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We review encoding and hardware-independent formulations of optimization
problems for quantum computing. Using this generalized approach, an extensive
library of optimization problems from the literature and their various derived spin
encodings are discussed. Common building blocks that serve as a construction kit
for formulating these spin Hamiltonians are provided. This previously introduced
approach paves the way toward a fully automatic construction of Hamiltonians for
arbitrary discrete optimization problems and this freedom in the problem
formulation is a key step for tailoring optimal spin Hamiltonians for different
hardware platforms.
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1 Introduction

Discrete optimization problems are ubiquitous in almost any enterprise and many of
these are known to be NP-hard (Lenstra and Rinnooy Kan, 1979). The objective of such
problems is to find the minimum of a real-valued function f(v0, . . ., vN−1) (the cost function)
over a set of discrete variables vk. The search space is restricted by hard constraints, which are
commonly presented as equalities such as g(v0, . . ., vN−1) = 0 or inequalities as h(v0, . . .,
vN−1) > 0. Besides using classical heuristics (Dorigo and Di Caro, 1999; Melnikov, 2005) and
machine learning methods (Mazyavkina et al., 2021) to solve these problems, there is a
growing interest in applying quantum computation (Au-Yeung et al., 2023). A common
approach for realizing this consists of first encoding the cost function f in a Hamiltonian H
such that a subset of eigenvectors of H represents elements in the domain of f and the
eigenvalues are the respective values of f:

H ψ
∣∣∣∣ 〉 � f v0, . . . , vN−1( ) ψ∣∣∣∣ 〉. (1)

In such an encoding, the ground state of H is the solution to the optimization problem.
Having obtained a Hamiltonian formulation, one can use a variety of quantum algorithms to
find the ground state including adiabatic quantum computing (Farhi et al., 2000) and
variational approaches, for instance, the quantum/classical hybrid quantum approximate
optimization algorithm (QAOA) (Farhi et al., 2014) or generalizations thereof such as the
quantum alternating operator ansatz (Hadfield et al., 2019). On the hardware side, these
algorithms can run on gate-based quantum computers, quantum annealers, or specialized
Ising machines (Mohseni et al., 2022).
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In the current literature, almost all Hamiltonians for
optimization are formulated as Quadratic Unconstrained Binary
Optimization (QUBO) problems (Kochenberger et al., 2014). The
success of QUBO reflects the strong hardware limitations of current
devices, where multiqubit interactions are not available and must be
decomposed into two-qubit interactions using ancilla qubits.
Moreover, quantum algorithms with the dynamical
implementation of hard constraints (Hen and Sarandy, 2016;
Hen and Spedalieri, 2016) require driver terms that can be
difficult to design and implement on quantum computers. Hence,
hard constraints are usually included as energy penalizations of
QUBO Hamiltonians. The prevalence of QUBO has also increased
the popularity of one-hot encoding, a particular way of mapping
(discrete) variables to eigenvalues of spin operators (Lucas, 2014),
since this encoding allows for Hamiltonians with low-order
interactions which is especially appropriate for QUBO problems.

However, compelling alternatives to QUBO and one-hot
encoding have been proposed in recent years. A growing number
of platforms are exploring high-order interactions (Chancellor et al.,
2017; Lu et al., 2019; Schöndorf and Wilhelm, 2019; Wilkinson and
Hartmann, 2020; Menke et al., 2021; 2022; Dlaska et al., 2022; Pelegrí
et al., 2022; Glaser et al., 2023), while the Parity architecture
(Lechner, 2020; Fellner et al., 2022; Ender et al., 2023) (a
generalization of the LHZ architecture (Lechner et al., 2015))
allows the mapping of arbitrary-order interactions to qubits that
require only local connectivity. The dynamical implementation of
constraints has also been investigated (Hadfield et al., 2019; 2017;
Fuchs et al., 2022; Zhu et al., 2023), including the design of
approximate drivers (Wang et al., 2020; Sawaya et al., 2022) and
compilation of constrained problems within the Parity architecture
(Drieb-Schön et al., 2023). Moreover, simulated and experimental
results have shown that alternative encodings outperform the
traditional one-hot approach (Chancellor, 2019; Sawaya et al.,
2020; Chen et al., 2021; Plewa et al., 2021; Tamura et al., 2021;
Glos et al., 2022; Stein et al., 2023). Clearly, alternative formulations
for Hamiltonians need to be explored but when the Hamiltonian has
been expressed in QUBO using one-hot encoding, it is not trivial to
switch to other formulations. Automatic tools to explore different
formulations would therefore be highly beneficial.

We present a library of more than 20 problems which is
intended to facilitate the Hamiltonian formulation beyond
QUBO and one-hot encoding. We build upon the recent work of
Sawaya et al. (2022) by making use of the encoding-independent
approach to revisit common problems in the literature. With this
approach, the problems can be encoded trivially using any spin
encoding. We also provide a summary of the most popular
encodings. Possible constraints of the problems are identified and
presented separately from the cost function so that dynamic
implementation of the constraints can also be easily explored.
Two additional subgoals that are addressed in this library are:

• Meta parameters/choices: We present and review the most
important choices made in the process of mapping
optimization problems in a mathematical formulation to
spin Hamiltonians. These mainly include the encodings,
which can greatly influence the computational cost and
performance of the optimization, but also free meta
parameters or the use of auxiliary variables. These degrees

of freedom are a consequence of the fact that the optimal
solution is typically encoded only in the ground state. Other
low-energy eigenstates encode good approximations to the
optimal solution and it can be convenient to make
approximations so that the solution corresponds to these
states (Montanez-Barrera et al., 2022).

• (Partial) automation: Usually, each problem needs to be
evaluated individually. The resulting cost functions are not
necessarily unique and there is no known trivial way of
automatically creating H. By providing a collection of
building blocks of cost functions and heuristics for selecting
parameters, the creation of the cost function and constraints is
assisted. This enables a general representation of problems in
an encoding-independent way and parts of the parameter
selection and performance analysis can be conducted at this
intermediate stage. This goal has also been discussed by
Sawaya et al. (2022).

In practice, many optimization problems are not purely discrete
but involve real-valued parameters and variables. Thus, the
encoding of real-valued problems to discrete optimization
problems (discretization) as an intermediate step is discussed in
Section 7.4.

The focus of this review is on optimization problems which can
be formulated as diagonal Hamiltonians written as sums and
products of Pauli-z-matrices. This subset of Hamiltonians is
usually not applicable to quantum systems or quantum
simulations. For an introduction to these more general
Hamiltonians, we refer to the reviews of Georgescu et al. (2014)
for physics problems and McArdle et al. (2020); Cao et al. (2019) for
quantum chemistry simulations.

After introducing the notation used throughout the text in
Section 2, we present a list of encodings in Section 3. Section 4
reviews the Parity architecture and Section 5 discusses encoding
constraints. Section 6 functions as a manual on how to bring
optimization problems into a form that can be solved with a
quantum computer. Section 7 contains a library of optimization
problems which are classified into several categories and Section 8
lists the building blocks used in the formulation of these (and many
other) problems. Section 9 offers conclusions.

2 Definitions and notation

A discrete set of real numbers is a countable subset U ⊂ R

without an accumulation point. Discrete sets are denoted by
uppercase Latin letters, except the letter G, which we reserve
for graphs. A discrete variable is a variable ranging over a
discrete set R and will be represented by lowercase Latin
letters, mostly v or w. Elements of R are denoted by
lowercase Greek letters.

If a discrete variable has range 0, 1{ } we call it binary or boolean.
Binary variables will be denoted by the letter x. Similarly, a variable
with range −1, 1{ }will be called a spin variable and the letter s will be
reserved for these. There is an invertible mapping from a binary
variable x to a spin variable s:

x ↦ s :� 2x − 1. (2)

Frontiers in Quantum Science and Technology frontiersin.org02

Dominguez et al. 10.3389/frqst.2023.1229471

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2023.1229471


For a variable v with range R we follow Chancellor (2019) and
Sawaya et al. (2022) and define the value indicator function to be

δαv � 1 if v � α
0 if v ≠ α,

{ (3)

where α ∈ R.
We also consider optimization problems for continuous

variables. A variable v will be called continuous, if its range is
given by Rd for some d ∈ Z>0.

An optimization problem O is a triple (V, f, C), where.

1. V :� vi{ }i�0,...,N−1 is a finite set of variables.
2. f := f(v0, . . ., vN−1) is a real-valued function, called objective or

cost function.
3. C � Ci{ }i�0,...,l is a finite set of constraints Ci. A constraint C is

either an equation

c v0, . . . , vN−1( ) � k (4)
for some k ∈ R and a real-valued function c(v0, . . ., vN−1), or it is an
inequality

c v0, . . . , vN−1( )≤ k. (5)
The goal for an optimization problem O = (V, f, C) is to find an

extreme value yex of f, such that all of the constraints are satisfied
at yex.

Discrete optimization problems can often be stated in terms of
graphs or hypergraphs (Berge, 1987). A graph is a pair (V, E), where
V is a finite set of vertices or nodes and E ⊂ vi, vj{ } | vi ≠ vj ∈ V{ } is
the set of edges. An element vi, vj{ } ∈ E is called an edge between
vertex vi and vertex vj. Note that a graph defined like this can neither
have loops, i.e., edges beginning and ending at the same vertex, nor
can there be multiple edges between the same pair of vertices. Given
a graphG = (V, E), its adjacency matrix is the symmetric binary |V|×|
V| matrix A with entries

Aij � 1, if vi, vj{ } ∈ E,
0, else.

{ (6)

A hypergraph is a generalization of a graph in which we allow
edges to be adjacent to more than two vertices. That is, a hypergraph
is a pair H = (V, E), where V is a finite set of vertices and

E ⊆ ⋃
|V|

i�1
{vj1, . . . , vji}{ | vjk ∈ V and vjk ≠ vjℓ

∀ k, ℓ � 1,/i}
(7)

is the set of hyperedges.
We reserve the word qubit for physical qubits. To go from an

encoding-independent Hamiltonian to a quantum program, binary
or spin variables become Pauli-z-matrices which act on the
corresponding qubits.

3 Encodings library

For many problems, the cost function and the problem
constraints can be represented in terms of two fundamental
building blocks: the value of the integer variable v and the value
indicator δαv defined in Eq. 3. When expressed in terms of these

building blocks, Hamiltonians are more compact, and recurring
terms can be identified across many different problems. Moreover,
quantum operators are not present at this stage: an encoding-
independent Hamiltonian is just a cost function in terms of
discrete variables, which eases access to quantum optimization to
a wider audience. Encoding variables and the choice of quantum
algorithms can come later.

Representation of the building blocks in terms of Ising operators
depends on the chosen encoding. An encoding is a function that
associates eigenvectors of the σz operator with specific values of a
discrete variable v:

|s0, . . . , sN−1〉→ v, si � ± 1, (8)
where the spin variables si are the eigenvalues of σ(i)z operators. The
encodings are also usually defined in terms of binary variables xi
which are related to Ising variables according to Eq. 2.

A summary of the encodings is presented in Figure 1. Some
encodings are dense, in the sense that every quantum state |s0, . . .,
sN−1〉 encodes some value of the variable v. Other encodings are
sparse because only a subset of the possible quantum states are valid
states. The valid subset is generated by adding a core term1, i.e., a
penalty term for constraints that need to be enforced in order to
decode the variable uniquely in the Hamiltonian for every sparsely
encoded variable. In general, dense encodings require fewer qubits,
but sparse encodings have simpler expressions for the value
indicator δαv , and are therefore favorable for avoiding higher-
order interactions. This is because δαv needs to check a smaller
number of qubit states to know whether the variable v has value α or
not, whereas dense encodings require the state of every qubit in the
register (Sawaya et al., 2020; 2022).

