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Object detection is an important problem in a wide variety of computer vision applications

for sustainable smart cities. Deep neural networks (DNNs) have attracted increasing

interest in object detection due to their potential to provide high accuracy detection

performance in challenging scenarios. However, DNNs involve high computational

complexity and are therefore challenging to deploy under the tighter resource constraints

of edge cloud environments compared to more resource-abundant platforms, such

as conventional cloud computing platforms. Moreover, the monolithic structure of

conventional DNN implementations limits their utility under the dynamically changing

operational conditions that are typical in edge cloud computing. In this paper, we address

these challenges and limitations of conventional DNN implementation techniques by

introducing a new resource-adaptive scheme for DNN-based object detection. This

scheme applies the recently-introduced concept of elastic neural networks, which

involves the incorporation of multiple outputs within intermediate stages of the neural

network backbone. We demonstrate a novel elastic DNN design for object detection,

and we show how other methods for streamlining resource requirements, in particular

network pruning, can be applied in conjunction with the proposed elastic network

approach. Through extensive experiments, we demonstrate the ability of our methods

to efficiently trade-off computational complexity and object detection accuracy for

scalable deployment.

Keywords: object detection, deep learning, elastic networks, edge computing, computer vision

1. INTRODUCTION

Automated object detection from visual images is important for many kinds of smart city
applications, such as those involving camera-basedmonitoring or surveillance of areas within a city.
Deep neural networks (DNNs) provide an attractive class of algorithms to apply to object detection
problems. However, their computational complexitymakes them unsuitable for the tighter resource
constraints typical of edge cloud environments. In this paper, we develop methods for efficient
DNN-based object detection in a manner that is scalable to adapt to the tighter and potentially
time-varying resource constraints of edge cloud computing environments.

Consider the example of a group of surveillance drones that share edge computing resources.
The devices may be able to remain in the field for longer if smaller object detection subsystems
are chosen such that less computation and correspondingly less energy consumption is required.
However, the drone may occasionally detect something of special note, leading to a temporary
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need to increase the object detection accuracy with some
acceptable loss in energy efficiency or processing speed. In
this case, the need for both adaptable and resource-efficient
operation is evident. This paper develops novel methods for
jointly providing adaptivity and resource-efficiency in edge
cloud environments.

Considerable research has been conducted in recent years
toward improving the execution time performance (inference
speed) of DNNs (e.g., see Kim et al., 2018; Ding et al., 2019;
Gong et al., 2019; Zhang et al., 2019). Research focused on
execution time efficiency is of increasing interest as state-of-
the-art networks continue to have more layers, and as novel
applications emerge for deploying DNN-based inference at the
network edge.

The use of DNNs in resource-constrained environments such
as edge cloud environments requires consideration of additional
metrics beyond inference accuracy. For example, energy
efficiency is often very important in edge cloud environments.
In such scenarios, a system designer may prefer not to utilize
the highest accuracy network in favor of one that may operate
for a longer duration with some acceptably small reduction in
accuracy. Furthermore, there may be a desire to negotiate among
speed, accuracy, and energy consumption multiple times during
a deployment—e.g., as operating requirements or environmental
conditions change. In such situations, it is often impractical to
replace the employed neural network entirely. Moreover, it is also
impractical or highly inefficient, in terms of storage utilization, to
maintain multiple alternative networks on board so that they can
be selected among and switched across dynamically.

A new methodology for DNN network design, called elastic
neural networks (ENNs), has been introduced in recent years as
an efficient, practical alternative for realizing adaptable DNN
inference in compact (low-memory-footprint form) (Bai et al.,
2018). ENNs enable the use of a single DNN network structure in
multiple, alternative ways to achieve adaptable trade-offs among
relevant operational metrics. The ENN methodology can be
viewed as a modularization strategy that takes a conventional
(“non-elastic”) DNN N as an input and introduces early-exits
(intermediate outputs) to the backbone of N, where the early exit
points are determined at design time and then selected adaptively
at run-time. Each early exit point corresponds to a distinct trade-
off among inference accuracy and computational complexity
since the portion of the network after the early exit is switched
off during inference. Each early exit point is associated with
a separate network head, and each network head is optimized
separately as part of the ENN training process. This approach
allows the designer to construct a network with as many exit
points (operational alternatives) as deemed appropriate for the
application (subject to constraints imposed by the structure of
N), with each additional exit point only increasing the overall
network size modestly.

