positive slope of D. Note
that this criterion is only sufficient but not necessary, since it might
fail as a witness of memory for some non-unital channels (Liu et al.,
2013b; Chruściński et al., 2017), as well as for certain unital channels
(Hall et al., 2014). In other words, P-indivisibility implies CP-
indivisibility, but the converse may not be true.

Finally, we may note that, as far as the revival of quantum
information and correlations is concerned, this is also possible when
the environment is classical and therefore cannot store information
about the system. In other words, for the revival of information to
take place, the environment need not be quantum. This observation
calls for attention on re-evaluating the notion of S-E back-action (Xu
et al., 2013).

2.3.3 Correlation-based measures
We know that quantum mechanics allows for various forms of

correlations, namely, non-local correlations (Brunner et al., 2014)
that violate Bell inequalities, steering (Uola et al., 2020),
entanglement (Horodecki et al., 2009), entropic accord (Szasz,
2019), and quantum discord (Modi et al., 2012). While the RHP
measure discussed in Eq. 9 is based on entanglement, there exist
various proposals based on different measures of correlation, such as
quantum discord (Alipour et al., 2012), mutual information (Luo
et al., 2012), and accessible information (Fanchini et al., 2014; Haseli
et al., 2014; De Santis et al., 2019). Interestingly, some works have
shown a peculiar relationship between non-Markovianity and
certain forms of correlations, for example, quantum discord and
non-Markovianity (Mazzola et al., 2011; Alipour et al., 2012). It has
been shown that a measure based on mutual information between
the reduced system and an ancilla detects the range of non-
Markovianity similar to the BLP approach (Luo et al., 2012).
Similar assertions may be made for any measure based on the
correlation between the system and an ancilla, for example, the
one proposed by Rivas et al. (2010), in which entanglement is used to
quantify non-Markovianity. However, it must be noted that some of
these may be easier to calculate than others. For instance,
correlations between the system and an ancilla might be simpler
compared to quantum discord between system and environment
states, which requires full knowledge of the S-E dynamics (Alipour
et al., 2012).

As we have seen, a number of measures and witnesses have been
proposed based on correlations in space. However, recently, a few
works have made use of correlations in time to witness and measure
non-Markovianity, which we discuss up in the next sub-section.

2.4 Measures of non-Markovianity:
Temporal domain

As previously noted, the (spatial) correlations form a hierarchy.
Quantum temporal correlations also do this, as shown recently by
Ku et al. (2018), with the temporal non-locality (Leggett and Garg,
1985), temporal steering (Chen et al., 2014), and temporal non-
separability (Fitzsimons et al., 2015) of the PDM framework forming
the hierarchy. In the same paper, these authors also showed that
temporal steering is a form of weak direct cause, while temporal
non-separability forms a stronger form of direct cause in quantum
mechanics. Interestingly, temporal steering has been quantified by
the TSW, which has been proven to be contractive under a divisible
CPTP map and has been used to quantify quantum non-
Markovianity by Chen et al. (2016). Here, we briefly review the
measure based on the TSW and the causality measure based on
the PDM.

2.4.1 Temporal steering
Quantum steering is a way to prepare a part of an entangled

bipartite state by making measurements on the other. In spatial
steering, Alice performs a positive operator-valued measure
(POVM) on her system. Bob does not trust Alice or her
apparatus and wishes to distinguish between the correlations
established due to the true manipulation of his local state and
that due to underlying classical local hidden variables.

1 In fact, Bures distance and quantum relative entropy are other measures
that are contractive under CPTP maps and can witness non-Markovianity
(Liu et al., 2013b; Megier et al., 2021).
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Similar to the steering in space with a given spatially entangled
state, one may steer a state in time by making a measurement on the
input state and sending it via a quantum channel followed by a
complete quantum state tomography of the output state at the end of
the channel. Now, we shall introduce the notion of the TSW. Alice
performs a POVM measurement on an input state ρ at t = 0,
transforming it into:

ρa|x �
Πa|xρΠ†

a|x
p a|x( ) , (14)

where p(a|x) � Tr[Πa|xρΠ†
a|x] is the probability that an outcome

a occurs given that Alice preforms a measurement in the basis x.
Now, the state ρa|x is sent to Bob down a noisy quantum channel
Φ for a time t. When Bob receives the state at t, he performs a
quantum state tomography to get the state σa|x(t) � Φ[σa|x(0).
We may call the set of states σa|x(t) temporal assemblages, and let
the unnormalized assemblage be σa|x(t) ≡ p (a|x)σa|x. Now, by
assumption, Bob does not trust Alice or her devices, and he
wants to distinguish the correlations due to Alice’s
measurements from the correlations that might have
originated from a hidden variable λ, making the correlations
to satisfy locality in time and realism. Therefore, we may
represent the correlations that might be produced by such
classical origins as:

σUSa|x t( ) � ∑
λ

P λ( )P a|x, λ( )σλ, (15)

where σUSa|x(t) is the unsteerable assemblage and P (a|x, λ) is the
probability that an outcome a occurs given that Alice makes a
measurement x, and λ is the hidden variable that might have
influenced the outcome, in which case Bob will be able to write
down his assemblage in the form of Eq. 15, and when he cannot,
then he is sure that the state is prepared by Alice’s measurement. In
this context, a measure of temporal steering was introduced by Chen
et al. (2016) called the TSW. In order to define the TSW, consider a
convex mixture:

σa|x t( ) � wσUSa|x t( ) + 1 − w( )σSa|x t( ) ∀a, x. (16)

Clearly, σa|x(t) is an assemblage that might contain both unsteerable
and steerable correlations, with the constraint 0 ≤ w ≤ 1. The TSW
for a given assemblage σa|x(t) is defined by:

WTS � 1 − w′, (17)
where w′ is the maximum value of w. The TSW may be interpreted
as the minimal steerable resources required to reproduce temporal
steerable assemblage, i.e., WTS = 0 and 1 for minimal and maximal
steerability, respectively. w′ may be obtained by semi-definite
programming:

Find w′ � maxTr∑
λ

wσλ,

subject to σa|x t( ) −∑
λ

qλ a|x( )wσλ⎛⎝ ⎞⎠≥ 0 ∀a, x

wσλ ≥ 0 ∀λ,

(18)

where qλ(a|x) are the extremal values of Pλ(a|x).
Now, under the noisy quantum channel, these correlations

deteriorate, and Chen et al.(2016) showed that WTS is

non-increasing under local operations. Therefore, we have the
monotonicity condition:

WTS
ρ ≥WTS

Φ ρ[ ]. (19)

A Markov process satisfies the aforementioned condition, and a
non-Markovian process violates it. Given this fact, a measure of non-
Markovianity is nothing but the area under the positive slope
of WTS

Φ[ρ]:

N TSW � ∫t

t�0 ; dWTS
dt > 0

dWTS

dt
dt, (20)

which, by the factor of 1
2 is equivalent, to:

N ≔ ∫tmax

t0

dWTS

dt

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣dt + WTS

tmax
WTS

t0
( ). (21)

It is important to mention thatN TSW is only a sufficient and not
a necessary condition for the non-Markovianity of Φ. There may be
channels that will be detected as Markovian by this measure, while
other measures may detect them as non-Markovian. The breakdown
of the monotonicity of the TSW may be interpreted as information
back-flow from the environment to the system; hence, this measure
captures the range of memory effects similar to the BLP approach.

2.4.2 Pseudo-density matrix
Recently, attempts have been made to define states across time,

similar to the states defined in space (Cotler et al., 2018; Zhang et al.,
2020; Zhang, 2021). It has been shown that both these states have
different structures, and a construction by Fitzsimons et al. (2015)
and Pisarczyk et al. (2019) called the PDMwas developed, which is a
state correlated in spacetime, allowing for a treatment of correlations
in space and time on an equal footing. However, one should note
that the framework is ambiguous for systems of dimensions other
than prime power (Horsman et al., 2017).

Recently, Utagi (2021) defined a measure for non-Markovianity
based on temporal correlation in the PDM. Utilizing the fact that the
most general PDM is constructed by making measurements before
and after a system passes through a quantum channel, one could
quantify quantum non-Markovianity in the quantum channel in a
straightforward way. Here, for simplicity, we consider a qubit across
time evolved through a quantum channel. Let ρ be the input state
andΦ(tB, tA) a quantum channel that takes a density operator ρA on
L(HA) at time tA to an operator ρB on L(HB) at time tB. Then, the
two-point PDM is given by:

RAB � I ⊗ Φ( ) ρ ⊗
I

2
, swap{ }[ ] (22)

where swap ≔ 1
2∑3

i�0σ i ⊗ σ i, {â, b̂} � âb̂ + b̂â is the anti-
commutator of operators â and b̂, and σi are Pauli-X, -Y, and -Z
operators with σ0 = I. In fact, it can be shown (Horsman et al., 2017)
that the two-point PDM can be written as:

RAB � 1
2

ρA ⊗
IB
2
χAB + χABρA ⊗

IB
2

( ), (23)

where χAB is the Choi state of the channelΦ, which derives from the
so-called start product. One must note that the PDM is Hermitian
and has unit trace but is not positive semi-definite when it is
constructed out of measurements made in time. The reason is
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that this framework considers the tensor product over the same
Hilbert space of the input and output density operators in order to
define a state across time. However, under partial trace, it describes a
positive semi-definite operator at each instant of time, which is
consistent with the current formulation of quantum mechanics.

A measure of temporal correlations in the PDM has been
defined by Pisarczyk et al. (2019):

F � log2‖RAB‖1, (24)
which implies that, when F > 0, the state RAB is temporally
correlated. Since F is non-increasing under local quantum
operations, for a Markovian channel Φ, the following condition
holds:

FΦ ρ[ ] t( )≥FΦ ρ[ ] t + τ( ), (25)

with t + τ ≥ t. A non-Markovian (or CP-indivisible) channel breaks
the monotonicity condition (Eq. 25). Following Rivas et al.(2010)
and Chen et al.(2016), a measure has been proposed by Utagi (2021)
as the area under the positive slope of FΦ[ρ]t):

N causality ≔ max
ρ

∫
σ ρ,E,t( ) > 0

dt σ ρ,E,t( ), (26)

where

σ ρ,E,t( ) �
dF

dt
.

The aforementioned definition, by a factor of 12, is equivalent to:

N causality ≔ max
ρ

∫tmax

t0

dF

dt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣dt + Ftmax − Ft0( ). (27)

The integral (Eq. 27) is such that, for a non-Markovian process, the
derivative of F is positive and N causality > 0. For a time-dependent
Markovian (or CP-divisible) process, the derivative of F is negative
and hence N causality � 0. It has been shown, using a
phenomenological process, that N causality > 0 corresponds to the
negativity of the decay rate in the master equation, which is
equivalent to the RHP definition. It has also been shown that, for
a pair of states optimal for the process under consideration,
N causality > 0 also corresponds to information back-flow, and
hence is understood to be equivalent to the BLP definition. This
equivalence is due to the fact that the process considered in Utagi
(2021) has a single jump operator in the Lindbladian. Interestingly,
however, Utagi (2021) showed that this equivalence between the
PDM-based measure and the BLP measure breaks down when non-
Markovianity solely originates from the non-unital part of the
channel.

Here again, we mention that the PDM-based non-Markovianity
measure is a sufficient but not a necessary criterion for non-
Markovianity. However, Ku et al. (2018) showed that PDM
correlations contain a stronger form of quantum direct cause,
while temporal steerable correlations contain a weaker form.
There are certain advantages to using the PDM-based measure
over the TSW. The PDM-based measure (Eq. 27) does not
require any optimization procedure, and it is easy to compute.
However, both measures do not require optimization over the input
states as the BLPmeasure requires, making these measures relatively
easy to compute. A limitation of the PDM is that, in its current form,

it is ambiguously defined for a system with a dimension other than
prime power (Horsman et al., 2017). The full validity of these two
measures requires further study.