3.1 Binary encoding

Binary encoding uses the binary representation for encoding
integer variables. Given an integer variable v ∈ [1, 2D], we can use D
binary variables xi ∈ {0, 1} to represent v:

v � ∑D−1

i�0
2ixi + 1. (9)

The value indicator δαv can be written using the generic
expression

δαv � ∏
i≠α

v − i

α − i
, (10)

which is valid for every encoding. The expression for δαv in terms of
boolean variables xi can be written using that the value of α is
codified in the bitstring (xα,0. . ., xα,D−1). The value indicator δαv
checks if the D binary variables xi are equal to xα,i to know if the
variable v has the value α or not. We note that

x1 2x2 − 1( ) − x2 + 1 � 1 if x1 � x2

0 if x1 ≠ x2
{ (11)

and so we write

1 This terminology is adapted from Chancellor (2019).
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δαv � ∏D−1

i�0
xi 2xα,i − 1( ) − xα,i + 1[ ]

� ∏D−1

i�0
si xα,i − 1

2
( ) + 1

2
,

(12)

where

si � 2xi − 1 (13)
are the corresponding Ising variables. Thus, the maximum order of
the interaction terms in δαv scales linearly with D and there are (Dk)
terms of order k. The total number of terms is ∑k(Dk) � 2D and the
number of interaction terms needed for a value indicator in binary
encoding scales linearly with the maximum value of the
variable N = 2D.

If v ∈ {1, . . ., K} with 2D <K< 2D+1, D ∈ N, then we require
D + 1 binary variables to represent v and we will have 2D+1 − K
invalid quantum states that do not represent any value of the
variable v. The set of invalid states is

R � |x〉 ∑D
i�0

2ixi + 1>K
∣∣∣∣∣∣∣∣∣

⎧⎨⎩ ⎫⎬⎭. (14)

for rejecting quantum states in R, we can force v ≤ K, which can be
accomplished by adding a core term Hcore in the Hamiltonian

Hcore � ∑2D+1

α�K+1
δαv , (15)

or imposing the sum constraint

ccore � ∑2D+1

α�K+1
δαv � 0 (16)

The core term penalizes any state that represents an invalid value
for variable v. Because core terms impose an additional energy scale,
the performance can reduce when K ≠ 2D, D ∈ N. In some cases,
such as the Knapsack problem, penalties for invalid states can be
included in the cost function, so there is no need to add a core term
or constraints (Tamura et al., 2021) (Section 8.2.3).

When encoding variables that can also take on negative values,
e.g., v ∈ {− K, − K + 1, . . ., K′ − 1, K′}, in classical computing one
often uses an extra bit that encodes the sign of the value. However,
this might not be the best option because one spin flip could then
change the value substantially and we do not assume full fault

FIGURE 1
Summary of popular encodings of discrete variables in terms of binary xi or Ising si variables. Each encoding has a particular representation of the
value of the variable v and the value indicator δαv . We also include a visualization example for each encoding, where the red circles represent excited qubits
and #v is the range of variable v for the given number of qubits. If every quantum state in the register represents a valid value of v, the encoding is called
dense. On the contrary, sparse encodings must include a core term in the Hamiltonian in order to represent a value of v. Sparse encodings have
simpler representations of the value indicators than dense encodings, but the core term implementation demands extra interaction terms between the
qubits. The cost of a Hamiltonian in terms of the number of qubits and interaction terms strongly depends on the chosen encoding and should be
evaluated for every specific problem.
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tolerance. For binary encoding there is a more suitable treatment of
negative values: we can simply shift the values

v � ∑D−1

i�0
2ixi + 1 − K, (17)

where 2D−1 < K + K′ ≤ 2D. The expression for the value indicator
functions stays the same, only the encoding of the value α has to be
adjusted. An additional advantage over using the sign bit is that
ranges that are not symmetrical around zero (K ≠ K′) can be
encoded more efficiently. The same approach of shifting the
variable by −K can also be used for the other encodings.

3.2 Gray encoding

In binary representation, a single spin flip can lead to a
sharp change in the value of v, for example, |1000〉 codifies v = 9
while |0000〉 codifies v = 1. To avoid this, Gray encoding reorders
the binary representation in a way that two consecutive values of v
always differ in a single spin flip. If we line up the potential values v ∈
[1, 2D] of an integer variable in a vertical sequence, this encoding in
D boolean variables can be described as follows: on the ith boolean
variable (which is the ith column from the right) the sequence starts
with 2i−1 zeros and continues with an alternating sequence of 2i 1s
and 2i 0s. As an example, consider

1: 0000
2: 0001
3: 0011
4: 0010
5: 0110
6: 0111
. . .

where D = 4. On the left-hand side of each row of boolean variables,
we have the value v. If we, for example, track the right-most boolean
variable, we indeed find that it starts with 21–1 = 1 zero for the first
value, 21 ones for the second and third values, 21 zeros for the third
and fourth values, and so on.

The value indicator function and the core term remain
unchanged except that the representation of, for example, α in
the analog of Eq. 12 also has to be in Gray encoding.

An advantage of this encoding with regard to quantum
algorithms is that single spin flips do not cause large changes in
the cost function and thus smaller coefficients may be chosen (see
discussion in Section 8). The advantage of using Gray over one-hot
encoding was recently demonstrated for quantum simulations of a
deuteron (Di Matteo et al., 2021).

3.3 One-hot encoding

One-hot encoding is a sparse encoding that uses N binary
variables xα to encode an N-valued variable v. The encoding is
defined by its variable indicator:

δαv � xα, (18)

which means that v = α if xα = 1. The value of v is given by

v � ∑N−1

α�0
αxα. (19)

The physically meaningful quantum states are those with a
single qubit in state 1 and so the dynamics must be restricted to
the subspace defined by

ccore � ∑N−1

α�0
xα − 1 � 0. (20)

One option to impose this sum constraint is to encode it as an
energy penalization with a core term in the Hamiltonian:

Hcore � 1 − ∑N−1

α�0
xα

⎛⎝ ⎞⎠2

, (21)

which has minimum energy if only one xα is different from zero.

3.4 Domain-wall encoding

This encoding uses the position of a domain wall in an Ising
chain to codify values of a variable v (Chancellor, 2019; Berwald
et al., 2023). If the endpoints of an N + 1 spin chain are fixed in
opposite states, there must be at least one domain wall in the chain.
Since the energy of a ferromagnetic Ising chain depends only on the
number of domain walls it has and not on where they are located, an
N + 1 spin chain with fixed opposite endpoints has N possible
ground states, depending on the position of the single domain wall.

The codification of a variable v = 1, . . ., N using domain wall
encoding requires the core Hamiltonian Chancellor (2019):

Hcore � − −s1 + ∑N−2

α�1
sαsα+1 + sN−1⎡⎣ ⎤⎦. (22)

Since the fixed endpoints of the chain do not need a spin
representation (s0 = −1 and sN = 1), N − 1 Ising variables {si}N−1

i�1
are sufficient for encoding a variable of N values. The minimum
energy ofHcore is 2 −N, so the core term can be alternatively encoded
as a sum constraint:

ccore � − −s1 + ∑N−2

α�1
sαsα+1 + sN−1⎡⎣ ⎤⎦ � 2 −N. (23)

The variable indicator corroborates if there is a domain wall in
the position α:

δαv �
1
2

sα − sα−1( ), (24)

where s0 ≡ − 1 and sN ≡ 1, and the variable v can be written as

v � ∑N
α�1

αδαv

� 1
2

1 +N( ) − ∑N−1

i�1
si⎡⎣ ⎤⎦. (25)

Quantum annealing experiments using domain wall encoding
have shown significant improvements in performance compared to
one-hot encoding (Chen et al., 2021). This is partly because the
required search space is smaller but also because domain-wall
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encoding generates a smoother energy landscape: in one-hot
encoding, the minimum Hamming distance between two valid
states is two, whereas in domain-wall, this distance is one. This
implies that every valid quantum state in one-hot is a local
minimum, surrounded by energy barriers generated by the core
energy of Eq. 21. As a consequence, the dynamics in domain-wall
encoded problems freeze later in the annealing process because only
one spin-flip is required to pass from one state to the other (Berwald
et al., 2023).

3.5 Unary encoding

In unary encodings, a numerical value is represented by the
number of repetitions of a symbol. In the context of quantum
optimization, we can use the number of qubits in excited states
to represent a discrete variable (Rosenberg et al., 2015; Tamura et al.,
2021)2. In terms of binary variables xi, we get:

v � ∑N−1

i�0
xi, (26)

so N − 1 binary variables xi are needed for encoding an N-value
variable. Unary encoding does not require a core term because every
quantum state is a valid state. However, this encoding is not unique
in the sense that each value of v has multiple representations.

A drawback of unary encoding (and every dense encoding) is
that it requires information from all binary variables to determine
the value of v. The value indicator δαv is

δαv � ∏
i≠α

v − i

α − i
, (27)

which involves 2N interaction terms. This exponential scaling in the
number of terms is unfavorable, so unary encoding may be only
convenient for variables that do not require value indicators δαv in the
problem formulation, but only the variable value v. An example of
this type of variable can be found in the clustering problem, as
explained in Section 6.

A performance comparison for the Knapsack problem using
digital annealers showed that unary encoding can outperform
binary and one-hot encoding and requires smaller energy scales
(Tamura et al., 2021). The reasons for the high performance of
unary encoding are still under investigation, but redundancy is
believed to play an important role because it facilitates the
annealer to find the ground state. As for domain-wall
encoding (Berwald et al., 2023), the minimum Hamming
distance between two valid states (i.e., the number of spin flips
needed to pass from one valid state to another) could also explain
the better performance of the unary encoding. Redundancy has
also been pointed out as a potential problem with unary
encodings since not all possible values have the same
degeneracy and therefore results may be biased towards the
most degenerate values (Rosenberg et al., 2015).

3.6 Block encodings

It is also possible to combine different approaches to obtain a
balance between sparse and dense encodings (Sawaya et al., 2020).
Block encodings are based on B blocks, each consisting of g binary
variables. Similar to one-hot encoding, the valid states for block
encodings are those states where only a single block contains non-
zero binary variables. The binary variables in block b, {xb,i}g−1i�0 define
a block value wb, using a dense encoding such as binary, Gray, or
unary. For example, if wb is encoded using binary, we have

wb � ∑g−1
i�0

2ixb,i + 1. (28)

The discrete variable v is defined by the active block b and its
corresponding block value wb,

v � ∑B−1
b�0

∑2g−1
α�1

v b, wb � α( )δαwb
, (29)

where v(b, wb � α) is the discrete value associated with the quantum
state with active block b and block value α, and δαwb

is a value
indicator that only needs to check the value of binary variables in
block b. For each block, there are 2g−1 possible values (assuming Gray
or binary encoding for the block), because the all-zero state is not
allowed (otherwise block b is not active). If the block value wb is
encoded using unary, then g values are possible. The expression of
δαwb

depends on the encoding and is presented in the respective
encoding section.