An important feature of the ENNmethodology is, as described
above, that it can be applied to arbitrary DNN backbones. This
allows designers to flexibly reuse and build upon existing efforts
in DNN design and optimization.

In this work, we present the first application of the ENN
methodology to object detection from visual images. For the

network backbone, we apply the popular Single-Shot Multibox
Detector (SSD) network (Liu et al., 2016) as our starting point N.
We refer to the resulting elastic network design as the elasticized
SSD network, and we refer to the starting-point SSD network
as the base network for the elasticized SSD. Through extensive
experiments on object detection datasets, we demonstrate the
effectiveness of the elasticized SSD network in providing diverse
operational trade-offs with only a relatively small increase in
memory requirements compared to the SSD network.

Moreover, we present the first study integrating the ENN
methodology with network pruning, which is a popular method
for streamlining the design of DNNs that is also of great relevance
to edge cloud applications. Network pruning is defined as “a
systematic process of removing the parameters of an existing
network” (Blalock et al., 2020). We demonstrate that network
pruning is highly complementary to the ENN methodology and
that the approaches can be integrated to achieve significantly
more compact ENN designs with minimal degradation in
accuracy. We show, for example, that pruned ENN designs allow
us to counteract the additional network size required for each
exit-point network head.

The remainder of this paper is organized as follows. In
section 2, we discuss related work in the literature on object
detection and DNN design. In section 3, we present the proposed
elasticized SSD network for object detection in edge cloud
environments. In section 4, we present experimental results that
evaluate the accuracy, computational complexity, and memory
requirements of the elasticized SSD network, and that also
provide a quantitative evaluation on the integration of pruning
methods into the elasticized SSD design. In section 5, we
summarize and give concluding remarks.

2. RELATED WORK

Bai et al. originally proposed the framework of elastic neural
networks (Bai et al., 2018) (ENNs). This work discussed the
effects of adding early exits to an arbitrary DNN. These early exits
exploit the property that feature maps constructed prior to the
final network layer may contain sufficient information for proper
inference. In addition to providing novel trade-offs between
accuracy and inference speed, Bai showed that the proposed class
of networks can also significantly improve classification accuracy
for the full-network configuration (when no early exit is taken).
It was anticipated that this improvement results because the early
exits act as a useful regularizer at training time.

In this paper, we use Bai’s ENN methodology as a starting
point and present the first application of the methodology to
object detection from visual images, which is an important
and challenging problem for edge cloud environments. We also
present the first integration of the ENN methodology with
network pruning and demonstrate that both approaches—elastic
networks and pruning—can be used in a complementary fashion
that allows designers to streamline network implementations
significantly more effectively than using either method in
isolation. The pruned, elastic network approach introduced in
this paper is also of special interest in edge cloud environments,
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where highly streamlined solutions are often required to meet
tight resource constraints.

For many years, network pruning has been used to reduce
the size of CNNs and avoid overfitting (LeCun et al., 1989;
Ström, 1997). In the last decade, pruning has been used to reduce
network storage and computation by an order of magnitude with
no loss of accuracy (Han et al., 2015). The decreased storage
requirements may allow an entire network to be stored on-
chip rather than in DRAM, which allows for improved energy
efficiency (Horowitz, 2014).

The utilization of network pruning continues to expand
as well, and new strategies continue to improve the method’s
efficacy. For example, Molchanov et al. proposed a method that
estimates the contribution of each network filter to the final loss
and then prunes filters that have little estimated importance. The
authors used this method on ResNet-101 to reduce the number
of floating-point operations (FLOPs) by 40% with only a 0.02%
loss in top-1 accuracy (Molchanov et al., 2019).

