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Based on renewed interest in the shortcut-to-adiabaticity techniques in quantum
control, we propose a reverse-engineering approach tomodulate the longitudinal
coupling between a pair of two-level systems with a quantized single-mode
resonator. This allows us to suppress the unwanted transitions in the time-
evolution operator such that the system dynamics resemble a controlled-
phase gate acting in the qubit subspace at the nanosecond scale. The reduced
gating time mitigates the detrimental effect produced by the loss mechanisms in
all aspects. Moreover, we present a possible experimental implementation based
on superconducting quantum circuits. Our work further demonstrates the
versatility of the reverse-engineering method to enhance quantum protocols
based on circuit quantum electrodynamic architecture.
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1 Introduction

Superconducting quantum circuits (SCs) and circuit quantum electrodynamics (cQED)
(Blais et al., 2004; Chiorescu et al., 2004; Wallraff et al., 2004; Devoret and Martinis, 2005;
Wendin and Shumeiko, 2005; You and Nori, 2006; Clarke and Wilhelm, 2008; Schoelkopf
and Girvin, 2008; Devoret and Schoelkopf, 2013; Kockum andNori, 2019; Krantz et al., 2019;
Kjaergaard et al., 2020; Martinis et al., 2020; Blais et al., 2021) have become promising
quantum platforms for quantum information processing (Blais et al., 2007; Blais et al., 2020)
to implement quantum algorithms (Montanaro, 2016). This method has also been suitable
for quantum simulation (Buluta and Nori, 2009; Houck et al., 2012; Georgescu et al., 2014)
and, lately, strong evidence has been provided of computational advantages over its classical
counterpart (Arute et al., 2019; Wu et al., 2021).

The tailor-made feature offered by the quantum platform permits us to engineer
integrated electronic devices that mimic the fundamental elements of cavity QED. For
example, artificial atoms correspond to Josephson junction-based circuits behaving as non-
linear oscillators whose energy spectrum exhibits noticeable large anharmonicity (Bouchiat
et al., 1998; Mooij et al., 1999; Nakamura et al., 1999; Orlando et al., 1999; Martinis et al.,
2002; Koch et al., 2007; Schreier et al., 2008; Manucharyan et al., 2009; Barends et al., 2013;
Nguyen et al., 2019; Yan et al., 2020). At the same time, LC circuits and transmission line

OPEN ACCESS

EDITED BY

Erik Torrontegui,
Universidad Carlos III de Madrid, Spain

REVIEWED BY

Yang Yu,
Nanjing University, China
Chuan Wang,
Beijing Normal University, China

*CORRESPONDENCE

Xi Chen,
xi.chen@ehu.eus

SPECIALTY SECTION

This article was submitted to Quantum
Engineering, a section of the journal
Frontiers in Quantum Science and
Technology

RECEIVED 01 January 2023
ACCEPTED 14 February 2023
PUBLISHED 15 March 2023

CITATION

Li J-X, Cárdenas-López FA and Chen X
(2023), Shortcuts to adiabaticity in a fast
controlled-phase gate in
superconducting quantum circuits.
Front. Quantum Sci. Technol. 2:1135816.
doi: 10.3389/frqst.2023.1135816

COPYRIGHT

© 2023 Li, Cárdenas-López and Chen.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Quantum Science and Technology frontiersin.org01

TYPE Original Research
PUBLISHED 15 March 2023
DOI 10.3389/frqst.2023.1135816

https://www.frontiersin.org/articles/10.3389/frqst.2023.1135816/full
https://www.frontiersin.org/articles/10.3389/frqst.2023.1135816/full
https://www.frontiersin.org/articles/10.3389/frqst.2023.1135816/full
https://www.frontiersin.org/articles/10.3389/frqst.2023.1135816/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frqst.2023.1135816&domain=pdf&date_stamp=2023-03-15
mailto:xi.chen@ehu.eus
mailto:xi.chen@ehu.eus
https://doi.org/10.3389/frqst.2023.1135816
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org/journals/quantum-science-and-technology#editorial-board
https://www.frontiersin.org/journals/quantum-science-and-technology#editorial-board
https://doi.org/10.3389/frqst.2023.1135816


resonators correspond to the quantized field mode (Itoh, 1974;
Göppl et al., 2008). The coupling between these subsystems with
additional circuit elements as the superconducting quantum
interference device (SQUID) allows access to tunable transition
energy and switchable coupling strength (Srinivasan et al., 2011).
Furthermore, the increasing understanding of the fabrication
techniques leads to engineered quantum systems with longer
coherence times that protect them from the action of the
environment (Wendin and Shumeiko, 2005).