The value indicator for the variable v is the corresponding block
value indicator. Suppose the discrete value v0 is encoded in the block
b with a block variable wb = α:

v0 � v b, wb � α( ). (30)
then the value indicator δv0v is

δv0v � δαwb
. (31)

A core term is necessary so that only qubits in a single block can
be in the excited state. Defining tb = ∑ixi,b, the core terms results in

Hcore � ∑
b≠b′

tbtb′, (32)

or, as a sum constraint,

ccore � ∑
b≠b′

tbtb′ � 0. (33)

The minimum value of Hcore is zero. If the two blocks, b and b′,
have binary variables with values one, then tbtb′ ≠ 0 and the
corresponding eigenstate of Hcore is no longer the ground state.

4 Parity architecture

The strong hardware limitations of noisy intermediate-scale
quantum (NISQ) (Preskill, 2018) devices have made sparse
encodings (especially one-hot) the standard approach to problem
formulation. This is mainly because the basic building blocks (value
and value indicator) are of linear or quadratic order in the spin
variables in these encodings. The low connectivity of qubit platforms

2 Note that Ramos-Calderer et al. (2021) and Sawaya et al. (2020) use the
term “unary” for one-hot encoding.
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requires Hamiltonians in the QUBO formulation and high-order
interactions are expensive when translated to QUBO Kochenberger
et al. (2014). However, different choices of encodings can
significantly improve the performance of quantum algorithms
(Chancellor, 2019; Sawaya et al., 2020; Chen et al., 2021; Di
Matteo et al., 2021; Tamura et al., 2021), by reducing the search
space or generating a smoother energy landscape.

One way this difference between encodings manifests itself is in
the number of spin flips of physical qubits needed to change a
variable into another valid value (Berwald et al., 2023). If this
number is larger than one, there are local minima separated by
invalid states penalized with a high cost which can impede the
performance of the optimization. On the other hand, such an
energy-landscape might offer some protection against errors
(Pastawski and Preskill, 2016; Fellner et al., 2022). Furthermore,
other fundamental aspects of the algorithms, such as circuit depth
and energy scales can be greatly improved outside QUBO (Ender
et al., 2022; Drieb-Schön et al., 2023; Fellner et al., 2023; Messinger
et al., 2023), prompting us to look for alternative formulations. The
Parity Architecture is a paradigm for solving quantum optimization
problems (Lechner et al., 2015; Ender et al., 2023) that does not rely
on the QUBO formulation, allowing a wide number of options for
formulating Hamiltonians. The architecture is based on the Parity
transformation, which remaps Hamiltonians onto a 2D grid
requiring only local connectivity of the qubits. The absence of
long-range interactions enables high parallelizability of quantum
algorithms and eliminates the need for costly and time-consuming
SWAP gates, which helps to overcome two of the main obstacles of
quantum computing: limited coherence time and the poor
connectivity of qubits within a quantum register.

The Parity transformation creates a single Parity qubit for each
interaction term in the (original) logical Hamiltonian:

Ji,j,...σ
i( )
z σ

j( )
z /→ Ji,j,...σ

i,j,...( )
z , (34)

where the interaction strength Ji,j,. . . is now the local field of the
Parity qubit σ(i,j,... )z . This facilitates addressing high-order
interactions and frees the problem formulation from the QUBO
approach. The equivalence between the original logical problem and
the Parity-transformed problem is ensured by adding three- and
four-body constraints and placing them on a 2D grid such that only
neighboring qubits are involved in the constraints. The mapping of a
logical problem into the regular grid of a Parity chip can be realized
by the Parity compiler (Ender et al., 2023). Although the Parity
compilation of the problem may require a larger number of physical
qubits, the locality of interactions on the grid allows for higher
parallelizability of quantum algorithms. This allows constant depth
algorithms (Lechner, 2020; Unger et al., 2022) to be implemented
with a smaller number of gates (Fellner et al., 2023).

The following toy example, summarized in Figure 2, shows how
a Parity-transformed Hamiltonian can be solved using a smaller
number of qubits when the original Hamiltonian has high-order
interactions. Given the logical Hamiltonian

H � σ 1( )
z σ 2( )

z + σ 2( )
z σ 4( )

z+ σ 1( )
z σ 5( )

z + σ 1( )
z σ 2( )

z σ 3( )
z + σ 3( )

z σ 4( )
z σ 5( )

z ,
(35)

the corresponding QUBO formulation requires seven qubits,
including two ancillas for decomposing the three-body
interactions, and the total number of two-body interactions is 14.
The embedding of the QUBO problem on quantum hardware may
require additional qubits and interactions depending on the chosen
architecture. Instead, the Parity-transformed Hamiltonian only
consists of six Parity qubits with local fields and two four-body
interactions between close neighbors.

It is not yet clear what the best Hamiltonian representation is for
an optimization problem. The answer will probably depend strongly
on the particular use case and will take into account not only the
number of qubits needed but also the smoothness of the energy
landscape, which has a direct impact on the performance of
quantum algorithms (King et al., 2019).

5 Encoding constraints

In this section, we review how to implement the hard constraints
associated with the problem, assuming that the encodings of the
variables have already been chosen. Hard constraints c(v1, . . ., vN) =
K often appear in optimization problems, limiting the search space
and making problems even more difficult to solve. We consider
polynomial constraints of the form

c v1, . . . , vN( ) � ∑givi
+∑gi,jvivj +∑gi,j,kvivjvk + . . . ,

(36)

which remain polynomial after replacing the discrete variables vi
with any encoding. The coefficients gi, gi,j, . . . depend on the
problem and its constraints. Even if the original problem is
unconstrained, the use of sparse encodings such as one-hot or
domain wall imposes hard constraints on the quantum variables.

In general, constraints can be implemented dynamically (Hen
and Sarandy, 2016; Hen and Spedalieri, 2016) (exploring only
quantum states that satisfy the constraints) or as extra terms Hc

in the Hamiltonian, such that eigenvectors ofH are also eigenvectors

FIGURE 2
Example toy problem H involving high-order interactions that
shows how the Parity architecture straightforwardly handles
Hamiltonians beyond the QUBO formulation. The problem is
represented by the hypergraph at the top of the figure. When
decomposed into QUBO form, it requires 7 qubits and 14 two-body
interactions, plus additional qubit overhead depending on the
embedding. In contrast, the Parity compiler can remap this problem
into a 2D grid that requires six qubits with local fields and four-body
interactions, represented by the blue squares. No additional
embedding is necessary if the hardware is designed for the Parity
Architecture.
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of Hc and the ground states of Hc correspond to elements in the
domain of f that satisfy the constraint. These can be incorporated as
a penalty term Hc into the Hamiltonian that penalizes any state
outside the desired subspace:

Hc � A c v1, . . . , vN( ) −K[ ]2, (37)
or

Hc � A c v1, . . . , vN( ) −K[ ], (38)
in the special case that c(x1, . . ., xN) ≥ K is satisfied. The constant A
must be large enough to ensure that the ground state of the total
Hamiltonian satisfies the constraint, but the implementation of large
energy scales lowers the efficiency of quantum algorithms (Lanthaler
and Lechner, 2021) and additionally imposes a technical challenge.
Moreover, extra terms in the Hamiltonian imply additional
overhead of computational resources, especially for squared terms
such as in Eq. 37. The determination of the optimal energy scale is an
important open problem. For some of the problems in the library, we
provide an estimation of the energy scales (cf. also Section 8.4.2).

Quantum algorithms for finding the ground state of
Hamiltonians, such as QAOA or quantum annealing, require
driver terms Udrive = exp(−itHdrive) that spread the initial
quantum state to the entire Hilbert space. Dynamical
implementation of constraints employs a driver term that only
explores the subspace of the Hilbert space that satisfies the
constraints. Given an encoded constraint in terms of Ising
operators σ(i)z :

c σ 1( )
z , . . . , σ N( )

z( ) � ∑giσ i( )
z

+∑gi,jσ i( )
z σ(j)z +/ � K,

(39)

a driver Hamiltonian Hdrive that commutes with c(σ(1)z , . . . , σ(N)
z )

will be restricted to the valid subspace provided the initial quantum
state satisfies the constraint:

c|ψ0〉 � K|ψ0〉
Udrive c|ψ0〉 � Udrive K|ψ0〉

c Udrive|ψ0〉[ ] � K Udrive|ψ0〉[ ]. (40)

In general, the construction of constraint-preserving drivers
depends on the problem (Hen and Sarandy, 2016; Hen and
Spedalieri, 2016; Hadfield et al., 2017; Chancellor, 2019; Bärtschi
and Eidenbenz, 2020; Wang et al., 2020; Fuchs et al., 2021; Bakó
et al., 2022). Approximate driver terms have been proposed that
admit some degree of leakage and may be easier to construct
(Sawaya et al., 2022). Within the Parity Architecture, each term
of a polynomial constraint is a single Parity qubit (Lechner et al.,
2015; Ender et al., 2023). This implies that for the Parity
Architecture the polynomial constraints are simply the
conservation of magnetization between the qubits involved:

∑
i

giσ i( )
z +∑

i,j

gi,jσ i( )
z σ

j( )
z +/ � K

→ ∑
u∈c

guσ u( )
z � K,

(41)

where the Parity qubit σ(u)z represents the logical qubits product
σ(u1)z σ(u2)z . . . σ(un)z and we can sum over all these products that
appear in the constraint c. A driver Hamiltonian based on
exchange (or flip-flop) terms σ(u)+ σ(w)− + h.c., summed over all

pairs of products u, w ∈ c, preserves the total magnetization and
explores the complete subspace where the constraint is satisfied
(Drieb-Schön et al., 2023). The decision tree for encoding
constraints is presented in Figure 3.

6 Use case example

In this section, we present an example of the complete procedure
to go from the encoding-independent formulation to the spin
Hamiltonian that has to be implemented in the quantum
computer, using an instance of the Clustering problem
(Section 7.1.1).

Every problem in this library includes a Problem description,
indicating the required inputs for defining a problem instance. In the
case of the clustering problem, a problem instance is defined from
the number of clusters K we want to create, N objects with weights
wi, and distances di,j between the objects. Two different types of
discrete variables are required, variables vi = 1, . . ., K (i = 1, . . ., N)
indicate to which of theK possible clusters the node i is assigned, and
variables yj = 1, . . ., Wmax track the weight in cluster j.

The cost function of the problem only depends on δkvi , the value
indicators of variables vi. In this case, δkvi indicates whether the node
associated with the discrete variable vi belongs to the cluster k or not.
If two nodes i, j belong to the same cluster k, then the cost function
increases by di,j, giving the total cost function:

f � ∑K
k�1

∑
i<j

di,jδ
k
vi
δkvj . (42)

We can choose any encoding for the variables vi. For example, if we
decide to use binary or Gray encoding, a variable vi requires D =
log2(K) qubits {x(i)

u }Du�1(we assume K = 2D for simplicity, but the
resource estimate will not change significantly if this is not the case).
From Eq. 12 we see that δkvi is a polynomial of order D in variables
x(i)
u with (Dj ) terms of order j and 2D = K terms in total, so the

product δkviδ
k
vj
in the cost function will have 2D × 2D = 22D = K2 terms,

with orders between zero and 2D. This product is summed over all
the N(N−1)

2 pairs i, j, so we can say that O(N2K2) terms are required
for the cost function. High-order interactions may be prohibitive for
some hardware platforms, but if multiqubit gates are available,
binary encoding offers an important reduction in the number of
qubits.