In recent years, many architectures have been developed for
object detection using DNNs that consider resource-constrained
environments. Tiny SSD is a recent DNN for real-time embedded
object detection utilizing a non-uniform “Fire” sub-network
and an optimized SSD-based convolutional layer sub-network.
Tiny SSD was able to achieve a model size of 2.3 MB
while still maintaining relatively high accuracy (Womg et al.,
2018). Fast YOLO is another framework recently proposed to
reduce parameters and power consumption while attempting
to maintain accuracy (Shafiee et al., 2017). Additionally,
recent networks have been developed to improve the accuracy
of standard SSD networks while maintaining the network’s
efficiency, such as RefineDet (Zhang et al., 2018).

The approach developed in this paper goes beyond the
aforementioned contributions to resource-constrained object
detection by allowing system designers to balance object
detection accuracy and efficiency in an adaptive manner, based
on scenario-dependent operating conditions. The flexibility is
achieved in a compact form through a single, configurable
network, which can be deployed for efficient, adaptive operation
in resource-constrained edge cloud environments.

3. METHODS

Our proposed ENN for object detection is an elasticized version
of the single-shot detector (SSD) network (Liu et al., 2016),
as mentioned in section 1. We use a specific variant of SSD
called the SSD300 network. The network, in turn, uses the VGG-
16 network (Simonyan and Zisserman, 2014) as its backbone
network. From a base SSD network, we add early-exits from
multiple layers in the backbone network that skip the remaining
backbone layers and connect directly to the layers that follow.

We selected SSD300 as the foundation for our ENN
proposed in this work because it is a widely-utilized object
detection network offering an often-favorable compromise
between inference speed and accuracy. However, the general
elasticizationmethodology that we apply can be readily applied to
alternative object detection neural networks based on the specific

needs of the application. For example, a larger network may
be used if a higher mean average precision (mAP) for object
detection is desired, or a smaller network with fewer early-exits
may be chosen when resources are heavily constrained.

The number of early exits included in the elasticized SSD
network is an important design parameter that controls the
degree of configurability provided by the network. As described
in section 1, each early exit corresponds to an intermediate output
from the network. The set � of network exits is taken as the set
λ1, λ2, . . . , λn of early exits together with the full-network exit µ,
which is the conventional output of the base SSD network (i.e.,
the final network output as opposed to an intermediate output).
The λis are ordered such that higher indices correspond to later
exits, or equivalently, more layers from the base network that
are included before the intermediate output is taken. The set
of exit points in the elasticized SSD can then be expressed as
� = {α1,α2, . . . ,αn+1}, where αi = λi for i = 1, 2, . . . , n, and
αn+1 = µ. We refer to the value n, which is a design parameter of
the elasticized network, as the elasticization degree of the network.
Thus, the conventional (base) SSD network can be viewed as an
elasticized network with elasticization degree 0.

In general, a larger elasticization degree provides a
correspondingly larger set of trade-off options that can be
selected at run-time. The costs associated with increasing the
elasticization degree are increased training complexity of the
network, as well as increased storage requirements for the
network due to the need for an increasing number of post-exit
subnetworks. More details about post-exit subnetworks will
be discussed later in this section. However, we note here that
the increases in training and storage costs are relatively low
for the elasticized network because all of the exits in � are
derived from a common base network. Thus, there is significant
reuse of trained network parameters from across the different
sub-networks that correspond to the alternative exit points in �.
This advantage of low-overhead configurability is of particular
utility in edge cloud environments.

At inference time, the inputs of the elasticized SSD network
are RGB images with dimension 300× 300× 3 and exit position
rpo, where rpo ∈ �. This exit position input allows the elastic
network subsystem to dynamically change the exit position,
where the input is controlled by the enclosing system. During
operation, rpo = αi with i ≤ n means that all portions of
the network that follow αi, including the portions that contain
αi+1,αi+2, . . . ,αn+1 are effectively switched off, and therefore do
not consume computational resources, that is, time or energy.

This elasticized SSD architecture is illustrated in Figure 1,
where a multiplexer and switch are used to graphically depict
that only a single exit point αi is used at a given time. As shown
in Figure 1, each early exit is followed by a subnetwork, which
we refer to as a post-exit subnetwork. Each post-exit subnetwork
consists of the layers that come after the backbone network of
the base network; in our elasticized SSD design, the backbone
network is VGG-16, and the base network is SSD300.