With these elements, we aimed to design a set of logic operations
between these artificial atoms that correspond to one- and two-qubit
quantum gates, respectively. In circuit quantum electrodynamics, a
plethora of two-qubit quantum gates has been proposed, which
includes the iSWAP (Bialczak et al., 2010; Dewes et al., 2012; Li et al.,
2020), the controlled-not (CNOT) (Paraoanu, 2006; Rigetti and
Devoret, 2010; Chow et al., 2011), the controlled-phase (CP)
(Strauch et al., 2003; Yang and Han, 2005; DiCarlo et al., 2009;
Yamamoto et al., 2010; Xiong et al., 2022), the cross-resonance gate
(CR) (Paraoanu, 2006; Rigetti and Devoret, 2010; Chow et al., 2011),
and the resonator-induced CP gate (Chow et al., 2013; Paik et al.,
2016), among others. The physics underlying these implementations
relies upon the tunability of control parameters such that the
dynamics on the two-qubit subspace at some sweet spot
represent the desired gate (Li et al., 2020). Likewise, it is also
possible to engineer quantum gates regarding fixed-frequency
qubits that are driven by external microwave pulses (Paraoanu,
2006; Rigetti and Devoret, 2010; Chow et al., 2011; Chow et al., 2013;
Paik et al., 2016). The most common situation is where the effective
two-qubit interaction appears in a dispersive approximation
between the qubits and the mediator (resonator or coupler) (Hua
et al., 2014; Srinivasa et al., 2016), leading to a slow gating time that is
a detriment to gate performance.

An alternative way to improve gate performance would be to
achieve larger coupling strength values or drive the resonator with a
high power signal that yields gating time at a sub-nanosecond time
scale (García-Ripoll et al., 2003; Campbell et al., 2010; Chen, 2011;
Romero et al., 2012). Nevertheless, these extreme considerations
affecting the coupling and drive intensity may provoke leakage
outside the computational basis and introduce unwanted
transitions that will reduce gate performance even more. A way
to circumvent this problem relies upon the use of quantum control
techniques that accelerate the gating time while maintaining
bounded coupling strength between the subsystem and the
intensity drive. Within the broad family of quantum control
techniques, we assess the shortcuts to adiabaticity (STA) (Chen
et al., 2010; Guéry-Odelin et al., 2019), which provide optimal and
robust solutions for accelerating slow adiabatic processes while
overcoming systematic errors induced by fabrication errors or the
unavoidable interaction with the environment (Guéry-Odelin et al.,
2019,and references therein). In this regard, STA protocols have
been generalized to open quantum system dynamics (Dann et al.,
2019; Alipour et al., 2020), and the dissipative qubit readouts have
been improved by adding counter-diabatic terms (Yin et al., 2022) or
through inverse engineering of the longitudinal coupling (Cárdenas-
López and Chen, 2022) in cQED.

Motivated by these advancements, we propose a method to
engineer the longitudinal coupling between two transmon qubits
coupled to an LC resonator to accelerate the performance of a

controlled-phase gate. By using the reverse-engineering approach,
we eliminated the unwanted terms appearing on the time-evolution
operator governing the system dynamics such that, at a gating time
of approximately 2 nanoseconds, the operator represents the
required gate. Moreover, we analyzed the performance of the
quantum gate under the typical noise source appearing in
superconducting circuits and observed no detrimental effects on
the final state within the short gating time. Herein, we discuss an
experimental implementation with consistent state-of-the-art cQED
architecture.

2 Model and Hamiltonian

Let us consider a quantized single field mode of frequency ωr

coupled longitudinally to a pair of two-level systems where each of
them has transition frequency ωq,ℓ, and we assume that they are
coupled to the resonator through the time-dependent coupling
strength λℓ(t). This situation is described by the following
Hamiltonian (Z ≡ 1):

H t( ) � ωrâ
†â + ∑

ℓ� 1,2{ }

ωq,ℓ

2
σ̂z
ℓ
+ λℓ t( )σ̂z

ℓ
â† + â( )[ ], (1)

where â (â†) is the annihilation (creation) operator for the bosonic
mode and σ̂z corresponds to the z-component Pauli matrix
describing the two-level system. The longitudinal coupling has
been proposed and implemented in several quantum platforms,
such as trapped ions (Milburn et al., 2000; Sørensen and Mølmer,
2000) and superconducting quantum circuits (Romero et al., 2012;
Didier et al., 2015; Richer andDiVincenzo, 2016). The importance of
this interaction stems from the field displacement conditional to the
qubit state, with the applications ranging from qubit measurement
(Cárdenas-López and Chen, 2022) to the generation of multi-partite
quantum states. Here, by employing the technique of STA, we
inversely engineered the coupling strength λℓ(t) to reduce the
gating time of a controlled-phase gate (Romero et al., 2012). To
do so, we began with H in the interaction picture