2.5 Equivalence of the measures and
regimes of failure

In fact, there exists a hierarchy among divisible maps
(Chruściński et al., 2011; Chruściński and Maniscalco, 2014), in
which if a process is non-Markovian according to the BLP measure,
then the corresponding map Φ(t, 0) is termed positive (P-)
indivisible even when the intermediate map Φ(t, s) is not
positive, in the sense that it takes a positive state to a negative
state. In contrast, a CP-indivisible map can be P-divisible. This
suggests that these definitions need not be equivalent, which is the
case for an “eternally” non-Markovian Pauli channel (Hall et al.,
2014), for example, which is CP-indivisible but P-divisible.
However, for certain non-unital channels, the BLP measure fails
and may require some modification (Liu et al., 2013b). The BLP
indicator essentially fails when the environment evolves
independent of the system (Budini, 2018a). It is interesting to
note that, when there is only a single decoherence channel,
which corresponds to single jump operator in the Lindbladian,
both CP- and P-indivisibility definitions coincide (Breuer et al.,
2016a) for any non-Markovian process. P- and CP-divisibility-based
witnesses, in general, coincide for bijective maps (Bylicka et al.,
2017). Interestingly, Chakraborty and Chruściński (2019) showed
that information back-flow and CP-indivisibility are equivalent
notions for any open qubit evolution. Recently, it has been noted
that the negativity of the decay rate is not sufficient to capture CP-
indivisibility for non-invertible maps (Chruściński et al., 2018),
particularly when there are multiple time-dependent decay rates
in the master equation. Interestingly, P- and CP-divisibility as
notions of Markovianity coincide for multi-level amplitude
damping processes (Chruściński et al., 2022).

It must be noted that the PDM contains correlations that
characterize a form of strong direct quantum cause, while
temporal steerable correlations contain a weaker form. Chen
et al. (2016) noted that the measure based on the TWS is
necessary but sufficient to detect non-Markovianity. Therefore, it
remains an open question as to whether these measures for non-
Markovianity vary in their ability to detect weaker and stronger
forms of non-Markovianity, as the RHP and BLP measures,
respectively, do. So far, it is clear that the causality-based
measure of Utagi (2021) is sufficient, but it is not yet known
whether it is also necessary as a non-Markovianity indicator.

However, these definition and measures, respectively, detect and
quantify the non-Markovianity of only CP- and P-indivisible
processes. However, it is known that there exist non-Markovian
processes with a colored environmental memory spectrum, hence
being non-Markovian (Yu and Eberly, 2010; Kumar et al., 2018) but
CP-divisible. These processes, even though CP-divisible, can delay
entanglement sudden death because of the quantum memory effect.
It has also been noted that, when the generator of the dynamics
depends on the initial time, this leads to a kind of memory effect in
the dynamics on the level of the master equation even when the
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dynamics are CP-divisible (Chruściński and Kossakowski, 2010;
Benatti et al., 2012; Utagi et al., 2020b).

An interesting notion of memorylessness (or Markovianity) was
proposed by Utagi et al. (2020b), in which a dynamical map is said to be
Markovian (more precisely a semigroup) if the dynamical map is
independent of the initial time. This notion was termed “temporal self-
similarity” in the sense that the formof themapremains the same throughout
the dynamics. This notion is, in fact, commensurate with the time-
homogeneity of semigroup evolution. The motivation behind this notion
was to find a witness and measure of non-Markovianity for certain kinds of
noise, such as Ornstein–Uhlenbeck and power-law noise, that have a colored
memory spectrum (Kumar et al., 2018) but are CP-divisible, and hence
undetectable by the RHPmeasure. Themeasure based on the deviation from
semigroup structure proposed by Utagi et al. (2020b) is as follows.

From Eq. 7, one may obtain the infinitesimal map:

δΦ( )ρ t( ) � T exp ∫t+dt

t
L τ( )dτ( )ρ t( ) � 1 + L t( )dt( )ρ t( ). (28)

From Choi–Jamiołkowski (CJ) isomorphism, the Choi state χΦ(t) of
the infinitesimal map (Eq. 28) is found to be (d|ψ+〉〈ψ+| + χL(t)dt),
where χA denotes the Choi state of the operator A in question and
|ψ+〉 ≡ d−1/2∑i|i, i〉 is the maximally entangled d-dimensional state.
Some simple algebra gives one the Choi state of the generator. The
authors use the time-averaged distance between the Choi states of
the time-independent (L) and time-dependent (L(t)) generators to
quantify non-Markovianity, given as:

N SSS � min
γ

1
T
∫T

0
‖ΔL‖1dt, (29)

where T represents some time interval. Here,
ΔL ≡ δχΦ(t) − δχΦ � (χL(t) − χL)dt. The minimization over time-
independent L leads to the minimization over all possible time-
independent decay rates γ. Positive N SSS means that a process is
non-Markovian even when it is CP-divisible. This feature makes this
measure a sufficient and necessary criterion for non-Markovianity.

Recently, Budini (2018b) and Budini (2019) proposed a
definition of non-Markovianity that can detect memory present
even in CP-divisible processes (de Lima Silva et al., 2020). Here, the
memory effect is associated with the breakdown of CPF
independence (or to the existence of CPF correlations), which is
calculated using only three (sufficient) consecutive measurements
on the system and post-selection on the outcomes. Although
past–future independence, shown by Li et al. (2018) to be
equivalent to “composability,” and thence to the semigroup
structure of the dynamical maps, one may expect that semigroup
dynamics generate statistics that obey CPF independence as
proposed by Budini (2018b) and Yu et al.(2019).

From this section, one understands that any witness that detects
the non-Markovianity of a CP-divisible process is necessary and
sufficient. We discuss this in detail in sections 4 and 6.

3 Interlude: The problem of (initial)
system-environment correlations

As previously noted, a master equation, under BM
approximation, need not exist if the initial S-E correlations are
taken into account. Before going into these details, it is pertinent to

ask when decoherence actually begins, given that the underlying
system evolution is described by a CP map (i.e., assuming no initial
S-E correlations). We briefly highlight the relevant literature in the
next sub-section and then move on to the issues surrounding the
physically viable description of quantum stochastic processes
without needing the initial S-E state to be separable.

3.1 S-E correlations, decoherence, and non-
Markovianity

It is generally understood that decoherence takes place when the
system degrees of freedom “entangle” with that of the environment;
hence, entanglement must be necessary for decoherence
(Schlosshauer, 2007). However, this common wisdom might be
mistaken, as Pernice and Strunz (2011) showed that this holds
only when the system state starts out as a pure state. If the system’s
initial state is a mixed state, then decoherence may begin well before
the system and environment get entangled. This also suggests that
classical correlations might suffice for decoherence to take place.

Given that correlations, whether classical or quantum, are
responsible for the onset of decoherence, it is interesting to
explore the relationship between S-E correlations and non-
Markovianity. The earliest notion of quantum non-Markovianity
actually goes back to the deviation from semigroup structure, which
arises out of the so-called BM approximation (Breuer et al., 2016a),
which basically means that the system and environment are weakly
coupled for all times.