The post-exit subnetworks are trained specifically for the
elasticized network; their parameters are not inherited from
the base SSD network. Additionally, each post-exit subnetwork
may require alterations to the first convolutional layer to form
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FIGURE 1 | An illustration of the elasticized SSD network architecture.

the proper tensor shape for the remaining layers depending on
the placement of the associated exit point. These alterations
have been made as part of the design of the elasticized SSD
network, and are opaque to users of the network. In each post-
exit subnetwork, the layers after the first convolutional layer are
the same regardless of the exit point.

At inference time, the post-exit subnetworks that are not
in use and all layers beyond the exit point in the backbone
are disabled, which improves real-time performance and
energy efficiency.

When forming an ENN from an object detection network, we
attach early exits to the feature-extraction subnetwork. The post-
exit subnetworks are used primarily for bounding box locations
and classes, i.e., localization and classification. We use this
scheme because certain images may not require passing through
the full feature-extraction subnetwork before having enough
predictive power to perform object detection adequately, and
having multiple copies of the post-exit subnetworks allows each
copy to be trained independently for feature maps that have been
through the same feature extraction layers. Intuitively, a different
number of feature extraction layers may result in differences
between classes becoming more or less subtle. If different exit
points were connected to the same post-exit subnetworks, it may
be difficult for localization and classification to be trained well for
all exit points.

Let ESSDx denote the active portion of our elasticized SSD
network when rpo = αx; we refer to the active portion of
the network for a choice of rpo as the current path of the
network. As described above, a higher value of x reduces resource
consumption, typically at a cost to accuracy. The current path

includes the portion of the backbone network up to αx along with
the post-exit subnetwork that follows αx. The greater the number
of path options (i.e., valid values for x), the finer the available
granularity when balancing resources and network performance,
but there will also be larger overhead due to the larger number
of post-exit subnetworks. At the same time, significant storage
savings are gained by reusing the same backbone network across
all (n+ 1) possible choices for the current path.

The first step in deriving an elasticized SSD network is to
select the set �. In practice, the designer should select a set of
exit points that match the desired balance between the diversity
of available reconfiguration options, the least resource-intensive
state deemed to have acceptable accuracy (earliest acceptable
exit point), and the highest accuracy state deemed to have
acceptable resource-consumption (latest acceptable exit point).
In our formulation, we assume that the full-network exit is in
the set of selected exit points—i.e., that µ ∈ �. However,
this assumption can be dropped in severely resource-constrained
edge cloud systems. An interesting direction for future work is
the development of automated tools for deriving � based, for
example, on a relevant multi-objective optimization formulation.

In the elasticized SSD framework, the set Ŵ of all candidate
exit points consists of the points in the backbone network that
immediately precede the Conv2d layers, as well as the full-
network exit µ. It is anticipated that there would be little benefit,
for example, to adding an additional exit point immediately
before or after a RELU layer. Since there are 15 Conv2d layers
in the backbone network, Ŵ consists of 16 elements—that is, if we
include bypassing the backbone network entirely along with the
other extreme, which is the full-network exit. We enumerate the
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elements of Ŵ, maintaining the convention that smaller indices
correspond to earlier exits, as Ŵ = γ1, γ2, . . . , γ16, where by
definition, γ16 = µ.

We have prototyped the elasticized SSD network using
PyTorch. We refer to this prototype as the ESNO (Elasticized
SSD Network for Object detection) system or simply “ESNO”
for brevity. More details about ESNO and our experiments using
it are presented in section 4. For the purposes of testing, the
functionality for switching between ESSDx and ESSDy for x 6= y
in ESNO only requires the user to select rpo = y at compile time
when executing the PyTorch implementation on either a CPU
or GPU, once they have constructed the desired elasticized SSD
configuration. In an embedded device, a physical or virtual switch
could be used at run-time to dynamically change paths without
the need to recompile once a final network is constructed.
Embedded implementation of the elasticized network is beyond
the scope of this paper; it is a useful direction for future work.