HI t( ) � ∑
ℓ� 1,2{ }

σ̂z
ℓ
Λℓ t( )â† + Λp

ℓ
t( )â( )[ ], (2)

where, for simplicity, we renamed the variables as follows:
Λℓ(t) � λℓ(t)eiωrt. We proceeded by writing the time evolution
operator UI(t) � T̂ exp(−i∫HI(s)ds), where T̂ is the time-
ordered operator. Using the Baker–Campbell–Hausdorff formula,
the time-evolution operator was divided into

UI t( ) � ∏
ℓ

exp iAℓ t( )σ̂z
ℓ
â( )∏

ℓ

exp iAp

ℓ
t( )σ̂z

ℓ
â†( )

× ∏
ℓ,ℓ′

exp iBℓ,ℓ′ t( )σ̂z
ℓ
σ̂z
ℓ′( ), (3)

where Aℓ(t) and Bℓ(t) are functions that can be obtained through
the Schrödinger equation izt[UI(t)] � HI(t)UI(t) (see
Supplementary Material for the detailed derivation). After some
lengthy, but straightforward, calculations, we found that these
functions needed to satisfy the following differential equations:

_Aℓ t( ) � −λℓ t( )eiωrt, _Bℓ,ℓ′ t( ) � −i _Ap

ℓ
t( )Aℓ′ t( ). (4)
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For time-independent coefficients λℓ, these equations reduced to
Aℓ(t) � iλℓ(e−iωrt − 1), and Bℓ,ℓ′(t) � λℓλℓ′[−i(eiωt − 1) − t]/ωr,
which vanished at t = 2π/ωr. Nevertheless, in the context of the
STA technique, it was possible to engineer λℓ(t) such that the gate
reduced to tg = 1.89 (ns), while ensuring that the following final
boundary conditions,

Aℓ tg( ) � 0, Bℓ,ℓ′ tg( ) � −Θℓ,ℓ′, (5)

were fulfilled at the gating time tg. This gives the time-evolution
operator as follows:

UI tg( ) � ∏
ℓ,ℓ′

exp iΘℓ,ℓ′σ̂
z
ℓ
σ̂z
ℓ′( ). (6)

Coming back to the Schrödinger picture, we obtained

U tg( ) � ∏
ℓ

exp −iη
ℓ
σ̂z
ℓ

( )∏
ℓ,ℓ′

exp iΘℓ,ℓ′σ̂
z
ℓ
σ̂z
ℓ′( ), (7)

with ηℓ = ωq,ℓtg/2. Thus, for a specific gating time tg, and by
engineering the coupling strength λℓ(t), it was possible to express
the time evolution operator U (tg) as a controlled phase gate.

3 STA control: Reverse engineering

In this section, we aimed to design a modulation for the coupling
strength λℓ(t) such that, at a desirable gating time tf, the time-
evolution operator in Eq. 7 represents a controlled-phase gate acting
on the qubit subspace. In other words, we intend thatU (tg) ≡ CZ ⊕I.
To do so, we had to find the unitary transformation V̂(t) that
expressed the Hamiltonian in its adiabatic frame (Guéry-Odelin
et al., 2019). In this frame, the Hamiltonian is block diagonal.
Conversely, dynamical evolution is always along the
instantaneous eigenstates of the system without transitions. More
precisely, V̂(t) must satisfy the following relation:

Heff t( ) � V̂ t( ) H t( ) − izt[ ]V̂†
t( ) � Hq ⊕ Hr, (8)

where zt refers to the time-derivative acting over operators. In
general, it is possible to express V̂ ≡ ∏

ℓ
exp(Ŝℓ(t)) as a product

of unitaries, where Ŝℓ is its ℓth generator. Though such generators
can be calculated perturbatively through the Schrieffer–Wolff
transformation (Schrieffer and Wolff, 1966), the generators Ŝℓ of
the transformation for the longitudinal interaction (Chen et al.,
2018) are exactly solvable (Čadež et al., 2014) and given by

V̂ t( ) � ∏
ℓ

eiθℓ t( ) exp
−i _gc,ℓ t( )

ω2
r

σ̂z
ℓ
â† + â( )[ ]exp −gc,ℓ t( )

ωr
σ̂z
ℓ
â† − â( )[ ],

(9)
where gc,ℓ(t) is an auxiliary (classical) variable that eliminates the
coupling strength in the Hamiltonian H(t); moreover, θℓ(t) �
−∫t

0
Lg,ℓ(t′)dt′ is a phase relating the coupling strength λℓ(t)

with the classical variable gc,ℓ(t) through the Lagrangian,

Lg,ℓ t( ) � _g2
c,ℓ t( )
ω3
r

− g2
c,ℓ t( )
ωr

+ 2gc,ℓ t( )λℓ t( )
ωr

, (10)

that has the following Euler–Lagrange equation:

€gc,ℓ t( ) + ω2
r gc,ℓ t( ) − λℓ t( )[ ] � 0, (11)

from which the control problem is reduced to solving a set of N
differential equations (N is the number of qubits). The initial
conditions for these equation sets require that, at t = 0 and t =
tg, both adiabatic and lab frame must coincide (Chen et al., 2018;
Guéry-Odelin et al., 2019; Cárdenas-López and Chen, 2022).
Therefore, the initial conditions are given by

gc,ℓ 0( ) � gc,ℓ tg( ) � _gc,ℓ 0( ) � _gc,ℓ tg( ) � 0, ∀ℓ ∈ 1, 2( ). (12)

To assure smooth coupling strength modulation, we added the extra
constraints €gc,ℓ(0) � €gc,ℓ(tg) � 0. Furthermore, to guarantee that
the time-evolution operator satisfied UI(tg) = CZ, we demanded that
the coupling strength λℓ(t) met the conditions pointed out in Eq. 5
for any value of the angle Θℓ,ℓ′. We solved this set of differential
equations by proposing two different solutions, with the first of them
corresponding to a trigonometric protocol pulse (Theis et al., 2018)
of the form

gTri
c,ℓ t( ) � ∑M

n�0
an,ℓ sin

πnt

tg
[ ]k

, (13)

where M is the number coefficient required to fulfill all the initial
conditions, and gc,ℓ(t) and its (k − 1)th derivatives vanish at t = 0 and
t = tg for all values of n. Selecting k = 3 resulted in gc,ℓ(t), _gc,ℓ(t), and
€gc,ℓ(t) vanishing at those times. This feature of the modulation
permitted reduction of the number of coefficients to four, which
corresponds to the real and imaginary part of Aℓ(t) and Bℓ,ℓ′(t),
respectively. Furthermore, we wanted to compare the trigonometric
solution with a polynomial form of STA modulation for
completeness (Chen et al., 2018):

gSTA
c,ℓ t( ) � ∑M′

n�0
bn,ℓt

n+3. (14)

The STA modulation satisfied construction of the conditions
gc,ℓ(0) � _gc,ℓ(0) � €gc,ℓ(0). In that case, we required seven
coefficients to completely solve the set of differential equations.
Engineering the auxiliary functions g+

c,ℓ allowed us to find the
coupling strength modulation through the relation
λℓ(t) � €g+

c,ℓ(t)/ω2
r + g+

c,ℓ(t), + = {Tri,STA}. Figure 1 shows the
coupling strength modulation λℓ(t), and the auxiliary functions
Aℓ(t) and Bℓ,ℓ′(t) as a function of the normalized time t/tg for
both anzats given in Eqs 13, 14 for different phases Θℓ,ℓ′. From
Figure 1, we can appreciate that neither modulation exhibited any
kind of discontinuity, and the main difference between them is that
the polynomial anzat takes negative values; in both cases, the
variation of the final phase generated a family of shortcut
coupling strength modulations {λℓ(t)}. Next, we analyzed the
system dynamics of the Hamiltonian H(t) using the coupling
strength modulation λℓ(t) obtained through the trigonometric
solutions and STA.

4 Controlled-phase gate

As mentioned previously, generating fast and high-fidelity two-
qubit quantum gates is at the heart of quantum computations and
their applications in simulations and information processing, among
other disciplines. In particular, the controlled-phase gate, i.e., CZ,
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changes the phase of the quantum state conditionally. In the basis
{|gg〉, |ge〉, |eg〉, |ee〉}, it has the following form:

CZ Θℓ,ℓ′( ) ≡
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiΘℓ,ℓ′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (15)

The CZ gate acts as an entangling gate when the initial quantum
state is of the form |Ψ〉 = (α|g〉 + β|e〉)(a|g〉 + b|e〉). The change
phase on the state |ee〉 does not permit writing the state as a tensor
product. Conversely, the entanglement of formation (EoF) in the
state is different from zero. For instance, for a quantum state with
balanced amplitudes α � β � a � b � 1/

�
2

√
, the CZ gate withΘℓ,ℓ′ =

π/2 generates a maximally entangled state. In particular, for a
pure two-qubit state, the maximal entanglement is achieved when
2|αaβb (1 − exp iΘℓ,ℓ′)| = 1. Thus, having knowledge about the
initial state of the system allowed us to use reverse-engineering to set
an adequate angle Θℓ,ℓ′ that maximized the EoF of the system.