The connection of S-E correlations with non-Markovianity has
attracted the attention of the quantum information community
(Devi and Rajagopal, 2011; Breuer et al., 2016a; de Vega and
Alonso, 2017; Li et al., 2018). The S-E joint state may start out as
a product state, and later, due to strong coupling between the system
and environment, there may be certain points in time when the S-E
correlations either weaken or even break momentarily, causing the
open system dynamics to transition from being Markovian to non-
Markovian. It has been noted that the S-E correlations decrease
when there is information back-flow from the environment to the
system (Mazzola et al., 2012). However, it has also been shown by
Pernice et al. (2012) that there need not be any relationship between
the decrease in S-E quantum correlations (specifically S-E
entanglement) and non-Markovianity. Interestingly, if the
environment is classical, there may be maximally non-Markovian
evolution without S-E back-action or information flow (Budini,
2018a). When two qubits are independently interacting with a
classical random field, there may be revivals of classical
correlations, quantum discord, and entanglement between them
even when there is no back-action from the environment to qubits
(Franco et al., 2012).

3.2 Initial S-E quantum correlations, CP
evolution, and non-Markovianity

As previously noted, S-E correlations play a central role in
open systems. To describe the reduced dynamics of the system via
Lindblad Eq. 3, the joint S-E state is assumed to be factorized,
i.e., ρs (0) ⊗ ρe, at the initial time, and the environment state ρE is
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assumed to be fixed for all times. Now, given that the initial S-E
state in not a product, it has been argued that the reduced
dynamics of the system are not-CP (Pechukas, 1994; Alicki,
1995; Pechukas, 1995; Shaji and Sudarshan, 2005; Rodríguez-
Rosario et al., 2008; Schmid et al., 2019) for some early results.
However, it is possible to have physically meaningful not-CP maps,
given that the domain of validity is known where such a map would
still output a positive state (Jordan et al., 2004). Moreover,
Pechukas’s assignment map can be made linear by sacrificing
either positivity or reasonable consistency (Rodríguez-Rosario
et al., 2010). There have also been arguments for and against
vanishing quantum discord as being a necessary and sufficient
condition for complete positivity (Shabani and Lidar, 2009;
Brodutch et al., 2013; Sabapathy et al., 2013). However, it has
been clearly established that, when initial S-E correlations are
classical, the reduced dynamics can always be described by a CP
map (Rodríguez-Rosario et al., 2008).

Buscemi (2014) argued that, if there are no anomalous
information back-flows from the environment to system, it is
necessary and sufficient to describe the reduced dynamics of the
system by a CPTP map. Interestingly, it has been shown
previously that a witness for initial S-E correlations upper
bounds the witness of non-Markovianity based on the BLP (or
information back-flow) criterion (Rodríguez-Rosario et al.,
2012). This prompts further investigations into the problem of
initial S-E correlations and non-Markovianity. Recently,
Strasberg and Esposito (2018) introduced a measure that
quantifies non-Markovianity even when the initial S-E state is
entangled. Schmid et al. (2019) argued that initial S-E
correlations do not imply the failure of complete positivity,
from the point of view of quantum causality. Ringbauer et al.
(2015) proposed a method to characterize a superchannel by
making measurements on the system alone, even when it is
correlated with the environment. A more general result by
Paz-Silva et al. (2019) asserts that it is still possible to have a
d2 (or less) number (i.e., a family) of CP maps describing d-
dimensional system evolution with initial S-E (quantum)
correlations, i.e., by doing local operations on the system, one
could derive a set of CP maps that describe the S-E evolution with
the initially correlated state.

This is still an active area of research in which there is no clear
consensus concerning the role of initial S-E (quantum)
correlations in open system dynamics where complete
positivity is paramount. Alipour et al. (2020) proposed a
technique that makes use of the correlation parent operator
that allows one to write a master equation with the initial
correlation within a weak coupling regime. A technique based
on adapted projection operators was introduced by Trevisan et al.
(2021), in which they applied a perturbative method to model a
global S-E evolution that incorporates fully general initial
correlations. For other recent attempts that have been made to
accommodate initial S-E correlations into a valid theory of open
systems, without sacrificing linearity and complete positivity, see
Paz-Silva et al. (2019), Pollock et al. (2018b), and Pollock et al.
(2018a), who specifically aimed to characterize open system
evolution operationally and allow a quantum stochastic
process to have an appropriate classical limit. We discuss this
further in Section 4.

4 Part II: Multi-time correlations and
non-Markovian processes

So far, we have been considering only the two-time parameter
dynamical maps that are related to two-time correlation functions of
the environment. In fact, the quantum regression hypothesis (QRH)
or quantum regression formula (QRF) can be obtained through two-
time maps, which helps us relate its satisfaction to the semigroup
evolution of the open system under the initial factorized state
assumption (Li et al., 2018). However, recent interest has grown
in reconsidering quantum multi-time processes (Lindblad, 1979)
generalizing the so-called quantum stochastic process (Sudarshan
et al., 1961a) in light of operational quantum theory.

4.1 Quantum regression

The QRH or QRF must be invoked for the calculation of multi-
time correlation functions, without the knowledge of environmental
degrees of freedom, i.e., only with the mean values of the operator on
the system Hilbert space alone. However, while non-Markovian
evolution must violate the QRH, Markovian evolution (in the sense
of CP-divisibility) can also violate the QRH (Guarnieri et al., 2014).
Under the weak coupling and singular coupling limit, semigroup
dynamics obey the QRH (Davies, 1974; Davies, 1976; Swain, 1981;
Dümcke, 1983). It has been shown that the BM approximation
implies no-back-action (Swain, 1981), which means that the
environment does not evolve due to the interaction with the
system, and the S-E state remains factorized for all times. It has
been shown that CP-divisible dynamics violate the QRH (Guarnieri
et al., 2014). This suggests that even the RHP- or CP-divisibility-
based criteria for non-Markovianity, such as the BLP criterion, are
also not necessary but sufficient. Therefore, one is tempted to
conjecture that violation of the QRH is a necessary and sufficient
condition for a quantum stochastic process to be non-Markovian.