Alternatively, we can choose a sparse encoding for the variables
vi. Using one-hot encoding, we need K qubits per node, soNK qubits
are required for the cost function. The product δkviδ

k
vj
is just a two-

qubit interaction x(i)
k x(j)

k , so the cost function requires O(KN2)
terms. The K qubits associated with a variable vimust satisfy the core
constraint:

ci � ∑K
u�1

x i( )
u � 1. (43)

if this constraint is implemented as an energy penalization (ci − 1)2,
then O(K2) terms are added to the spin Hamiltonian for each
variable, so O(NK2) terms in total are associated with the
constraint. The advantage of sparse encodings is that low-order
interactions are needed for the value indicator functions (in this
case, the maximum order is two).
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Besides the core constraints associated with the encodings,
the clustering problem includes K additional constraints (one
per each cluster). The total weight of nodes in any cluster
cannot exceed a problem instance specific maximal value
Wmax:

∑
i

wiδ
k
i ≤Wmax, ∀ k ∈ {1, . . . , K}. (44)

For the kth cluster, this constraint can be expressed in terms of
auxiliary variables yk:

yk � ∑
i

wiδ
k
vi
. (45)

Variables yk are discrete variables in the range 0, . . ., Wmax.
Because the value indicators of yk are not necessary for the
constraints, we can use a dense encoding such as binary
without dealing with the high-order interactions associated
with value indicators of dense encodings. The variables yk

require K log2(Wmax) qubits if we use binary encoding, or
KWmax if we use one-hot. These constraints can also be
implemented as energy penalizations in the Hamiltonian or
can be encoded in the driver term.

The complete procedure for obtaining the spin Hamiltonian is
outlined in Figure 4. We emphasize that the optimal encodings and
constraint implementations depend on the details of the hardware,
such as native gates, connectivity, and the number of qubits.
Moreover, the efficiency of quantum algorithms is also related to
the smoothness of the energy landscape, and some encodings can
provide better results even though they require more qubits (see, for
example, Tamura et al., 2021).

7 Problem library

The problems included in the library are classified into four
categories: subsets, partitions, permutations, and continuous

FIGURE 3
(A)Decision tree to encode constraints, which can be implemented as energy penalizations in the problem Hamiltonian or dynamically by selecting
a driver Hamiltonian that preserves the desired condition. For energy penalties (left figure), the driver term needs to explore the entire Hilbert space. In
contrast, the dynamic implementation of the constraints (right figure) reduces the search space to the subspace satisfying the hard constraint, thus
improving the performance of the algorithms. (B)Constrained logical problem (left) and its Parity representation where each term of the polynomial
constraint is represented by a single Parity qubit (green qubits), so the polynomial constraints define a subspace in which the total magnetization of the
involved qubits is preserved and which can be explored with an exchange driver σ+σ− + h.c. that preserves the total magnetization. Figure originally
published in Ref. Drieb-Schön et al. (2023).
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variables. These categories are defined by the role of the discrete
variable and are intended to organize the library and make it easier
to find problems but also to serve as a basis for the formulation of
similar use cases. An additional category in Section 7.5 contains
problems that do not fit into the previous categories but may also be
important use cases for quantum algorithms. In Section 8 we include
a summary of recurrent encoding-independent building blocks that
are used throughout the library and could be useful in formulating
new problems.

7.1 Partitioning problems

The goal of partitioning problems is to look for partitions of a set
U, minimizing a cost function f. A partition P of U is a set P: �
Uk{ }k∈K of subsets Uk ⊂ U, such thatU � ⋃K

k�1Uk and Uk ∩ Uk′ = 0 if
k ≠ k′. Partitioning problems require a discrete variable vi for each
element ui ∈ U. The value of vi indicates to which subset the element
belongs, so vi can take K different values. Values assigned to the
subsets are arbitrary, therefore the value of vi is usually not

FIGURE 4
Example decision tree for the clustering problem. The entire process is presented in four different blocks and the decisions taken are highlighted in
green. The formulation of a problem instance requires the discrete variables vi and yk to be encoded in terms of qubit operators. In this example, the vi
variables are encoded using the one-hot encoding while for the yk variables we use the binary encoding. The Hamiltonian is obtained by substituting in
the encoding-independent expressions of Eqs 48, 50 the discrete variables vi, yk and the value indicators δαv according to the chosen encoding. Core
terms associated with sparse encodings (one-hot in this case) and the problem constraints can be added to the Hamiltonian as energy penalizations or
implemented dynamically in the driver term of the quantum algorithm as sum constraints.
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important in these cases, but only the value indicator δαvi is needed,
so sparse encodings may be convenient for these variables.

7.1.1 Clustering problem
a. Description Let U � ui{ }Ni�1 be a set of N elements, characterized

by weightswi ∈ {1, . . .,wmax} and distances di,j between them. The
clustering problem looks for a partition of the set U into K non-
empty subsets Uk that minimizes the distance between vertices in
each subset. Partitions are subject to a weight restriction: for
every subset Uk, the sum of the weights of the vertices in the
subset must not exceed a given maximum weight Wmax.

b. VariablesWe can define a variable vi = 1, . . ., K for each element
in U. We also require an auxiliary variable yj = 0, 1, . . .,Wmax per
subset Uk, that indicates the total weight of the elements in Uk:

yk � ∑
i: ui∈Uk{ }

wi. (46)

c. Constraints The weight restriction is an inequality constraint:

yk ≤Wmax, (47)
which can be expressed as:

yk � ∑
i

wiδ
k
vi
. (48)

if the encoding for the auxiliary variables makes it necessary (e.g., a
binary encoding andWmax not a power of 2), this constraint must be
shifted as is described in Section 8.2.3.

d. Cost function The sum of the distances of the elements of a
subset is:

fk � ∑
i<j: ui,uj∈Uk{ }

di,j � ∑
i<j

di,jδ
k
vi
δkvj , (49)

and the cost function results:

f � ∑
k

fk. (50)

e. References Studied by Feld et al. (2019) as part of the Capacitated
Vehicle Routing problem.

7.1.2 Number partitioning
a. Description Given a set U of N real numbers ui, we can look for a

partition of size K such that the sum of the numbers in each
subset is as homogeneous as possible.

b. Variables The problem requires N variables vi ∈ [1, K], one per
element ui. The value of vi indicates to which subset ui belongs.

c. Cost function The partial sums can be represented using the value
indicators associated with the variables vj:

pj � ∑
ui∈Uj

ui � ∑N
i�1

uiδ
j
vi
. (51)

there are three common approaches for finding the optimal
partition: maximizing the minimum partial sum, minimizing the
largest partial sum, or minimizing the difference between the
maximum and the minimum partitions. The latter option can be
formulated as

f � ∑
i<j

pi − pj( )2. (52)

In order to minimize the maximum partial sum (maximizing the
minimum partial sum is done analogously) we can introduce an
auxiliary variable l that can take values 1, . . .,∑iui ≡ lmax. Depending
on the problem instance the range of l can be restricted further. The
first term in the cost function

f � lmax 1 −∏
i

Θ l − pi( )⎛⎝ ⎞⎠ + l (53)

then enforces that l is as least as large as the maximum pi (Section
8.1.3) and the second term minimizes l. The theta step function can
be expressed in terms of the value indicator functions according to
the building block Eq. 144 by either introducing auxiliary variables
or expressing the value indicators directly according to the
discussion in Section 8.4.1.

d. Special cases For K = 2, the cost function that minimizes the
difference between the partial sums is

f � p2 − p1( )2
� ∑N

i�1
δ1vi − δ2vi( )ui

⎡⎣ ⎤⎦2. (54)

The only two possible outcomes for δ1vi − δ2vi are ±1, so these factors
can be trivially encoded using spin variables si = ±1, leading to

f � ∑N
i�1

siui. (55)

e. References The Hamiltonian formulation for K = 2 can be found
in Lucas (2014).

7.1.3 Graph coloring
a. Description The nodes of the graph G = (V, E) are divided into K

different subsets, each one representing a different color. We can
look for a partition in which two adjacent nodes are painted with
different colors and which minimizes the number of colors used.

b. VariablesWe define a variable vi = 1. . .K for each node i = 1, . . .,
N in the graph.

c. Constraints We must penalize solutions for which two adjacent
nodes are painted with the same color. The cost function of the
graph partitioning problem presented in Eq. 61 can be used for
the constraint of graph coloring. In that case, [1 − δ(vi − vj)]Ai,j

was used to count the number of adjacent nodes belonging to
different subsets, now we can use δ(vi − vj)Ai,j to indicate if nodes
i and j are painted with the same color. Therefore the constraint is
(see building block Section 8.2.1)

c � ∑
i<j

δ vi − vj( )Ai,j � 0. (56)

d. Cost function The decision problem (“Is there a coloring that uses
K colors?”) can be answered by implementing the constraint as a
Hamiltonian H = c (note that c ≥ 0). The existence of a solution
with zero energy implies that a coloring with K colors exists.
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Alternatively we can look for the coloring that uses the
minimum number of colors. To check if a color α is used, we
can use the following term (see building block Section 8.2.2):

uα � 1 −∏N
i�1

1 − δαvi( ), (57)

which is one if and only if color α is not used in the coloring, and 0 if
at least one node is painted with color α. The number of colors used
in the coloring is the cost function of the problem:

f � ∑K
α�1

uα. (58)

This objective function can be very expensive to implement
since uα includes products of δ

α
vi
of order N, so a good estimation of

the minimum number Kmin would be useful to avoid using an
unnecessarily large K.

e. References The one-hot encoded version of this problem can be
found in Lucas (2014).

7.1.4 Graph partitioning
a. Description Graph partitioning divides the nodes of a graph G =

(V, E) into K different subsets, so that the number of edges
connecting nodes in different subsets (cut edges) is minimized or
maximized.

b. VariablesWe can use one discrete variable vk = 1, . . ., K per node
in the graph, which indicates to which partition the node belongs.

c. Cost function An edge connecting two nodes i and j is cut when vi
≠ vj. It is convenient to use the symbol (see building block
Section 8.1.4):

δ vi − vj( ) � ∑K
α�1

δαviδ
α
vj
� 1 if vi � vj

0 if vi ≠ vj
{ , (59)

which is equal to 1 when nodes i and j belong to the same partition
(vi = vj) and zero when not (vi ≠ vj). In this way, the term:

1 − δ vi − vj( )( )Ai,j (60)

is equal to 1 if there is a cut edge connecting nodes i and j, being Ai,j

the adjacency matrix of the graph. The cost function for minimizing
the number of cut edges is obtained by summing over all the nodes:

f � ∑
i<j

1 − δ vi − vj( )[ ]Ai,j, (61)

or alternatively −f to maximize the number of cut edges.

d. Constraints A common constraint imposes that partitions have a
specific size. The element counting building block Section 8.1.1 is
defined as

tα � ∑|V|
i�1

δαvi . (62)

If we want the partition α to have L elements, then

tα � L (63)

must hold. If we want the two partitions, α and β, to have the same
size, then the constraint is

tα � tβ, (64)
and all the partitions will have the same size, imposing

∑
a<b

ta − tb( )2 � 0 (65)

which is only possible if |V|/K is a natural number.

e. References The Hamiltonian for K = 2 can be found in Lucas
(2014).

f. Hypergraph partitioning The problem formulation can be
extended to hypergraphs. A hyperedge is cut when it contains
vertices from at least two different subsets. Given a hyperedge e of
G, the function

cut e( ) � ∏
i,j∈e

δ vi − vj( ) (66)

is only equal to 1 if all the vertices included in e belong to the same
partition, and zero in any other case. The product over the vertices i,
j of the edge e only needs to involve pairs such that every vertex
appears at least once. The optimization objective of minimizing the
cut hyperedges is implemented by the sum of penalties

f � ∑
e∈E

1 − cut e( )( )

� ∑
e∈E

1 −∏
i,j∈e

∑K
a�1

δai δ
a
j

⎛⎝ ⎞⎠.
(67)

This objective function penalizes all possible cuts in the same way,
regardless of the number of vertices cut or the number of partitions
to which an edge belongs.