More specifically, with our reverse-engineering protocol, the
system dynamics reduced to the time-evolution operator depicted in
Eq. 7. During the time evolution, the states {|gg〉, |ge〉, |eg〉, |ee〉}
accumulated different phases given by

U tg( ) � eiΘℓ,ℓ′diag e2iη, 1, 1, e−2iη[ ] × diag e4iΘℓ,ℓ′ , 1, 1, e4iΘℓ,ℓ′[ ], (16)

where the equal qubit frequency, i.e., ηℓ = η = ωqtg/2 was assumed.
The first term on the time-evolution operator corresponds to the free

terms of each qubit, whereas the second one is the effective ZZ
interaction appearing due to factorization of the cavity degree of
freedom. To obtain the typical controlled-phase gate CZ = diag [1, 1,
1–1], up to a global phase factor, we needed to solve

2η + 4Θℓ,ℓ′ � 2πn, −2η + 4Θℓ,ℓ′ � 2n − 1( )π, ∀n ∈ Z. (17)
For the shorter generation time, we chose n = 0 and obtained
Θℓ,ℓ′ = ±π/8, which resulted in U (tg) ≡ CZ = diag[1, 1, 1–1] up to a
global time-dependent phase factor. Different values of Θℓ,ℓ′ will
accumulate relative phases on the other state component, thereby
degrading the performance of the quantum gate.

Figure 2 shows the system dynamics of the Hamiltonian in Eq. 1
for two different trigonometric and STAmodulations.We calculated
the population of the pair of two-level systems, the resonator and the
EoF, of the two-qubit subspace for different angles Θℓ,ℓ′ when the
system was initialized in the state |Ψ(0)〉 = | + 〉 ⊗| + 〉 ⊗|0〉, where
| + 〉 � (|g〉 + |e〉)/ �

2
√

is the eigenstate of x Pauli matrix σx and |0〉 is
the vacuum state of the resonator, respectively. Figure 2
demonstrates no change in the population in the two-qubit
subspace, implying no excitation exchange between the qubits
and the resonator. On the other hand, in the resonator subspace
during the system dynamics, the resonator populated higher
excitation states due to the cavity displacement introduced by the
interaction term of the Hamiltonian in Eq. 1. Nevertheless, at the
end of the system dynamics, the resonator recovered the population
in the ground state (Figures 2B–D). Therefore, it makes sense that

FIGURE 1
Modulation of coupling strength λℓ(t) as a function of the normalized time t/tg for different values of Θℓ,ℓ′ = (0, π/8) for (A) trigonometric and (D) STA
modulation, and the parameter Aℓ(t) as a function of the normalized time for different phases, where green and blue lines correspond to the real and
imaginary parts ofAℓ(t), respectively; see (B) trigonometric and (E) STAmodulation. Finally, for the modulated phase Bℓ,ℓ′ as a function of t/tg for different
final phases Θℓ,ℓ′, see (C) trigonometric and (F) STA modulation, where yellow and blue lines stand for real and imaginary parts, respectively. The
simulations were performed using the practical parameters ωq,ℓ = 2π × 3.28 GHz, ωr = 2π × 10 GHz, and tg = 12π/ωr ≡ 1.89 ns.

Frontiers in Quantum Science and Technology frontiersin.org04

Li et al. 10.3389/frqst.2023.1135816

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2023.1135816


STA was not adiabatic at all during the intermediate time, but the
initial and final states coincided with those that were adiabatic due to
the initial and final boundary conditions imposed previously.

Next, we turned to the correlations embedded on the two-qubit
subspace through the EoF, which, for this system, have an exact form
given by

Eof |Ψ〉( ) � −x log2 x( ) − 1 − x( )log2 1 − x( ), x � 1 + ������
1 − C2

√
2

,

(18)
where the quantity C is termed concurrence defined as C = max(0,
E4 − E3 − E2 − E1), where Ek are the eigenvalues (in increasing order)
of the matrix R � �������������������������������(σy ⊗ σy)(|Ψ〉〈Ψ|)*(σy ⊗ σy)|Ψ〉〈Ψ|√
(Wootters, 1998). Figures 2C–F show the EoF as a function of
the normalized gating time t/tg for both trigonometric and STA
modulations. By changing the angle Θℓ,ℓ′ in both cases, we observed
existence of the optimal value of π/8, where the EoF reached its
maximal value for the state |Ψ(0)〉 = | + 〉 ⊗| + 〉 ⊗|0〉. A slight
difference between the modulations occurred via the trigonometric-
like pulses that exhibited a plateau in the EoF at the end of the
dynamics, which did not occur with the STA modulation. The
existence of this plateau indicates that only trigonometric-like
modulation achieves optimal correlation values at times that are
slightly shorter than tg = 12π/ωr ≡ 1.89 ns. However, we observed
identical overall performance for both modulations. The next step in
the characterization of ourCZ gate relied on its performance under a

loss mechanism, such as energy relaxation in the resonator and the
two-level systems and depolarizing noise, respectively. In this
scenario, the system dynamics were governed by the following
master equation:

_ρ t( ) � i H t( ), ρ t( )[ ] + ∑
ℓ� 1,2{ }

γ
ℓ
D σ−

ℓ
[ ]ρ t( ) + γϕ,ℓD σz

ℓ
[ ]ρ t( )[ ]