4.2 Process tensor

A classical stochastic process (X, t) is a collection of the joint
probability distribution of a system’s state:

P Xj, tj;Xj−1, tj−1;/ ;X1, t1;X0, t0( ) ∀j ∈ N, (30)

which must satisfy Kolmogorov consistency conditions, where X is
the random variable defining the process and tj are the time
instances at which Xj outcomes occur with probabilities P (Xj, tj).
Then, a Markov process or chain satisfies the following condition:

P Xj, tj|Xj−1, tj−1;/ ;X1, t1;X0, t0( ) � P Xj, tj|Xj−1, tj−1( ) ∀j ∈ N,

(31)
where P (A|B) denotes the probability of obtaining A given B.

It is not straightforward to define similar joint probability
distribution in the quantum domain. There is uncertainty
regarding the most general way in which one may represent a
physical process that also has an operational meaning. Quantum
combs formalism is one such method (Chiribella et al., 2009;
Pollock et al., 2018b). As opposed to the traditional approach
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discussed in Section 2, where only two-time correlations are
considered to define quantum non-Markovianity, process
tensor formalism defines non-Markovianity based on the
presence of temporal correlations in a multi-time quantum
stochastic process (Pollock et al., 2018a; Pollock et al., 2018b).
Such descriptions of open systems might have specific
implications for designing information processing tasks in the
laboratory, where two-time correlations might not capture the
full characteristics of an underlying process.

A quantum process is characterized by j steps, with 0 ≤ j ≤ N,
when the system’s state can be predicted at any instant j. The
system is subjected to intermediary operations A which may be
interrogations, manipulations, unitaries, or CP maps in general,
and let {Aj} and {Mj} be the set of local operations and
measurements, respectively, on the system. The “process
tensor” Tj:0 is a mapping from the sequence of operations (see
Figure 2):

Aj−1: 0 ≔ Aj−1;Aj−1;/A1;A0{ } (32)

to the state ρj:

ρj � Tj: 0 Aj−1: 0[ ]. (33)

In general, Tj:0 satisfies: i) linearity: T[aA + bB � aT[A] + bT[B]; ii)
complete positivity, that it is a positive map on an extended space:
(T ⊗ I)[ASA] = ρSA ≥ 0; and iii) containment: if j ≥ j′ ≥ k′ ≥ k, then Tj′:
k′ is contained in Tj:k, in the sense that the process tensor based on
fewer times is not obtained by summing over excessive times, but
rather by appending the identity maps for the excessive times.

The process tensor can be used to describe open quantum
system dynamics. Let Uj: j−1 be the S-E unitary that acts on S-E
space as Uk: l[ρSEl ] � Uk: lρSEl U†

k: l � ρSEk , with Uk: lU
†
k: l � I, and the

system state be given by tracing over the environment ρj � TrE[ρSEj ];
then, the total dynamics are as follows:

ρSEj � Uj: j−1Aj−1Uj−1: j−2/A1U1: 0A0 ρSE0[ ], (34)

where ρSE0 is the initial S-E state. Note that Tj:0 itself can be given a
Kraus decomposition (Pollock et al., 2018a). In an appropriate limit,
the process tensor reduces to the conventional two-time maps
picture of open system evolution:

ρj � TrE Uj: 0ρ
S
0 ⊗ ρE0U

†
j: 0( ) � Φj: 0 ρ0[ ], (35)

where Φj:0 is a CPTP map. Therefore, ρj can be obtained from the
process tensor by applying the identity as intermediate control
operations on the system:

ρj � Tj: 0 I; I;/I;A0[ ]. (36)

The advantage of using the process tensor framework is that one
may map temporal correlations in the process to a many-body
entangled state. A j-step process can be mapped to a many-body
state via generalized CJ isomorphism:

Tj: 0 Aj−1: 0[ ] � TrS ξj: 0 IS ⊗ Aj−1 ⊗ I ⊗/⊗ A0 ⊗ I Ψ+( )⊗j−1[ ]( )[ ],
(37)

where the partial trace is over all subsystems except the one
corresponding to the output of the Tj:0 and Ψ+ is a maximally
entangled bipartite density operator. In other words, the action of
the process tensor Tj:0 on the sequence of operations Aj−1:0 is
equivalent to projecting the Choi state ξj:0 onto the Choi state of
Aj−1:0. Here, ξj:0 is called the generalized Choi state of the j-step
process that is mapped to a (2j + 1)-body state that has a matrix-
product-operator representation (Perez-Garcia et al., 2007), and the
Choi state ξj:0 has the bond dimension that is bounded by the
effective dimension of the environment (Pollock et al., 2018a).

Given the aforementioned framework, we are in a position to
discuss a definition of quantum (non-) Markovianity from an
operational point of view. Let us denote the system at time step i
as a function of control operations: ρi = ρi (Ai−1:0). After the
measurement, the system is re-prepared in a state P(s)

j , selected
randomly out of a set {P(s)

j }. The procedure for measuring and re-

FIGURE 2
Schematic representation of the process tensor framework with memory. Aj are the control operations andM(r)

j and P(s)
j are the measurements and

re-prepared states, respectively.
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preparing the system introduces a “causal break” between the past
k ≤ j and future i > j (see Figure 2). Similar to the classical definition,
the Markov condition in the quantum regime reads:

ρi P
s( )

j |M r( )
j ;Aj−1: 0( ) � ρi P

s( )
j( ) ∀ P s( )

j ,M r( )
j ,Aj−1: 0{ } and ∀ i, j ∈ 0, N{ }.

(38)

On the contrary, a quantum process is non-Markovian if there exist
at least two distinct, independent operation sets {M(r)

j ;Aj−1: 0} and
{M′(r′)

j ;Aj−1: 0′ }, such that the resulting two conditional states are
different:

ρi P
s( )
j |M r( )

j ;Aj−1: 0( ) ≠ ρi P s( )
j |M′ r′( )

j ;Aj−1: 0′( ). (39)

The system itself cannot carry the information into the future
across the causal breaks. An environment and the S-E correlations
carry the information about the initial state of the system across
causal breaks (see Figure 2), and this is what is called quantum non-
Markovian memory in the process tensor. In order to quantify the
memory in the process, one makes use of the mapping from the
temporal correlated process tensor to a many-body state via
generalized CJ isomorphism. Given the intermediate maps Φj:j−1

that take a state from time step j − 1 to j, a Markov process is fully
characterized by its Choi state on the tensor product of the initial
system state and the Choi states of independent CPTP two-time
maps:

ξMarkov
j: 0 � χj: j−1 ⊗ χj−1: j−2 ⊗/⊗ χ1: 0 ⊗ ρ0

� ⊗
N

j�1
χj: j−1 ⊗ ρ0,

(40)

where ρ0 is the average initial state of the process. In other words, the
process is said to be a Markov chain if and only if the process tensor
is a product state across time. This allows one to make use of a quasi-
distance based measure of non-Markovianity:

N � min
ξMarkov
j: 0

D ξj: 0‖ξMarkov
j: 0( ), (41)

which can be interpreted as the minimum distance from the closest
Markov process, where D could be any CP-contractive2 quasi-
distance, such as quantum relative entropy D (ρ‖σ) = Tr [ρ log
ρ − ρ log σ] (White et al., 2021).