We train each path ESSDx separately for x ∈ {1, 2, . . . , (n +

1)} while holding the parameters of the backbone network
fixed. In our experiments, we select � = {γ12, γ13, γ14, γ15,µ}.
This set is selected to provide the highest-accuracy collection
of five configuration alternatives with which to demonstrate
the proposed elasticized SSD architecture. When applying
ESNO, one may choose a larger or smaller set of exit points,
and convolutional layers used as exit points need not be
consecutive. Our selected � simply provides insight into how
the mAP, parameters, and FLOPs change as we exit the network
prematurely. Further, our chosen set of exit points offers
quantitative insight into the overhead incurred when adding four
exit points to the original network, which may provide a useful
degree of granularity for balancing accuracy, resources, and run-
time performance in various edge cloud application scenarios.

We evaluate the various paths through the ESNO network
using mean average precision (mAP), total number of
floating-point operations (FLOPs), and total number of
parameters in order to assess the relative trade-offs among
the different paths. The FLOPs and number of parameters
were determined using the pytorch-model-summary PyTorch
library (Marczewski, 2020). We examined the total number
of parameters and mAP achieved across each path in the
elasticized SSD network to demonstrate the utility of ESSD
in comparison to conventional, single-exit (non-elastic)
networks. Details on these experiments are presented in
section 4.

Our primary basis for comparison is the original, non-
elasticized version of the ENN utilized. Specifically, we compare
ESSD to the base SSD network to gain insight into the trade-
off between accuracy and FLOP count, as well as the overhead
incurred by the addition of early exits. Since the alternative paths
reduce the number of layers used relative to the base network,
our primary aim is to reduce the FLOPs used as much as possible
while maintaining the highest possible accuracy.

To further streamline the efficiency of elasticized
SSD implementation, we integrate network pruning
into the ESNO system. We prune the network using
pytorch.nn.utils.prune and use global pruning
across all convolutional layers of the network, as opposed to

pruning each layer independently. Our pruning technique is
L1Unstructured (L1u, 2019; Paganini, 2020), which prunes
the smallest weights in the network based on the L1-Norm.
Unstructured pruning removes only individual weights,
while structured pruning removes entire units or channels
(Paganini and Forde, 2020). Our choice of L1Unstructured
pruning is not compulsory when integrating pruning with
the elasticized SSD architecture; any method of reducing the
number of parameters while approximately maintaining
accuracy can be used in place of the specific pruning
strategy that is applied in ESNO. That is to say that our
methodology is agnostic to the specifics of the pruning
algorithm employed.

To control the degree to which pruning is performed is
ESNO, we define a parameter called the pruning parameter,
which we denote by ρ. This parameter is a real number
within [0, 1] that determines the proportion of network
parameters that are removed in the pruning process. In
our experiments, we apply ρ = 0.3, which means that 30%
of the network parameters across the entire network are
removed during the pruning process. In section 4, we show
that this setting of ρ approximately compensates for the
parameter storage overhead associated with the post-exit
subnetworks introduced by the elasticized SSD architecture.
In other words, the total parameter storage cost associated
with the post-exit layers in ESNO is approximately equal
to the total parameter storage saved by applying pruning
with ρ = 0.3.

We did not choose to use iterative pruning, in which
multiple iterations of pruning and retraining are performed
before reaching the desired, reduced network. That is, we
pruned all of the network parameters at once followed by a
single iteration of retraining. We chose this method because
the percentage of parameters that we have pruned is relatively
low; therefore, iterative pruning may not be needed to maintain
accuracy as network parameters are reduced. However, ESNO
can readily be adapted to incorporate iterative pruning to
reduce the number of parameters as much as possible while
maintaining accuracy to within a tolerable range. Detailed
results related to our use of pruning in ESNO are presented in
section 4.

Algorithm 1 provides a pseudocode sketch of the integrated
process of pruning and training that is used to optimize the
ESNO system for a given set of designer-selected exit points
�. The application of pruning is enabled or disabled based
on a Boolean-valued parameter pruning_enabled, which is
set by the network designer. The initial training stage, which
occurs immediately after pruning, trains the full SSD300 network
using the available training data. After that, the backbone
network is “frozen,” which means that its trained parameters
are fixed for the remainder of the overall optimization process
represented by Algorithm 1. The subsequent training operations
then examine the post-exit subnetworks one at a time, and
optimize these separately with the backbone parameters held
fixed. The result of the overall optimization process is a pruned
and trained configuration of the elasticized SSD architecture
based on �.
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Algorithm 1: ESSD TRAINING