7.1.5 Clique cover
a. Description Given a graph G = (V, E), we seek the minimum

number of colors K for coloring all vertices such that the subsets
Wα of vertices with the color α together with the edge set Eα
restricted to edges between vertices inWα form complete graphs.
A subproblem is to decide if there is a clique cover using K colors.

b. Variables For each vertex i = 1, . . ., N we define variables vi = 1,
. . .,K indicating the color that vertex is assigned to. If the number
of colors is not given, one has to start with an initial guess or a
minimal value for K.

c. Constraints In this problem, Gα = (Wα, Eα) has to be a complete
graph, so the maximum number of edges in Eα must be present.
Using the element counting building block, we can calculate the
number of vertices with color α (see bulding block Section 8.1.1):

tα � ∑N
i�1

δαi . (68)

ifGα is a complete graph, then the number of edges in Eα is tα(tα − 1)/2
and thus the constraint reads

c � ∑K
α�1

tα tα − 1( )
2

− ∑
i,j( )∈E

δαi δ
α
j

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ � 0. (69)
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Note that we do not have to square the term as it can never be
negative.

d. Cost function The decision problem (“Is there a clique cover
using K colors?”) can be answered using the constraint c as the
Hamiltonian of the problem. For finding the minimum number
of colors Kmin for which a clique cover exists (the clique cover
number), we can add a cost function for minimizing K. As in the
graph coloring problem, we can minimize the number of colors
using

f � ∑
α

1 − uα( ), (70)

where

uα � ∏N
i�1

1 − δαvi( ) (71)

indicates if the color α is used or not (see building block
Section 8.2.2).

e. References The one-hot encoded Hamiltonian of the decision
problem can be found in Lucas (2014).

7.2 Constrained subset problems

Given a set U, we look for a non-empty subset U0 ⊆ U that
minimizes a cost function f while satisfying a set of constraints ci. In
general, these problems require a binary variable xi per element in U
which indicates if the element i is included or not in the subset U0.
Although binary variables are trivially encoded in single qubits, non-
binary auxiliary variables may be necessary to formulate constraints,
so the encoding-independent formulation of these problems is still
useful.

7.2.1 Cliques
a. Description A clique on a given graph G = (V, E) is a subset of

vertices W ⊆ V such that W and the subset EW of edges between
vertices in W is a complete graph, i.e., the maximal possible
number of edges in EW is present. The goal is to find a clique with
cardinality K. Additionally, one could ask what the largest clique
of the graph is.

b. Variables We can define |V| binary variables xi that indicate
whether vertex i is in the clique or not.

c. Constraints This problem has two constraints, namely, that the
cardinality of the clique is K and that the clique indeed has the
maximum number of edges. The former is enforced by

c1 � ∑|V|
i�1

xi � K (72)

and the latter by

c2 � ∑
i,j( )∈E

xixj � K K − 1( )
2

. (73)

If constraints are implemented as energy penalization, one has to
ensure that the first constraint is not violated to decrease the penalty
for the second constraint. Using the cost/gain analysis (Section 8.4.2)

of a single spin flip this is prevented as long as a1Ua2Δ, where Δ is
the maximal degree ofG and a1,2 are the energy scales of the first and
second constraints.

d. Cost function The decision problem (“Is there a clique of size
K?”) can be solved using the constraints as the Hamiltonian of
the problem. If we want to find the largest clique of the graph
G, we must encode K as a discrete variable, K = 1, . . ., Kmax,
where Kmax = Δ is the maximum degree of G and the largest
possible size of a clique. The cost function for this case is
simply the value of K:

f � −K (74)

e. Resources Implementing constraints as energy penalizations, the
total cost function for the decision problem (fixed K),

f � c1 −K( )2 + c2 − K K − 1( )
2

( )2

, (75)

has interaction terms with maximum order of two and the number
of terms scales with |E| + |V|2. If K is encoded as a discrete variable,
the resources depend on the chosen encoding.

f. References This Hamiltonian was formulated in Lucas (2014)
using one-hot encoding.

7.2.2 Maximal independent set
a. Description Given a hypergraph G = (V, E) we look for a subset of

vertices S ⊂ V such that there are no edges in E connecting any two
vertices of S. Finding the largest possible S is an NP-hard problem.

b. Variables We use a binary variable xi for each vertex in V.
c. Cost function For maximizing the number of vertices in S, the

cost function is

f � −∑|V|
i�1

xi. (76)

d. Constraints Given two elements in S, there must not be any edge
of hyperedge in E connecting them. The constraint

c � ∑
i,j∈V

Ai,jxixj (77)

counts the number of adjacent vertices in S, with A as the adjacency
matrix. By setting c = 0, the vertices in S form an independent set.

e. References See Lucas (2014) and Choi (2010) for graphs.

7.2.3 Set packing
a. Description Given a set U and a family S � {Vi}Ni�1 of subsets Vi of

U, we want to find set packings, i.e., subsets of S such that all
subsets are pairwise disjoint, Vi ∩ Vj = ∅. Finding the maximum
packing (the maximum number of subsets Vi) is the NP-hard
optimization problem called set packing.

b. Variables We define N binary variables xi that indicate whether
subset Vi belongs to the packing.

c. Cost function Maximizing the number of subsets in
the packing is achieved with the element counting building
block
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f � −∑N
i�1

xi. (78)

d. Constraints In order to ensure that any two subsets of the
packings are disjoint we can impose a cost on overlapping
sets with

c � ∑
i,j:Vi∩Vj≠∅

xixj � 0. (79)

e. Resources The total cost function H = HA + HB has interaction
terms with maximum order of two (so it is a QUBO problem) and
the number of terms scales up to N2.

f. References This problem can be found in Lucas (2014).

7.2.4 Vertex cover
a. Description Given a hypergraph G = (V, E) we want to find the

smallest subset C ⊆ V such that all edges contain at least one
vertex in C.

b. Variables We define |V| binary variables xi that indicate whether
vertex i belongs to the cover C.

c. Cost functionMinimizing the number of vertices in C is achieved
with the element counting building block

f � ∑|V|
i�1

xi. (80)

d. Constraints With

c � ∑
e� u1 ,...,uk( )∈E

∏k
a�1

1 − xua( ) � 0 (81)

one can penalize all edges that do not contain vertices belonging to
C. Encoding the constraint as an energy penalization, the
Hamiltonian results in

H � Af + Bc. (82)
by setting B > A we can avoid the constraint being traded off against
the minimization of C.

e. Resources The maximum order of the interaction terms is the
maximum rank of the hyperedges k and the number of terms
scales with |E|2k + |V|.

f. References The special case that only considers graphs can be
found in Lucas (2014).

7.2.5 Minimal maximal matching
a. DescriptionGiven a hypergraphG = (V, E) with edges of maximal

rank kwe want to find aminimal (i.e., fewest edges) matching C ⊆
E which is maximal in the sense that all edges with vertices that
are not incident to edges in C have to be included in the
matching.

b. Variables We define |E| binary variables xi that indicate whether
an edge belongs to the matching C.

c. Cost functionMinimizing the number of edges in the matching is
simply done by the cost function

fA � A∑|E|
i�1

xi. (83)

d. Constraints We have to enforce that C is indeed a matching,
i.e., that no two edges which share a vertex belong to C. Using an
energy penalty, this is achieved by:

fB � B∑
v∈V

∑
i,j( )∈∂v

xixj � 0, (84)

where ∂v is the set of edges connected to vertex v. Additionally, the
matching should be maximal. For each vertex u, we define a variable
yu = ∑i∈∂uxi which is only zero if the vertex does not belong to an
edge of C. If the first constraint is satisfied, this variable can only be
0 or 1. In this case, the constraint can be enforced by

fC � C ∑
e� u1 ,...,uk( )∈E

∏k
a�1

1 − yua( ) � 0. (85)

However, one has to make sure that the constraint implemented by
fB is not violated in favor of fC which could happen if for some v, yv >
1 and form neighboring vertices yu = 0. Then the contributions from
v are given by

fv � Byv yv − 1( ) 1
2
+ C 1 − yv( )m (86)

and since m + yv is bounded by the maximum degree Δ of G times
the maximum rank of the hyperedges k, we need to set B > (Δk − 2)C
to ensure that the ground state of fB + fC does not violate the first
constraint. Finally, one has to prevent fC being violated in favor of fA
which entails C > A.

e. Resources The maximum order of the interaction terms is k and
the number of terms scales roughly with (|V| + |E|2k)Δ(Δ − 1).

f. References This problem can be found in Lucas (2014).

7.2.6 Set cover
a. DescriptionGiven a setU � {uα}nα�1 andN subsetsVi ⊆U, we look

for the minimum number of Vi such that U = ⋃Vi.
b. Variables We define a binary variable xi = 0, 1 for each subset Vi

that indicates if the subset Vi is selected or not. We also define
auxiliary variables yα = 1, 2, . . ., N that indicate how many active
subsets (Vi such that xi = 1) contain the element uα.

c. Cost function The cost function is simply

f � ∑N
i�1

xi, (87)

which counts the number of selected subsets Vi.

d. Constraints The constraint U � ⋃i: xi�1Vi can be expressed as

yα > 0, ∀α � 1, . . . , n, (88)
which implies that every element uα ∈ U is included at least once.
These inequalities are satisfied if yα are restricted to the valid values
(yα = 1, 2, . . ., N, yα ≠ 0) (Section 8.2.3). The values of yα should be
consistent with those of xi, so the constraint is
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cα � yα − ∑
i:uα∈Vi

xi � 0. (89)

e. Special case: exact cover If we want each element of U to appear
once and only once on the cover, then yα = 1, for all α and the
constraint of the problem reduces to

cα � ∑
i:α∈Vi

xi � 1. (90)

f. References The one-hot encoded Hamiltonian can be found in
Lucas (2014).

7.2.7 Knapsack
a. Description A set U contains N objects, each of them with a value

di and a weight wi. We look for a subset of U with the maximum
value ∑di such that the total weight of the selected objects does
not exceed the upper limit W.

b. VariablesWe define a binary variable xi = 0, 1 for each element in
U that indicates if the element i is selected or not. We also define
an auxiliary variable y that indicates the total weight of the
selected objects:

y � ∑
i:xi�1

wi. (91)

if the weights are natural numbers wi ∈ N then y is also natural, and
the encoding of this auxiliary variable is greatly simplified.

c. Cost function The cost function is given by

f � −∑N
i�1

dixi, (92)

which counts the value of the selected elements.

d. Constraints The constraint y <W is implemented by forcing y to
take one of the possible values y = 1, . . .W − 1 (see Section 8.2.3).
The value of ymust be consistent with the selected items from U:

c � y −∑N
i

wixi � 0. (93)

e. References The one-hot encoded Hamiltonian can be found in
Lucas (2014).

7.3 Permutation problems

In permutation problems, we need to find a permutation of N
elements that minimizes a cost function while satisfying a given set
of constraints. In general, we will use a discrete variable vi ∈ [1, N]
that indicates the position of the element i in the permutation.