Here, some important remarks are in order. The definition in Eq.
41 is a necessary and sufficient condition for a process to be called
non-Markovian; however, the converse may not be true. For example,
Milz et al. (2019) recently proposed a notion of “operational
divisibility,” which captures the memory effect present in a CP-
divisible process. The process tensor is generally sufficient to
capture all the notions of non-Markovianity under certain limits;
for example, it incorporates BLP- and RHP-based witnesses assuming
that all intermediary control operations are identities. It circumvents
the problems of the conventional two-timemap approach when initial
S-E correlations are present; it allows CP, linear dynamics to be
reconstructed from measurement data via quantum process
tomography (for proofs and further details, see Pollock et al.,

2018a). The process tensor also tends to a definition of classical
memory when the choice of instruments, as well as the causal breaks,
is fixed. It provides a clear operational meaning in addressing the
questions of open system evolution by separating the experimenter
from the underlying process that is inaccessible, making it a suitable
framework to handle information processing tasks in the laboratory.
One such situation where one wants to remove certain unwanted
memory effects arising from cross-talk was recently studied in detail
by White et al. (2022) using the process tensor framework.

Quantum combs, in fact, provide a unified framework to
describe quantum channels with classical and quantum memory.
Therefore, it is pertinent to ask how one can distinguish such
memory effects. Interestingly, Giarmatzi and Costa (2021) used
the process matrix framework, proposed by Oreshkov et al. (2012),
to “witness” genuinely quantum memory. It is interesting to note
that the process tensor can be used to identify genuinely quantum
memory effects in an arbitrary process. Considering that a non-
Markovian process deviates from a product of marginals, given in
Eq. 40, the positive value of entanglement negativity, given by
max
τB

1
2 [‖ξτBj: 0‖1 − 1], of the Choi state ξj:0 gives a measure of the

“quantumness” of non-Markovian memory, where τB is the partial
transpose over some bi-partition, which could be an interval
between any two time-steps (White et al., 2021).

4.3 Conditional past–future correlations

The notion of past–future independence as a definition of
Markovianity was used by Li et al. (2018) to analyze a hierarchy
in the definition of quantumMarkovianity. Recently, Budini (2018b)
proposed a definition of non-Markovianity based on the violation of
CPF independence. Similar to process tensor formalism, CPF
independence is generated by the “causal break” in the process
via intermediate measurements. Hence, it is claimed that the
definition via CPF independence has operational meaning in the
traditional approach (Budini, 2022).

In a classical stochastic process, measuring a system at three
successive instances ta < tb < tc yields outcomes a→ b→ c. AMarkov
process gives rise to factorized joint probability conditioned on
immediate past outcomes:

P a, b, c( ) � P c|b( )P b|a( )P a( ), (42)
where P(a) is the probability that the outcome a occurs and P (b|
a) is the probability of b occurring given that a has been learned.
Bayes’ rule allows us to formulate the criterion for Markovianity:
that given a fixed intermediate state, the future outcomes become
statistically independent from the past ones. So, the conditional
probability of future event c and past event a given the present b is
given by:

P c, a|b( ) � P c|b( )P a|b( ) . (43)
This, in fact, can be quantified via the correlation function (Budini,
2018b):

Cpf ≡ 〈OcOa〉b − 〈Oc〉b〈Oa〉b , (44)
where the operator O is specific system property one would want to
measure for each system state. Given this, we can write Cpf as:

2 Here, contractivity means that a CP-contractive distance must satisfy the
data processing inequality under a Markov CPTP map Φ:
D(Φ[ρ]‖Φ[σ]) ≤ D(ρ‖σ).
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Cpf � ∑
ca

P c, a|b( ) − P c|b( )P a|b( )[ ]OcOa . (45)

Here, the sum is over all possible outcomes c ∈ {c1, c2, . . . } and a ∈
{a1, a2, . . . } that occur at tc ∈ {tc1, tc1 . . .} and ta ∈ {ta1, ta1 . . .},
respectively, with a given, fixed value of b ∈ {b1, b2, . . . }.
Generally, a quantum Markov process condition satisfies Eq. 43
in the quantum setting as well, yielding Cpf = 0, which provides a
straightforward generalization of the classical definition to the
quantum domain.

Calculating the CPF correlation measure for the quantum non-
Markovian process boils down to finding the predictive and
retrodictive probabilities for given system operators and
substituting them in Eq. 45, which we discuss in the following
paragraphs.

Let Ma, Mb, and Mc be the measurement operators successively
performed on the system at ta, tb, and tc, respectively, with the
condition that ∑jM

†
jMj � I, where j = a or b or c. Given that a is in

the past of b, the conditional probability P (a|b) is a retrodicted
quantum probability. In terms of the measurement operators Ma

and the past quantum state ρ ≡ (ρ0, Eb), this can be written as
P(a|b) � Tr[EbMaρ0M

†
aE

†
b], where ρ0 is the initial density matrix

and Eb � M†
aMa is the “effect” operator. On the other hand, P (c|b,

a) is the standard predictive probability. Therefore, substituting
these conditional probabilities in the LHS of Eq. 43, we have:

P c, a|b( ) � Tr Ecρb( ) · Tr EbMaρ0M
†
a( )∑a′Tr EbMa′ρ0M
†
a′( ) . (46)

Assuming that the system evolves under the action of the
environment, one may adopt the two-time dynamical (CPTP)
map between two successive instances. Then, the conditional
probabilities will vary according to the intermediate evolution
between measurements as:

P c, a|b( ) � Tr EcΦ′ ρb[ ]( ) · Tr EbΦ Maρ0M
†
a[ ]( )∑a′Tr EbΦ Ma′ρM
†
a′[ )( ], (47)

where Φ = Φ(tb, ta) and Φ′ = Φ′(tc, tb), with Φt � exp {tL}, where L
is the generator of the semigroup dynamics. In general, environment
interaction may generate dynamics that are not semigroup and may
even be non-Markovian. In this case, the dynamical map Φ(t, t0)
between two successive instances will follow Eq. 7.