+κD â[ ]ρ t( ), (19)
where ρ(t) is the density matrix describing the quantum state at
time t and H(t) is the Hamiltonian in Eq. 1. Moreover, {γℓ, γϕ,ℓ}
correspond to the relaxation and dephasing rate of the ℓth two-
level system, respectively. Also, κ is the relaxation rate of the
resonator. Finally, D[L]ρ(t) � Lρ(t)L† − {L†L, ρ(t)}/2 is the
Lindbladian superoperator describing the loss mechanism.
We performed the numerical simulation by using
experimental physical parameters for the decay rates,
yielding γℓ = 0.48 (MHz) (Saira et al., 2014), γϕ,ℓ = 0.15
(MHz) (Saira et al., 2014), and κ = 21 (MHz) (Didier et al.,
2015), respectively.

Figure 3 shows the population of the two-qubit and resonator
subspace, and the EoF as a function of the dimensionless gating time
t/tg for the density matrix ρ(t) solution of the master equation in Eq.
19. There was no appreciable detrimental effect on the two-qubit
subspace, and the population changed slightly and only at the end of
the system dynamics without significantly affecting the performance
of the protocol. For the resonator population, slight distortions of
the population evolution were observed, which were produced

FIGURE 2
Population of the pair of two-level systems as a function of the normalized time t/tg for different values ofΘℓ,ℓ′= (0, π/8) for (A) trigonometric and (D)
STAmodulation. Population evolution of the resonator as a function of the normalized time t/tg for the (B) trigonometric and (E) STAmodulation. Finally,
EoF for the reduced density matrix consisting of the pair of two-level systems as a function of the normalized time t/tg for the (C) trigonometric and (F)
STA modulation. The parameters are the same as those in Figure 1.
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mainly by the dissipation on the resonator, since its presence altered
the displacement trajectory of the phase space. For the evolution of
the EoF, we also observed that, for the optimal angle Θℓ,ℓ′ = π/8,
there was no appreciable detrimental effect on the EoF at the end of
the dynamics. However, for different angles, the generated
correlation drastically decreased. In this situation, we concluded
that the accumulated phase on each state component was affected by
the depolarizing noise, since the relaxation losses did not abruptly
change the population in the two-qubit state. In this sense, the
controlled-phase gate was robust under relaxation noise, but fragile

under depolarizing noise when the phase was not working at the
optimal value Θℓ,ℓ′ = π/8.

On the other hand, to demonstrate the robustness of the
controlled-phase gate implementation over different initialization,
we calculated the Schrödinger equation and themaster equation [Eq.
(19)] for the system prepared in the initial state |Ψ(0)〉 = [cos(θ)|
g〉 + exp (iϕ) sin(θ)|e〉] ⊗|e〉 ⊗|0〉 for different angles and phases in
the range θ = (0, 2π) and ϕ = (0, 2π), and compared the result after
applying the CZ gate. The comparison was carried out through the
infidelity defined as 1 − F , where F(ρ, σ) � (Tr[ ��������

ρ
√

σ
�
ρ

√√ ])2 is the

FIGURE 3
Population of the pair of two-level systems as a function of the normalized time t/tg for different values ofΘℓ,ℓ′= (0, π/8) for (A) trigonometric and (D)
STAmodulation. Population evolution of the resonator as a function of the normalized time t/tg for the (B) trigonometric and (E) STAmodulation. Finally,
EoF for the reduced density matrix consisting of the pair of two-level systems as a function of the normalized time t/tg for the (C) trigonometric and (F)
STA modulation. The dynamics were calculated using the master equation in Eq. 19. The parameters are the same as those in Figure 1.

FIGURE 4
(A) Infidelity 1 − F between the state obtained with the Schrödinger equation at time tg and the state after applying the controlled-phase gate using
the STA modulation. (B) Infidelity 1 − F between the state solution of the master equation at time tg and the state after the CZ gate using the STA
modulation. The parameters are the same as those in Figure 1.
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fidelity between the quantum states ρ and σ. Figure 4 shows the
infidelity for those cases, demonstrating that the implementation of
the controlled-phase gate using the reverse engineering method
achieves good fidelity for a wide initial state preparation.