7.3.1 Hamiltonian cycles
a. Description For a graph G = (V, E), we ask if a Hamiltonian cycle,

i.e., a closed path that connects all nodes in the graph through the
existing edges without visiting the same node twice, exists.

b. VariablesWe define a variable vi = 1, . . ., |V| for each node in the
graph, that indicates the position of the node in the permutation.

c. Cost function For this problem, there is no cost function, so every
permutation that satisfies the constraints is a solution to the
problem.

d. Constraints This problem requires two constraints. The first
constraint is inherent to all permutation problems and
imposes the |V| variables {vi} to be a permutation of [1, . . .,
|V|]. This is equivalent to requiring vi ≠ vj if i ≠ j, which can be
encoded with the following constraint (Section 8.2.1):

c1 � ∑N
α�1

∑
i≠k

δαviδ
α
vk
� 0. (94)

The second constraint ensures that the path only goes through
the edges of the graph. Let A be the adjacency matrix of the graph,
such that Ai,j = 1 if there is an edge connecting nodes i and j and zero
otherwise. To penalize invalid solutions, we use the constraint

c2 � ∑
i,j

∑|V|
α�1

1 − Ai,j( ) δαviδ
α+1
vj

+ δα+1vi
δαvj( ) � 0, (95)

which counts how many adjacent nodes in the solution are not
connected by an edge in the graph. α = |V| + 1 represents α = 1 since
we are looking for a closed path.

e. References The one-hot encoded Hamiltonian can be found in
Lucas (2014).

7.3.2 Traveling salesperson problem (TSP)
a. Description The TSP is a trivial extension of the Hamiltonian cycles

problem. In this case, the nodes represent cities and the edges are the
possible roads connecting the cities, although in general it is assumed
that all cities are connected (the graph is complete). For each edge
connecting cities i and j there is a costwi,j. The solution of the TSP is
the Hamiltonian cycle that minimizes the total cost ∑wi,j.

b. VariablesWe define a variable vi = 1, . . ., |V| for each node in the
graph, indicating the position of the node in the permutation.

c. Cost function If the traveler goes from city i at position α to city j
in the next step, then

δαviδ
α+1
vj

� 1, (96)
otherwise, that expression would be zero. Therefore the total cost of
the travel is codified in the function:

f � ∑
α

∑
i<j

wi,j δαviδ
α+1
vj

+ δαvjδ
α+1
vi

( ). (97)

as for Hamiltonian cycles, α = |V| + 1 represents α = 1 since we are
looking for a closed path.

d. Constraints The constraints are the same as those used in the
Hamiltonian cycles problem (see paragraph 7.3.1). If the graph is
complete (all the cities are connected) then constraint c2 is not
necessary.

e. References The one-hot encoded Hamiltonian can be found in
Lucas (2014).

7.3.3 Machine scheduling
a. Description Machine scheduling problems seek the best way to

distribute a number of jobs over a finite number of machines.
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These problems explore permutations of the job list, where the
position of a job in the permutation indicates on which machine
and at what time the job is executed. Many variants of the
problem exist, including formulations in terms of spin
Hamiltonians (Venturelli et al., 2015; Kurowski et al., 2020;
Amaro et al., 2022). Here we consider the problem of M
machines and N jobs, where all jobs take the same amount of
time to complete, so the time can be divided into time slots of
equal duration t. It is possible to include jobs of duration nt
(n ∈ N) by using appropriate constraints that force some jobs to
run in consecutive time slots on the same machine. In this way,
problems with jobs of different duration can be solved by
choosing a sufficiently short time t.

b. Variables We define variables vm,t = 0, . . .N, where the subindex
m = 1, . . .M indicates the machine and t = 1, . . .T the time slot.
When vm,t = 0, the machine m is unoccupied in time slot t, and if
vm,t = j ≠ 0 then the job j is done in the machine m, in the time
slot t.

c. Constraints There are many possible constraints depending on
the use case we want to run. As in every permutation problem, we
require that no pair of variables have the same value, vm,t ≠ vm′,t′,
otherwise, some jobs would be performed twice. We also require
each job to be complete so there must be exactly one vm,t = j for
each job j. This constraint is explained in Section 8.2.1 and holds
for every job j ≠ 0:

c1 � ∑
j≠0

∑
m,t

δjvm,t
− 1⎡⎣ ⎤⎦2 � 0. (98)

Note that if job j is not assigned (i.e., there are nom, t such that vm,t =
j) then c1 > 0. Also, if there is more than one variable vm,t = j, then
again c1 > 0. The constraint will be satisfied (c1 = 0) if and only if
every job is assigned to a single time slot on a single machine.

Suppose job k can only be started if another job, j, has been done
previously. This constraint can be implemented as

c2,k>j � ∑
m,m′,t≥ t′

δjvm,t
δkvm′,t′

� 0, (99)

which precludes any solution in which job j is done after job k.
Alternatively, it can be codified as

c2,k>j′ � ∑
m,m′,t< t′

δjvm,t
δkvm′,t′

� 1. (100)

These constraints can be used to encode problems that
consider jobs with different operations O1, . . .Oq that must be
performed in sequential order. Note that constraints c2, c2′ allow
the use of different machines for different operations. If we want
job k to be done immediately after work j, we can substitute t′ by
t + 1 in c2′.

If we want two jobs j1 and j2 to run on the same machine in
consecutive time slots, the constraint can be encoded as

c3 � ∑
m,t

δj1vm,t
δj2vm,t+1 � 1, (101)

or as a reward term in the Hamiltonian,

c3′ � −∑
m,t

δj1vm,t
δj2vm,t+1 , (102)

that reduces the energy of any solution in which job j2 is performed
immediately after job j1 on the same machine m. This constraint
allows the encoding of problems with different job durations since j1
and j2 can be considered part of the same job of duration 2t.

d. Cost function Different objective functions can be chosen for this
problem, such as minimizing machine idle time or early and late
deliveries. A common option is to minimize the makespan,
i.e., the time slot of the last scheduled job. To do this, we first
introduce an auxiliary function τ(vm,t) that indicates the time
slots in which a job has been scheduled:

τ vm,t( ) � t if vm,t ≠ 0
0 if vm,t � 0.

{ (103)

These functions can be generated from vm,t:

τ vm,t( ) � 1 − δ0vm,t
( ). (104)

Note that the maximum value of τ corresponds to the makespan of
the problem, which is to be minimized. To do this, we introduce the
extra variable τmax and penalize configurations where τmax < τ(vm,t)
for all m, t:

fτmax � ∏
m,t

Θ τ vm,t( ) − τmax[ ], (105)

with

Θ x( ) � 1 if x≥ 0
0 if x< 0.

{ (106)

For details on how Θ(x) can be expressed see Section 8.1.2. By
minimizing fτmax, we ensure that τmax ≥ τ(vm,t). Then, the cost
function is used to simply minimize τmax, the latest time a job can be
scheduled, via

f � τmax. (107)
An alternative cost function for this problem is

f′ � ∑
m,t

τ vm,t( ), (108)

which forces all jobs to be scheduled as early as possible.

e. References Quantum formulations of this and related problems
can be found in Refs. Venturelli et al. (2015); Kurowski et al.
(2020); Amaro et al. (2022) and Carugno et al. (2022).

7.3.4 Nurse scheduling problem
a. Description In this problem we have N nurses and D working

shifts. Nurses must be scheduled with minimal workload
following hard and soft constraints, such as minimum
workload nmin,t of nurses i (where nurse i contributes
workload pi) in a given shift t, and balancing the number of
shifts to be as equal as possible. Furthermore, no nurse should
have to work on more than dmax consecutive days.

b. Variables We define ND binary variables vi,t indicating whether
nurse i is scheduled for shift t.

c. Cost function The cost function, whose minimum corresponds to
the minimal number of overall shifts, is given by
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f � ∑D
t�1

∑N
i�1

vi,t (109)

d. Constraints Balancing of the shifts is expressed by the constraint

c � ∑
i<j

∑
t

vi,t −∑
t′
vj,t′⎛⎝ ⎞⎠2

. (110)

In order to get a minimal workload per shift we introduce the
auxiliary variables yt which we bind to the values

yt � ∑N
i�1

pivi,t (111)

with the penalty terms

yt −∑N
i�1

pivi,t⎛⎝ ⎞⎠2

. (112)

Now the constraint takes the form

c � ∑D
t�1

∑
α<nmin,t

δαyt � 0. (113)

Note that we can also combine the cost function for minimizing the
number of shifts and this constraint by using the cost function

f � ∑D
t�1

∑N
i�1

pivi,t − nmin,t
⎛⎝ ⎞⎠2

. (114)

Finally, the constraint that a nurse i should work in maximally dmax

consecutive shifts reads

c i( ) � ∑
t1−t2 > dmax

∏t2
t′�t1

vi,t′ � 0. (115)

e. References This problem can be found in Ikeda et al. (2019).

7.4 Real variables problems

Some problems are defined by a set of real variables
{vi ∈ R, i � 1, . . . , d}, and a cost function f(vi) that has to be
minimized. We again want to express these problems as
Hamiltonians whose ground state represents an optimal solution.
This involves three steps. First, encode the continuous variables into
discrete ones. Second, choose an encoding of these discrete variables
to spin variables exactly as before, and third, a decoding step is
necessary that maps the solution to our discrete problem back to the
continuous domain. In the following, we investigate two possible
methods one could use for the first step.

a. Standard discretization Given a vector v ∈ Rd one could simply
discretize it by partitioning the axis into intervals with the length
of the aspired precision q, i.e., the components of v = (vi), i = 1,
. . ., d are mapped to vi → ~vi ∈ N such that (~vi − 1)q≤ vi < ~viq.

Depending on the problem it might also be useful to have
different resolutions for different axes or a non-uniform
discretization, e.g., logarithmic scaling of the interval length.

For the discrete variables ~vi one can use the encodings in Section
3. In the final step after an intermediate solution,~v*, is found, one has
to map it back to Rd by uniformly sampling the components of v*
from the hypercuboids corresponding to ~v*. Any intermediate
solution that is valid for the discrete encoding can also be
decoded and thus there are no core terms in the cost function
besides those from the discrete encoding.

b. Random subspace coding A further possibility to encode a vector
v ∈ Rd into discrete variables is random subspace coding
(Rachkovskii et al., 2005). One starts by randomly choosing a
set of coordinatesDn :� 1, 2, . . . , dn{ } ⊂ 1, 2, . . . , d{ }. For each i ∈
Dn, a Dirichlet process is used to pick an interval [ai, bi] in the i-
coordinate direction in Rd (Devroye et al., 1993). We denote

πi : R
d → R

x � x1, . . . , xd( ) ↦ πi x( ) :� xi
(116)

for the projection to the ith coordinate. A hyperrectangle R ⊂ Rd is
defined as

R :� x ∈ Rd | πi x( ) ∈ ai, bi[ ], ∀ i ∈ Dn{ }. (117)

For the fixed set of chosen coordinates Dn, the Dirichlet
processes are run m times to get m hyperrectangles R1, . . . , Rm{ }.
For k = 1, . . ., m, we define binary projection maps as

zk : R
d → Z2

x ↦ zk x( ) :� 1, if x ∈ Rk

0, else.
{ (118)

then Random subspace coding is defined as a map

z : Rd → Zm
2

x ↦ z x( ) :� z1 x( ), . . . , zm x( )( ). (119)

Depending on the set of hyperrectangles R1, . . . , Rn{ }, random
subspace coding can be a sparse encoding. LetM: � 1, . . . , m{ } and
K ⊂ M. We define sets

U K( ) :� ⋂
k∈K

Rk − ⋃
i∈M−K

Ri ≠ ∅. (120)

For z ∈ Zm
2 , letK(z) � k ∈ 1, . . . , m{ } | zk � 1{ }. The binary vector z

is in the image of the random subspace encoding if and only if

U K z( )( ) ≠ ∅ (121)
holds. From here one can simply use the discrete encodings discussed in
Section 3 to map the components zi(x) of z(x) to spin variables. Due to
the potential sparse encoding, a core term has to be added to the cost
function. Let N � L ⊂ M |U(L) � ∅{ }, then the core term reads

c � ∑
L∈N

∏
ℓ∈L

δ1zℓ ∏
p∈M−L

δ0zp . (122)

Despite this drawback, random subspace coding might be
preferable due to its simplicity and high resolution with relatively
few hyperrectangles compared to the hypercubes of the standard
discretization.