The CPF correlation measure has some interesting properties.
For a non-Markovian process, either Cpf < 0 or Cpf > 0. Since this
criterion witnesses memory in CP-divisible processes, it may be
termed a necessary and sufficient condition for non-Markovianity.
Furthermore, the process is Markovian if Cpf = 0. The reader is
referred to Budini (2018b) for other properties.

5 Quantum non-Markovianity in
experiments

It is now well-acknowledged that simulating open quantum
systems is important for many technological applications. Memory
effects could prove advantageous or disadvantageous for quantum
information processing, depending on the task at hand. Therefore, it
is imperative to discuss and understand aspects of simulating

quantum non-Markovianity in experimental setups. In this
section, we present a brief review of experimental realizations of
open system dynamics, with a particular focus on experiments also
studying signatures of non-Markovianity.

One of the robust methods for simulating open system dynamics
is via optical setups (Salles et al., 2008; Cialdi et al., 2017; Rossi et al.,
2017; Cuevas et al., 2019). These setups mimic the effect of an
environment on a quantum system and have proven effective in
experimentally realizing a quantum channel. In Chiuri et al. (2012),
the non-Markovian dynamics of a qubit attached to an ancilla and in
a simulated environment (an Ising chain, for instance) were
experimentally implemented, and the importance of strong S-E
correlations in the emergence of non-Markovianity was
highlighted. A similar setup was also used in Liu et al. (2018),
where a simulated Ising chain in a transverse field was used as the
environment to study the arbitrary dephasing dynamics of a
photonic qubit. Similar setups to simulate quantum channels
have been used to understand the transition from Markovian to
non-Markovian dynamics by controlling the S-E coupling (Liu et al.,
2011; Chiuri et al., 2012; Fisher et al., 2012; Tang et al., 2012; Lyyra
et al., 2022).

We noted previously that an open system (S) coupled to an
ancilla (A), while undergoing non-Markovian evolution,
establishes quantum correlations with A that vary non-
monotonously in time. In Wu et al. (2020), by coupling the
polarization degree (system) with the frequency degree
(environment), it was experimentally demonstrated that
quantum-incoherent relative entropy of coherence (QI-REC) is
commensurate with the S-A entanglement, thus establishing a

FIGURE 3
Optical simulation of the amplitude damping channel using a
Sagnac interferometer (Salles et al., 2008). Here, PBS is the
polarization beam splitter and HWP(θV) (the black rectangular slabs) is
a half-wave plate that rotates the vertical polarization by an angle
θ, as well as the horizontal polarization. PP(ϕ) is a phase plate. The
white rectangular slabs are perfectly reflecting mirrors. In the
aforementioned setup, setting ϕ = 0, one realizes an amplitude
damping channel for arbitrary θV. Note that the symbols 0 and 1 are
labels for optical modes. For different values of θH, θV, θ1, and ϕ, other
prototypical quantum channels can be realized (see Table II in Salles
et al., 2008).
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relationship between QI-REC and information back-flow from the
environment to the system.

Interestingly, it has been shown via experiments (Farías et al.,
2012) that, when a part of a Bell pair interacts with an
environment, the dynamics might lead to genuine multipartite
entanglement between all the environment degrees of freedom
and the initial Bell pair. When there are initial correlations in a
composite environment, an open bipartite system interacting
with it might have locally Markovian evolution, while globally,
it may show strong non-local memory effects (Laine et al., 2012),
and this counter-intuitive effect has been realized experimentally
in Liu et al. (2013a). Quantum non-Markovianity may also arise
when two Markovian channels are convex combined, and Uriri
et al.(2020) experimentally confirmed how a convex mixture of
two Pauli semigroups may result in a CP-indivisible quantum
channel. In Fanchini et al. (2014), the polarization degree of
freedom was taken to be the two-level open system, and a Sagnac
interferometer was used to realize the non-Markovian amplitude
damping of photon polarization.

All of the aforementioned works in the optical domain used
an interferometric setup to simulate the decoherence of quantum
systems. In Figure 3, we provide a schematic example of such a
setup. The photonic simulation of quantum channels may find
certain unique applications in quantum information tasks. For
example, Utagi et al. (2020a) showed that, by deliberately adding
amplitude damping quantum noise on the polarization degree of
freedom (via optical simulation) in the ping-pong protocol
proposed by Boström and Felbinger (2002), one could
improve security against an attack (Wójcik, 2003; Boström
and Felbinger, 2008). It is known that squeezing is a resource
for continuous variable quantum information processing. Xiong
et al. (2018) showed that a cavity-optomechanical system
interacting with a non-Markovian environment can lead to the
enhanced squeezing of the mechanical mode. Therefore,
exploring the optical implementation of non-Markovian
quantum channels may find similar counter-intuitive benefits
in quantum information tasks.

Although we have focused mainly on optical setups in this
section, other platforms, such as NMR (Bernardes et al., 2015),
trapped ions (Wittemer et al., 2018), and multi-qubit
superconducting devices (White et al., 2020), have also been used
to implement non-Markovian open system dynamics. The
importance of such experimental characterizations of non-
Markovianity has been further highlighted by recent works
showing how unwanted memory effects that creep in due to
cross-talk between superconducting qubits in quantum computer
can be removed (Gambetta et al., 2012; White et al., 2022); however,
mitigating errors due to non-Markovian memory effects arising
from an uncontrollable environment can prove to be significantly
harder.

6 Afterword: Summary and future
outlook

Traditionally, the dynamics of an open system is described by
either the master equation or a two-time dynamical map (Breuer
and Petruccione, 2002; Banerjee, 2018). Open system evolution

may be categorized mainly as Markovian or non-Markovian
(Rivas et al., 2014). However, a precise and universal
definition of non-Markovianity has remained elusive (Li et al.,
2018), with no known way of translating the classical definitions
to the quantum domain until recently (Pollock et al., 2018a;
Pollock et al., 2018b; Budini, 2018b). We have reviewed some
recent developments in the field, followed by brief accounts of
traditional approaches to characterizing and quantifying
quantum non-Markovianity.