5 Physical implementation

In this section, we discuss a possible experimental
implementation for a single-mode resonator coupled to a pair
of transmon circuits, as denoted in Figure 5. The single-mode
resonator was an LC circuit with capacitance Cr and inductance
Lr. Moreover, we modeled each transmon circuit (Koch et al.,
2007) as a capacitor CΣℓ

parallel-connected to a Josephson
junction with tunable energy EJℓ cos(θx,ℓ); these subsystems
were coupled through a SQUID. In this manner, we write the
Lagrangian of the circuit in terms of the flux nodes of each device
{ψJ1

,ψJ2
,ψr} related with the voltage drop across their respective

branch ψ
ℓ
� ∫t

−∞ Vℓ(x, t′)dt′ leading to

L � ∑
ℓ� 1,2{ }

CΣℓ
2

_ψ2
Jℓ
+ EJ θx,ℓ( )cos ψJℓ

φ0

( ) + EJSℓ φx,ℓ( )cos ψJℓ
− ψr

φ0

( )[ ]
+ Cr _ψ

2
r

2
− ψ2

r

2Lr
,

(20)
where φ0 = Z/(2e) is the quantum magnetic flux and e is the electron
charge. The canonical conjugate momenta are given
by P � zLc/z[ _ψ]

PJℓ � CΣℓ _ψJℓ
, Pr � Cr _ψr. (21)

We calculated the circuit Hamiltonian through the Legendre
transformation H � ∑kPkψk − L, arriving at

H � ∑
ℓ� 1,2{ }

P2
ℓ

2CΣℓ
− EJ θx,ℓ( )cos ψJℓ

φ0

( ) − EJSℓ φx,ℓ( )cos ψJℓ
− ψr

φ0

( )[ ]
+ P2

r

2Cr
+ ψ2

r

2Lr
. (22)

The quantization of each degree of freedomwas achieved by promoting
the momentum (node charge) and the flux functions to quantum
operators satisfying canonical commutation relations. For the transmon
qubit, the charge is proportional to the number of Cooper-pairs on the
superconducting island, i.e., Pℓ → − 2en̂ℓ and its conjugate variable
corresponds to the superconducting phase drop θ̂Jℓ � ψJℓ

/φ0 satisfying
commutation relation [P̂ℓ , e±iθ̂Jℓ ] � e±iθ̂Jℓ . For the LC resonator, the
quantized charge and phase operator satisfy [θ̂r, n̂r] � i. In this
representation, we write the Hamiltonian as follows:

H � ∑
ℓ� 1,2{ }

4ECJℓ
N̂

2

Jℓ
− EJ θx,ℓ( )cos θ̂Jℓ( ) − EJSℓ φx,ℓ( )cos θ̂Jℓ − θ̂r( )[ ]

+4ECrN̂r + EL

2
θ̂
2

r . (23)

Here, ECJℓ
� e2/2CΣℓ

and ECr � e2/2Cr are the charge energy of the
transmon and the resonator, respectively. Moreover, EL � φ2

0/Lr is
the inductive energy of the oscillator. We then assumed that the
SQUID works in the linear regime (Leib and Hartmann, 2014),
meaning that most of the current flows through the transmon.
Hence, the resonator phase is well located, allowing expansion of
potential energy up to its leading order in θ̂r (Leib et al., 2012)

H � ∑
ℓ� 1,2{ }

4ECJℓ
N̂

2

Jℓ
− EJ θx,ℓ( )cos θ̂Jℓ( ) − EJSℓ φx,ℓ( )cos θ̂Jℓ( )[

−EJSℓ φx,ℓ( )cos θ̂Jℓ( )θ̂r] + 4ECrN̂r + EL

2
θ̂
2

r . (24)
We expressed the oscillator in terms of the harmonic oscillator basis
described by the operators

N̂r � EL

32ECr

[ ]1/4

i â† − â( )[ ] ≡ Nzpf i â† − â( )[ ], (25)
θ̂r � 2ECr

EL
[ ]1/4

â† + â( ) ≡ θzpf â† + â( ).
which lead to the following Hamiltonian:

H � Zωrâ
†â + ∑

ℓ� 1,2{ }
4ECJℓ

N̂
2

Jℓ
− EJ θx,ℓ ,φx,ℓ( )cos θ̂Jℓ( )[

−~λℓ φx,ℓ( )cos θ̂Jℓ( ) â† + â( )], (26)

FIGURE 5
Schematic illustration of the experimental proposal: two transmon circuits formed by a capacitor CΣℓ

parallel-connected to a tunable Josephson
junction EJ (θx,ℓ) coupled to an LC resonator of capacitance Cr = 0.32 pF and inductance Lr = 0.79 nH via a SQUID threaded by an external magnetic flux
φx,ℓ. We chose EJ/Z = 2π × 20 GHz, EC = EJ/67, and EJSℓ/Z � 2π × 30 GHz ≡ 1.5 EJ .
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whereEJ(θx,ℓ ,φx,ℓ) � EJ(θx,ℓ) + EJSℓ(φx,ℓ) is the total Josephson energy
of the transmon circuit, ωr � ������

8ECrEL
√

/Z is the resonator frequency, and
~λℓ(φx,ℓ) � θzpfEJSℓ(φx,ℓ) is the coupling strength between the ℓth
transmon circuit and the resonator. For the next analysis, it was
convenient to divide the circuit Hamiltonian into three parts:

HT � ∑
ℓ� 1,2{ }

4ECJℓ
N̂

2

Jℓ
− EJ θx,ℓ ,φx,ℓ( )cos θ̂Jℓ( )[ ], (27)

Hr � Zωrâ
†â, (28)

HI � − ∑
ℓ� 1,2{ }

~λℓ φx,ℓ( )cos θ̂Jℓ( ) â† + â( ), (29)

corresponding to the transmon, resonator, and interaction terms.
To illustrate this in the two-level approximation of the transmon

circuit, the two-level approximation HI turns on a longitudinal
oscillator–qubit interaction of the form σz. In the transmon regime
(ECJℓ

≪EJ(θx,ℓ ,φx,ℓ)), it is possible to neglect the charge term on
Hamiltonian HT. In this approximation, we have that
HT ∝ cos(θ̂Jℓ). For a single transmon, in the charge basis, we

chose the states |g〉 ≡ |0Jℓ〉 and |e〉 ≡ |1Jℓ〉 as the computational
basis of the transmon, which leads to:

HT � − ∑
ℓ� 1,2{ }

EJ θx,ℓ ,φx,ℓ( )
2

σx
ℓ
, (30)

HI � ∑
ℓ� 1,2{ }

λℓ φx,ℓ( )σx
ℓ
â† + â( ), (31)

where σx = |e〉〈g| + |g〉〈e| corresponds to the x-component Pauli
matrix, and λℓ(φx,ℓ) � ~λℓ(φx,ℓ)〈g| cos(θ̂Jℓ)|e〉 is the dressed
coupling strength between the ℓth transmon and the resonator.
In the diagonal basis of the transmon, we obtained

HT � − ∑
ℓ� 1,2{ }

Zωq,ℓ

2
σz
ℓ
, (32)

HI � ∑
ℓ� 1,2{ }

λℓ φx,ℓ( )σz
ℓ
â† + â( ), (33)

where the qubit frequency is defined as ωq,ℓ �
�����������
EJ(θx,ℓ ,φx,ℓ)

√
/Z.

Figure 6 shows the coefficients αk � Tr[σk cos(θ̂J)] as a function of

FIGURE 6
(A–C) Pauli matrix coefficient αk � Tr[σk cos(θ̂J)] for the coupling operator as a function of the external magnetic fluxes ϕx and φx. We performed the
simulation choosing the parameters EJ/Z = 2π × 20 GHz, EC = EJ/67, and EJSℓ/Z � 2π × 30 GHz ≡ 1.5 EJ , yielding ωq = 2π × 3.28 GHz.

FIGURE 7
Population of the pair of three-level systems as a function of the normalized time t/tg for different values of Θℓ,ℓ′ = (0, π/8) for (A) trigonometric and
(C) STAmodulation. Population evolution of the resonator as a function of the normalized time t/tg for the (B) trigonometric and (D) STAmodulation. The
parameters are the same as those in Figure 1.
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both external magnetic fluxes θx,ℓ and φx,ℓ, respectively. We observed
that the only relevant contribution corresponds to the σz operator.
Thus, our final Hamiltonian reads:

H t( ) � ωrâ
†â + ∑

ℓ� 1,2{ }

ωq,ℓ

2
σ̂z
ℓ
+ λℓ φx,ℓ( )σ̂z

ℓ
â† + â( )[ ]. (34)

It is worth mentioning that it is possible to perform single qubit
gates on this architecture just by choosing a value of the external
magnetic flux φx,ℓ such that we switch off the interaction term
between the resonator and the transmon circuits. On the other hand,
the anharmonicity of the transmon circuit is proportional to its
charge energy EC = 238 MHz, which, for a typical transmon, could
be small enough to consider the additional level. In our proposal,
however, as the artificial atom is coupled longitudinally to the field
mode, we may not expect either population leakage or transitions
induced by them. We demonstrated calculation of the protocol to
generate the CZ gate by including the third energy level, as depicted
in Figure 7. As expected, we did not observe substantial modification
to the system dynamics.

6 Conclusion

In summary, we have proposed a reverse-engineering method to
modulate the longitudinal interaction between a pair of two-level
systems with a cavity field to implement a controlled-phase gate
using a pair of superconducting artificial atoms. We have
constrained the modulation of the coupling strength to delete the
unwanted terms appearing on the time-evolution operator, resulting
in the two-qubit quantum gate that operates at 2 nanoseconds,
which is within the current state-of-the-art in superconducting
quantum circuits. The shorter generation time allows the gate to
be insensitive to the unavoidable effects of the environment. The
method can be extended to the fast control of multi-particle and
other physical setups, such as trapped ions and quantum dots. The
use of STA paves the way to implementation of faster and more
resilient quantum gates by providing a key factor for quantum
computation, quantum information processing, and quantum
simulation.
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