7.4.1 Financial crash problem
a. Description We calculate the financial equilibrium of market

values vi, i = 1, . . ., n of n institutions according to a simple
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model following Elliott et al. (2014) and Orús et al. (2019). In this
model, the prices of m assets are labeled by pk, k = 1, . . ., m.
Furthermore we define the ownership matrix D, where Dij

denotes the percentage of asset j owned by i; the cross-
holdings C, where Cij denotes the percentage of institution j
owned by i (except for self-holdings); and the self-ownership
matrix ~C. The model postulates that without crashes the equity
values V (such that v � ~CV) in equilibrium satisfy

V � Dp + CV → v � ~C 1 − C( )−1Dp. (123)
Crashes are then modeled as abrupt changes in the prices of

assets held by an institution, i.e., via

v � ~C 1 − C( )−1 Dp − b v, p( )( ), (124)
where bi(v, p) � βi(p)(1 − Θ(vi − vci )) results in the problem being
highly non-linear.

b. Variables It is useful to shift the market values and we find a
variable v − vc � v′ ∈ Rn. Since the crash functions bi(v, p)
explicitly depend on the components of v′ it is not convenient
to use the random subspace coding (or only for the components
individually) and so we use the standard discretization, i.e., each
component of v′ takes discrete values 0, . . ., K such that with
desired resolution r, a cut-off value rK is reached.

c. Cost function In order to enforce that the system is in financial
equilibrium we simply square Eq. 124

f � v′ + vc − ~C 1 − C( )−1 Dp − b v, p( )( )( )2, (125)

where for the theta functions in b(v, p) we use

Θ vi′( ) � ∑
α≥0

δαvi′, (126)

as suggested in Section 8.1.2.

7.4.2 Continuous black box optimization
a. Description Given a function f: [0, 1]d → R, which can be

evaluated at individual points a finite number of times but
where no closed form is available, we want to find the global
minimum. In classical optimization, the general strategy is to use
machine learning to learn an analytical acquisition function g(x)
in closed form from some sample evaluations, optimize it to
generate the next point on which to evaluate f, and repeat as long
as resources are available.

b. Variables The number and range of variables depends on the
continuous to discrete encoding. In the case of the standard
discretization, we have d variables va taking values in {0, . . ., �1/
q�}, where q is the precision.

With the random subspace encoding, we have Δ variables va
taking values in {0, . . ., ds}, where Δ is the maximal overlap of the
rectangles and ds is the number of rectangles.

c. Cost function Similar to the classical strategy, we first fit/learn an
acquisition function with an ansatz. Such an ansatz could take
the form

y v, w( ) � ∑k
r�1

∑
i1 ,...,ir�0,...,Δ

wi1 ,...,irvi1 . . . vir, (127)

where k is the highest order of the ansatz and the variables vi depend
on the continuous to discrete encoding. In terms of the indicator
functions, they are expressed as

vi � ∑
α

αδαvi . (128)

alternatively, one could write the ansatz as a function of the indicator
functions alone instead of the variables

y′ v, w( ) � ∑k
r�1

∑
i1 ,...,ir�0,...,Δ

wi1 ,...,ir′ δαi1vi1
. . . δαirvir

. (129)

While the number of terms is roughly the same as before, this has the
advantage that the energy scales in the cost function can be much
lower. A downside is that one has to consider that usually for an
optimization to be better than random sampling one needs the
assumption that the function f is well-behaved in some way (e.g.,
analytic). The formulation of the ansatz in Eq. 129 might not take
advantage of this assumption in the same way as the first.

Let w* ≡ {wi1 ,...,ir* } denote the fitted parameters of the ansatz.
Then the cost function is simply y(v, w*) or y′(v, w*).

d. Constraints In this problem, the only constraints that can appear
are core terms. For the standard discretization, no such term is
necessary and for the random subspace coding, we add Eq. 122.

e. References This problem can be found in Izawa et al. (2022).

7.5 Other problems

In this final category, we include problems that do not fit into the
previous classifications but constitute important use cases for
quantum optimization.

7.5.1 Syndrome decoding problem
a. Description For an [n, k] classical linear code (a code where k

logical bits are encoded in n physical bits) the parity check
matrix H indicates whether a state y of physical bits is a code
word or has a non-vanishing error syndrome η = yHT. Given
such a syndrome, we want to decode it, i.e., find the most
likely error with that syndrome, which is equivalent to
solving

argmin
e∈ 0,1{ }n,eHT�η

wt e( ), (130)

where wt denotes the Hamming weight and all arithmetic is mod 2.

b. Cost function There are two distinct ways to formulate the
problem: check-based and generator-based. In the generator-
based approach, we note that the generator matrix G of the code
satisfies GHT = 0 and thus any logical word u yields a solution to
eHT = η via e = uG + v where v is any state such that vHT = 0 can
be found efficiently. Minimizing the weight of uG + v leads to the
cost function
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fG � ∑n
j�1

1 − 2vj( ) 1 − 2∑k
l�1

δ1ulGjl
⎛⎝ ⎞⎠. (131)

note that the summation over l is mod 2 but the rest of the equation
is over N. We can rewrite this as

fG � ∑n
j�1

1 − 2vj( )∏k
l�1

s
Gjl

l (132)

according to Section 8.3.1.
In the check-based approach, we can directly minimize

deviations from eHT = η with the cost function

f1 � ∑n
j�1

1 − 2ηj( )∏k
l�1

s
Hjl

l (133)

but we additionally have to penalize higher weight errors with the
term

f2 � ∑n
j�1

δ1ej (134)

so we have

fH ≡ c1f1 + c2f2 (135)
with positive parameters c1/c2.

c. Variables The variables in the check-based formulation are the n
bits ei of the error e. In the generator-based formulation, k bits ui
of the logical word u are defined. If we use the reformulation Eq.
132, these are replaced by the k spin variables sl. Note that the
state v is assumed to be given by an efficient classical calculation.

d. Constraints There are no hard constraints, any logical word u and
any physical state e are valid.

e. Resources A number of interesting tradeoffs can be found by
analyzing the resources needed by both approaches. The
check-based approach features a cost function with up to
(n − k) + n terms (for a non-degenerate check matrix with n −
k rows, there are (n − k) terms from f1 and n terms from f2),
whereas in fG, there are at most n terms (the number of rows of
G). The highest order of the variables that appear in these
terms is for the generator-based formulation bounded by the
number of rows of G which is k. In general, this order can be
up to n (number of columns of H) for fH but for an important
class of linear codes (low-density parity check codes), the
order would be bounded by the constant weight of the parity
checks. This weight can be quite low but there is again a
tradeoff because higher weights of the checks result in better
encoding rates (i.e., for good low-density parity check codes,
they increase the constant encoding rate n/k ~ α).

f. References This problem was originally presented in Lai et al.
(2022).

7.5.2 k-SAT
a. Description A k-SAT problem instance consists of a boolean

formula

f x1, . . . , xn( ) � σ1 x11, . . . , x1k( ) . . .∧ σm xm1, . . . , xmk( ) (136)
in the conjunctive normal form (CNF), that is, σi are disjunction
clauses over k literals l:

σ i xi1, . . . , xik( ) � li,1 ∨/∨ li,k, (137)
where a literal li,k is a variable xi,k or its negation¬xi,k.Wewant to find out
if there exists an assignment of the variables that satisfies the formula.

b. Variables There are two strategies to express a k-SAT problem in a
Hamiltonian formulation. First, one can use a Hamiltonian cost
function based on violated clauses. In this case, the variables are
the assignments x ∈ {0,1}n. For the second method, a graph is
constructed from a k-SAT instance in CNF as follows. Each clause
σj will be a fully connected graph of k variables xi1, . . . , xik . Connect
two vertices from different clauses if they are negations of each other,
i.e., yil � ¬yjp and solve the maximum independent set (MIS)
problem for this graph (Choi, 2010). If, and only if, this set has
cardinality m is the SAT instance satisfiable. The variables in this
formulation are them× k boolean variables xiwhich are 1 if the vertex
is part of the independent set and 0 otherwise.

c. Cost function A clause-violation-based cost function for a
problem in CNF can be written as

fC � ∑
j

1 − σj x( )( ) (138)

with (Section 8.3.2)

σj � lj1 ∨ lj2 . . .∨ ljk

� 1 −∏k
n�1

1 − ljn( ). (139)

A cost function for the MIS problem can be constructed from a term
encouraging a higher cardinality of the independent set:

fB � −b ∑m×k

j�1
xj. (140)

d. Constraints In theMIS formulation, one has to enforce that there are
no connections betweenmembers of themaximally independent set:

c � ∑
i,j( )∈E

xixj � 0. (141)

If this constraint is implemented as an energy penalty fA = ac, it
should have a higher priority. The minimal cost of a spin flip (cf.
Section 8.4.2) from fA is a(m − 1) and in fB, a spin flip could result in
a maximal gain of b. Thus, a/b ≳ 1/(m − 1).

e. ResourcesThe cost function fC consists of up toO(2kmk) terms with
a maximal order of k in the spin variables. In the alternative
approach, the order is only quadratic so it would naturally be in
a QUBO formulation. However, the number of terms in fMIS can be
as high asO(m2k2) and thus scales worse in the number of clauses.

f. References This problem can be found in Choi (2010) which
specifically focuses on the 3-SAT implementation.

8 Summary of building blocks

Here we summarize the parts of the cost functions and
techniques that are used as reoccurring building blocks for the
problems in this library. Similar building blocks are also discussed by
Sawaya et al. (2022).
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8.1 Auxiliary functions

The simplest class of building blocks are auxiliary scalar
functions of multiple variables that can be used directly in cost
functions or constraints via penalties.

8.1.1 Element counting
One of the most common building blocks is the function ta that

simply counts the number of variables vi with a given value a. In
terms of the value indicator functions, we have

ta � ∑
i

δavi . (142)

It might be useful to introduce ta as additional variables. In that case,
one has to bind it to its desired value with the constraints

c � ta −∑
i

δavi
⎛⎝ ⎞⎠2

. (143)

8.1.2 Step function
Step functions Θ(v − w) can be constructed as

Θ v − w( ) � ∑K
β≥α

δβvδ
α
w � 1 if v≥w

0 if v<w
{ , (144)

with K being the maximum value that the v, w can take on.
Step functions can be used to penalize configurations
where v ≥ w.