1 if pruning_enabled then
2 Prune ESSD network with pruning parameter ρ

3 end

4 Train only original SSD network path
5 Freeze network backbone
6 foreach early-exit point do
7 train along the corresponding path to update the

post-exit subnetwork
8 end

4. EXPERIMENTAL RESULTS

To evaluate the ESNO system, we began with an existing PyTorch
implementation of SSD (DeGroot and Brown, 2019). We then
added four exit points throughout the VGG-16 backbone of the
network, thus creating five possible path options. As described
in section 3, the set of exit points was selected as � =

{γ12, γ13, γ14, γ15,µ}. The network, together with this set of exit
points, was pruned and trained using the process summarized in
Algorithm 1.

For each training step in Algorithm 1, we employed stochastic
gradient descent (SGD) on the Pascal Visual Object Classes
(VOC) 2007 and 2012 datasets (Everingham et al., 2007, 2012).
To train the five alternative paths defined by �, ESNO first
trained ESSDn+1—that is, the path corresponding to the standard
SSD network without exiting the backbone early. The backbone
was then frozen, along with the post-exit subnetwork for the path
ESSDn+1. Then the remaining four post-exit subnetworks were
trained separately while ensuring that the backbone network was
not affected by alternate paths through early-exits.

For all of the training and inference experiments reported in
this section, we used a desktop computer system equipped with
an AMD Ryzen 5 3600 6-Core 12-Thread CPU, an MSI GeForce
RTX 2070 Super 8 GB Gaming X Trio GPU, G.skill Trident Z
Neo 32 GB (4 × 8) 3,600 MHz Memory, and Sabrent Rocket 2
TB PCIe 4.0 NVMe SSD storage.

First, we report on experiments performed using ESNO with
pruning disabled. We trained each of the five candidate paths
with an initial learning rate of 1 × 10−3, a batch size of 16, a
momentum of 0.9, and a weight decay of 5 × 10−4. With the
exception of the batch size, we chose these parameters because
they were the same values used in the original SSD experiments
(Liu et al., 2016). The batch size was set to 16 instead of 32
due to hardware constraints on the platform used for training.
Each path was trained for 100,000 iterations, and the learning
rate was reduced by a factor of 10 at 50,000, 70,000, and
90,000 iterations. These settings served as a standard basis for
comparison across the five alternative network paths in the ESNO
system. A summary of parameters used is provided in Table 1

for convenience.
After the ESNO optimization process of Algorithm 1 was

complete, we determined the number of parameters and FLOPs
encountered along each path. The results of this analysis

TABLE 1 | Summary of parameters used during training.

Parameter Value

Optimizer SGD

Learning Rate 1× 10−3

Batch Size 16

Momentum 0.9

Weight Decay 5× 10−4

Iterations 100,000

Gamma 0.1

Pruning L1 Unstructured

Dataset Pascal VOC 2007, 2012

TABLE 2 | Comparison of FLOP counts, parameter counts, and mAP levels for

different paths in the trained ESNO system with pruning disabled.

Path FLOPs Parameters mAP

(×109) (×106)

ESSD5/SSD 31.40 26.29 77.49

ESSD4 31.02 25.24 75.90

ESSD3 30.17 22.88 75.53

ESSD2 29.31 20.52 74.29

ESSD1 28.46 18.16 70.00

TABLE 3 | Results from the ESNO system with pruning enabled (ρ = 0.3).

Path Parameters mAP

(×106)

ESSD5/SSD 18.403 77.40

ESSD4 17.67 76.41

ESSD3 16.02 74.53

ESSD2 14.36 73.04

ESSD1 12.712 68.58

are summarized in Table 2. The results show a considerable
reduction in parameters as we move earlier in the sequence
(α1,α2, . . . ,α5) of early exits. For example, ESSD1 contains about
31% fewer parameters than ESSD5.

With pruning disabled, the elasticized SSD network derived
from the ESNO system contains a total of 3.97× 107 parameters
in total while the original SSD network contains 2.63 × 107

parameters. This amounts to approximately 51% overhead for
the creation of our 5-path elastic network. To investigate the
capability of ESNO to offset the overhead incurred, we enabled
pruning in Algorithm 1 with ρ =0.3. After pruning, the training
process in ESNO proceeded using the same training parameters
as those that were applied in the pruning-disabled experiments.
We then tested the trained, pruned, elastic network using the
same methods as the non-pruned network. A summary of the
results is provided in Table 3.