Quantum causality has been a long-standing puzzle within
quantum theory (Brukner, 2014; Costa, 2022; Vilasini and
Renner, 2022). It is interesting to note that quantum
causality and non-Markovianity have been shown to be
intimately connected via quantum temporal correlations.
Notably, Milz et al. (2018) showed that a causally non-
separable process with a tripartite initial entangled state can
simulate a multi-time non-Markovian process. In this review,
we have studied how one can quantify non-Markovianity using
temporal quantum correlations, such as temporal steering
(Chen et al., 2016) and causal correlations in the PDM
(Utagi, 2021). Note, however, that these correlations are
between the states across time. In the future, it will be
interesting to understand whether the PDM can offer a
multi-time characterization of correlations in the process, at
least for the case of qubits. In fact, Zhang et al. (2020) showed
that there are three different mappings from the PDM to a
process matrix, and since the process matrix (Oreshkov et al.,
2012; Costa and Shrapnel, 2016) and the process tensor Pollock
et al. (2018a) essentially arise from quantum combs (Chiribella
et al., 2009), it would be interesting to find mappings from the
multi-time PDM to the process tensor, if any exist.

If one studies open systems within the paradigm of two-time
dynamical maps, one runs into the problem of defining a physically
valid dynamical map that is both CP and linear when initial S-E
quantum correlations are present. Pechukas’s theorem states that, in
order to create such a map, one has to give up either complete
positivity or linearity (Pechukas, 1994; Alicki, 1995; Pechukas,
1995). Later, the debate continued with regards to the nature of
initial S-E correlations, for example, that of quantum discord, and
whether vanishing discord provides a necessary and sufficient
condition. However, recently, some approaches have been
proposed to describe the dynamics of an open system with initial
S-E correlations in a consistent manner, some of which we have
mentioned in Section 3.

The quantum comb (Chiribella et al., 2009) framework talks
about the temporal correlations between observables
corresponding to the dynamical process by mapping a
process to a state via CJ isomorphism. Particularly in the
process tensor framework (Pollock et al., 2018a), temporal
correlations in the multi-time description of a process
corresponds to memory (or non-Markovianity), and the
framework offers the incorporation of (unknown) initial S-E
correlation without sacrificing the linearity and complete
positivity of the map. Moreover, it offers an operational
definition of (non-) Markovianity via quantum process
tomography, which has an appropriate classical limit. It also
offers a solution to the problem of necessary and sufficient
conditions for non-Markovianity.
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Figure 4 depicts the containment of non-Markovian processes
according to various criteria, particularly with regards to necessary
and/or sufficient conditions for these criteria to witness non-
Markovianity. The processes that are non-Markovian according
to the BLP approach are non-Markovian according to all other
criteria; hence, such processes are strongly non-Markovian.
However, if the BLP approach identifies a process as Markovian,
it may still be non-Markovian according to the RHP criterion, and
hence also according to the CPF correlation measure and process
tensor measure. However, there may be processes that are non-
Markovian according CPF correlations and the process tensor
measure, but that are Markovian according to the RHP measure.
Therefore, one may conclude that Box 1 criteria are sufficient and
not necessary relative to boxes 2 and 3. Recent developments
(Budini, 2018b; Pollock et al., 2018b; Milz et al., 2019; Utagi
et al., 2020b) have shown that the RHP criterion is also only
sufficient but not necessary for detecting non-Markovianity
relative to Box 3. Thus, one may conclude that Box 3 represents
necessary and sufficient criteria for quantum non-Markovianity.
Interestingly, it is known that the measure based on the TSW detects
the range of non-Markovianity similar to the BLP approach;
however, it is yet to be found where the TSW measure (Eq. 21)
and the causality based measure (Eq. 27) fit in the aforementioned
containment boxes.

From the perspective of quantum information theory, it is
possible that quantum non-Markovianity may be useful in
certain specific situations. In particular, since quantum non-
Markovianity brings information that is “lost” to the
environment back to the system for certain time-intervals of the
evolution, it might prove advantageous in certain quantum

information processing tasks (Bylicka et al., 2014; Laine et al.,
2014; Utagi et al., 2020a).

On the otherhand, witnessing and characterizing the extent
of non-Markovianity is essential in obtaining a complete
understanding of noise in quantum systems. Indeed, one of
the biggest challenges in scaling up quantum technologies
today is to protect quantum information from environment-
induced decoherence. The theory of quantum error correction
(QEC) (Nielsen and Chuang, 2010) provides the means to
protect information from noise by appending a large number
of physical qubits to create a single, protected logical qubit.
Standard works on QEC have heavily focused on Markovian
noise and, barring a couple of works (Oreshkov and Brun, 2007;
Taranto et al., 2021), the role of QEC in mitigating noise in the
non-Markovian regime remains largely unexplored. Going
beyond error correction, the question of achieving quantum
fault tolerance in the presence of non-Markovian quantum noise
has also been explored in the past (Terhal and Burkard, 2005;
Aharonov et al., 2006). Recently, there have been attempts to
extend the theory of noise-adapted QEC (Ng and Mandayam,
2010; Mandayam and Ng, 2012) to non-Markovian noise models
(Len and Ng, 2018; Kwon et al., 2022; Lautenbacher et al., 2022).
Going forward, characterizing non-Markovianity in near-term
quantum devices and developing QEC protocols adapted to non-
Markovian noise promises to be an important and fruitful
research avenue.

In this contribution, we have attempted to put in perspective
some of the recent developments in defining and measuring
quantum non-Markovianity. It will be interesting to see how
various frameworks of open system dynamics and definitions of

FIGURE 4
Containment of non-Markovianity criteria. Here, Box 1 sufficiently implies boxes 2 and 3, and Box 2 sufficiently implies Box 3, but Box 3 does not
necessarily imply boxes 2 and 1, and Box 2 does not necessarily imply Box 1. Here, we have depicted the containment for the processes that can be fully
characterized by two-time correlations of the environment. Note that the process tensor here is for a two-time step process, and quantum regression is
for two-time correlation functions. The function γ(t) represents the decay rate in the time-local master equation.
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quantum non-Markovianity allow for their uses in highly specific
cases of quantum information processing.
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