8.1.3 Minimizing the maximum element of a set
Step functions are particularly useful for minimizing the

maximum value of a set {vi}. Given an auxiliary variable l, we
can guarantee that l ≥ vi, for all i with the penalization

f � 1 −∏n
i�1

Θ l − vi( ) � 1 if l≥ vi ∀i
0 if ∃ i : vi > l,{ (145)

which increases the energy if l is smaller than any vi. The maximum
value of {vi} can be minimized by adding to the cost function of the
problem the value of l. In that case, we also have to multiply the term
from Eq. 145 by the maximum value that l can take in order to avoid
trading off the penalty.

8.1.4 Compare variables
Given two variables v,w ∈ [1,K], the following term indicates if v

and w are equal:

δ v − w( ) � ∑K
α�1

δαvδ
α
w � 1 if v � w

0 if v ≠ w.
{ (146)

If we want to check if v > w, then we can use the step function
Eq. 144.

8.2 Constraints

Here we present the special case of functions of variables where
the groundstate fulfills useful constraints. These naturally serve as
building blocks for enforcing constraints via penalties.

8.2.1 All (connected) variables are different
If we have a set of variables {vi ∈ [1, K]}Ni�1 and two variables vi,

vj are connected when the entryAij of the adjacencymatrixA is 1, the
following term has a minimum when vi ≠ vj for all connected i ≠ j:

c � ∑
i≠j

δ vi − vj( )Aij

� ∑
i≠j

∑K
α�1

δαviδ
α
vj
Aij

(147)

The minimum value of c is zero, and it is only possible if and
only if there is no connected pair i, j such that vi = vj. For all-to-all
connectivity, one can use this building block to enforce that all
variables are different. If K = N, the condition vi ≠ vj for all i ≠ j is
then equivalent to asking that each of theK possible values is reached
by a variable.

8.2.2 Value α is used
Given a set of N variables vi, we want to know if at least one

variable is taking the value α. This is done by the term

uα � ∏N
i�1

1 − δαvi( ) � 0 if ∃ vi � α
1 if e vi � α.

{ (148)

8.2.3 Inequalities
a. Inequalities of a single variable If a discrete variable vi, which can

take values in 1, . . ., K, is subject to an inequality vi ≤ a′ one can
enforce this with a energy penalization for all values that do not
satisfy the inequality

c � ∑
K>a>a′

δavi . (149)

it is also possible to have a weighted penalty, e.g.,

c � ∑
K≥a>a′

aδavi , (150)

which might be useful if the inequality is not a hard constraint and
more severe violations should be penalized more. That option comes
with the drawback of introducing in general higher energy scales in
the system, especially if K is large, which might decrease the relative
energy gap.

b. Inequality constraints If the problem is restricted by an inequality
constraint:

c v1, . . . , vN( )<K, (151)
it is convenient to define an auxiliary variable y < K and impose the
constraint:

y − c v1, . . . , vN( )( )2 � 0, (152)
so c is bound to be equal to some value of y, and the only possible
values for y are those that satisfy the inequality.

If the auxiliary variable y is expressed in binary or Gray
encoding, then Eq. 152 must be modified when 2n < K < 2n+1 for
some n ∈ N,

y − c v1, . . . , vN( ) − 2n+1 +K( )2 � 0, (153)
which ensures c(v1, . . ., vN) < K if y = 0, . . ., 2n+1 − 1.
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8.2.4 Constraint preserving driver
As explained in Section 5, the driver Hamiltonian must

commute with the operator generating the constraints so that it
reaches the entire valid search space. Arbitrary polynomial
constraints c can for example, be handled by using the Parity
mapping. It brings constraints to the form ∑u∈cguσ(u)z . Starting
in a constraint-fulfilling state and employing constraint depended
flip-flop terms constructed from σ+, σ− operators as driver terms on
the mapped spins (Drieb-Schön et al., 2023) automatically enforces
the constraints.

8.3 Problem specific representations

For selected problems that are widely applicable, we
demonstrate useful techniques for mapping them to cost functions.

8.3.1 Modulo 2 linear programming
For the set of linear equations

xA � y, (154)
where A ∈ Fl×n

2 , y ∈ Fn
2 are given, we want to solve for x ∈ Fl

2. The
cost function

f � ∑n
i�1

1 − 2yi( ) 1 −∑l
j�1

2xjAji
⎛⎝ ⎞⎠ (155)

minimizes the Hamming distance between xA and y and thus the
ground state represents a solution. If we consider the second factor
for fixed i, we notice that it counts the number of 1s in x (mod 2)
where Aji does not vanish at the corresponding index. When acting
with

Hi � ∏l

j�1
σ
Aji

z,j (156)

on |x〉 we find the same result and thus the cost function

f � ∑n
i�1

1 − 2yi( )∏l

j�1
s
Aji

j , (157)

with spin variables sj has the solution to Eq. 154 as its ground state.

8.3.2 Representation of boolean functions
Given a boolean function f: {0,1}n → {0, 1} we want to express it

as a cost function in terms of the n boolean variables. This is hard in
general (Hadfield, 2021), but for (combinations of) local boolean
functions there are simple expressions. In particular, we have, e.g.,

¬x1 � 1 − x1 (158)

x1 ∧ x2 ∧ . . .∧ xn � ∏n
i�1

xi (159)

x1 ∨ x2 ∨ . . .∨ xn � 1 −∏n
i�1

1 − xi( ) (160)

x1 → x2( ) � 1 − x1 + x1x2 (161)
XOR x1, x2( ) ≡ x1 + x2 mod2 � x1 + x2 − 2x1x2. (162)

It is always possible to convert a k-SAT instance to 3-SAT and,
more generally, any boolean formula to a 3-SAT in conjunctive
normal form with the Tseytin transformation (Tseitin, 1983) with
only a linear overhead in the size of the formula.

Note that for the purpose of encoding optimization problems,
one might use different expressions that only need to coincide (up to
a constant shift) with those shown here for the ground state/solution
to the problem at hand. For example, if we are interested in a
satisfying assignment for x1 ∧. . .∧xn we might formulate the cost
function in two different ways that both have x1 = . . . = xn = 1 as
their unique ground state; namely, f � −∏n

i�1xi and
f � ∑n

i�1(1 − xi). The two corresponding spin Hamiltonians will
have vastly different properties, as the first one will have, when
expressed in spin variables, 2n terms with up to nth order
interactions, whereas the second one has n linear terms.
Additionally, configurations that are closer to a fulfilling
assignment, i.e., that have more of the xi equal to one, have a
lower cost in the second option which is not the case for the first
option. Note that for x1 ∨. . .∨xn there is no similar trick as we want
to penalize exactly one configuration.

8.4 Meta optimization

There are several options for choices that arise in the
construction of cost functions. These include meta parameters
such as coefficients of building blocks but also reoccurring
methods and techniques in dealing with optimization problems.

8.4.1 Auxiliary variables
It is often useful to combine information about a set of variables

vi into one auxiliary variable y that is then used in other parts of the
cost function. Examples include the element counting building block
or the maximal value of a set of variables where we showed a way to
bind the value of an auxiliary variable to this function of the set of
variables. If the function f can be expressed algebraically in terms of
the variable values/indicator functions (as a finite polynomial), the
natural way to do this is via adding the constraint term

c y − f vi( )( )2 (163)
with an appropriate coefficient c. To avoid the downsides of
introducing constraints, there is an alternative route that might
be preferred in certain cases. This alternative consists of simply using
the variable indicator δα

y(vi,δβvi )
and expressing the variable indicator

function in terms of spin/binary variables according to a chosen
encoding (one does not even have to use the same encoding for y and
the vi). As an example, let us consider the auxiliary variable τm,t in
the machine scheduling problem 7.3.3 for which we need to express
δατm,t

. For simplicity, we can choose the one-hot encoding for vm,t and
τm,t, leading to

δατm,t
� xτm,t,α �

1 − xvm,t ,0( ) if α � t ≠ 0
xvm,t ,0 if t � 0
0 else,

⎧⎪⎨⎪⎩ (164)

where the xvm,t,β are the binary variables of the one-hot encoding of vm,t.
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8.4.2 Prioritization of cost function terms
If a cost function is constructed out of multiple terms,

f � a1f1 + a2f2, (165)
one often wants to prioritize one term over another, e.g., if the first term
encodes a hard constraint. One strategy to ensure that f1 is not “traded
off” against f2 is to evaluate the minimal cost Δ1 in f1 and the maximal
gain Δ2 in f2 from flipping one spin. It can be more efficient to do this
independently for both terms and assume a state close to an optimum.
The coefficients can then be set according to c1Δ1≳ c2Δ2. In general, this
will depend on the encoding for two reasons. First, for some encodings,
one has to add core terms to the cost function which have to be taken
into account for the prioritization (they usually have the highest
priority). Furthermore, in some encodings, a single spin flip can
cause the value of a variable to change by more than one3.
Nonetheless, it can be an efficient heuristic to compare the “costs”
and “gains” introduced above for pairs of cost function terms already in
the encoding independent formulation by evaluating them for single
variable changes by one and thereby fixing their relative coefficients.
Then one only has to fix the coefficient for the core term after the
encoding is chosen.

8.4.3 Problem conversion
Many decision problems associated with discrete optimization

problems are NP-complete: one can always map them to any other
NP-complete problem with only the polynomial overhead of classical
runtime in the system size. Therefore, a new problem without a cost
function formulation could be classically mapped to another problem
where such a formulation is at hand. However, since quantum algorithms
are hoped to deliver at most a polynomial advantage in the run time for
general NP-hard problems, it is advisable to carefully analyze the overhead.
This hope is based mainly on heuristic arguments related to the usefulness
of quantum tunneling (Mandra et al., 2016) or empiric scaling studies
(Guerreschi and Matsuura, 2019; Boulebnane and Montanaro, 2022). It is
possible that there are trade-offs (as for k-SAT in Section 7.5.2), where in
the original formulation the order of terms in the cost function is kwhile in
the MIS formulation, we naturally have a QUBO problem where the
number of terms scales worse in the number of clauses.

9 Conclusion and outlook

In this review, we have collected and elaborated on a wide variety of
optimization problems that are formulated in terms of discrete variables.
By selecting an appropriate qubit encoding for these variables, we can
obtain a spin Hamiltonian suitable for quantum algorithms such as
quantum annealing orQAOA. The choice of the qubits encoding leads to
distinct Hamiltonians, influencing important factors such as the required
number of qubits, the order of interactions, and the smoothness of the
energy landscape. Consequently, the encoding decisions directly impact
the performance of quantum algorithms.

The encoding-independent formulation (Sawaya et al., 2022)
employed in this review offers a significant advantage by enabling

the utilization of automated tools to explore diverse encodings,
ultimately optimizing the problem formulation. This approach
allows for a comprehensive examination and comparison of various
encoding strategies, facilitating the identification of the most efficient
configuration for a given optimization problem. In addition, the
identification of recurring blocks facilitates the formulation of new
optimization problems, also constituting a valuable automation tool. By
leveraging these automatic tools, we can enhance the efficiency of
quantum algorithms in solving optimization problems.

Finding the optimal spin Hamiltonian for a given quantum
computer hardware platform is an important problem in itself. As
pointed out by Sawaya et al. (2022), optimal spin Hamiltonians are
likely to vary across different hardware platforms, underscoring the
need for a procedure capable of tailoring a problem to a specific
platform. The hardware-agnostic approach made use of in this
review represents a further step in that direction.
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