With 30% of the entire network pruned, the number of
parameters in the elasticized network is reduced to 2.77× 107.
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FIGURE 2 | Example of the elasticized single-shot multibox detector network output after 30% pruning. Top-left−ESSD5, Top-right−ESSD4, Mid-left−ESSD3,

Mid-right−ESSD2, Bottom−ESSD1.

At the same time, accuracy is maintained to within 2%
absolute mAP for each of the five alternative paths through
the network (compared to the corresponding paths in the

unpruned version). The application of pruning is also seen
to reduce the size of the network to approximately the
same size as the original, non-elastic SSD. In one case,
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namely ESSD4, the accuracy improved slightly after pruning
and retraining.

Figure 2 illustrates examples of object detection results
produced by the five different exits α1,α2, . . . ,α5 for our
elasticized SSD network on a given input image frame. The results
were obtained from the network derived with pruning enabled
and ρ = 0.3. The illustration gives a visual sense of the kind
of results that can be obtained for multiple objects in a single
image for the various paths through the elasticized network.
From Figure 2, we can see that all five exits detected all of the
same objects, with the exception that the earliest exit failed to
detect the two closest people.

In general, one could empirically derive a matrix detailing
the trade-offs between accuracy and FLOP count for any ENN
design. Recall that, in this work, n + 1 is the number of possible
paths through the network. One could use a two-dimensional
matrix Z with dimensions (n + 1) × 2 such that Z[k][0] and
Z[k][1], respectively, denote the measured FLOP count and
accuracy when k is the exit point. There are many methods for
deriving such a matrix. A simple method is for the designer to
use pytorch-model-summary, as we have in our experiments, for
each path option. This method identifies Z[i][0] and Z[i][1] for
i = 1 to n+ 1. We can determine Z for our model using the data
shown in Table 2. A run-time controller for an edge cloud system
may then select a path option based on Z to satisfy efficiency
criteria while meeting an accuracy threshold set by the designer.
The trade-off criteria should be selected based on the structure of
the elasticized network and the designer’s needs. Each elasticized
networkmay act as a single node in an edge cloud system, and the
cooperating networks need not be homogeneous. For example,
differing accuracy thresholds may be selected for certain nodes in
locations of higher importance to keep these nodes in a state of
higher accuracy. Our results in section 4 for a single node provide
insight into the advantages of elasticized networks when scaling
an edge cloud system to many ENN nodes.

5. CONCLUSIONS

In this paper, we have developed a novel elastic neural network
architecture for the detection of objects from visual images,
and we have presented a prototype implementation of the
architecture called the Elasticized SSD Network for Object
detection (ESNO). ESNO provides capabilities to adaptively

reconfigure object detection operation across diverse trade-offs
between inference accuracy and computational cost.

Additionally, the alternative operating points of the
reconfigurable network are achieved by reusing a major portion
of the network across all of the operating points. This reuse
enables the reconfigurable network architecture to be deployed
in a storage-efficient manner (in terms of the required number
of network parameters), which is important in relation to the
resource constraints that are typical of edge cloud environments.

We also presented the first integration of the elastic
neural network methodology with network pruning and
demonstrate that both approaches— elastic networks and
pruning—can be used in a complementary fashion that allows
designers to streamline network implementations significantly
more effectively than using either method in isolation. Our
experimental results demonstrate the effectiveness of the
ESNO architecture in providing diverse operational trade-offs
with only a relatively small increase in storage requirements
compared to the original (non-elastic) SSD network. Moreover,
with pruning, the overhead incurred from elastic neural
networks—due to the post-exit subnetworks—can be readily
compensated for at minimal or no cost to accuracy while
providing a resource-adaptive design that is favorable for edge
cloud environments.

Useful directions for future work include the development
of automated tools for deriving the set of exit points in the
ESNO architecture and developing optimized implementations
of the ESNO architecture that are suitable for deployment on
resource-constrained, embedded computing platforms.
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