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Long-term trends in air quality by studying the criteria pollutants (PM2.5, PM10, CO,

O3, NO2, and SO2) and climate variables (temperature, surface pressure, and relative

humidity) were depicted in this study. The 17-year (2003–2019) average values of PM2.5,

PM10, CO, O3, NO2, and SO2 were 88.69 ± 9.76 µg/m3, 124.57 ± 12.75 µg/m3, 0.69

± 0.06 ppm, 51.42 ± 1.82 ppb, 14.87 ± 2.45 ppb, and 8.76 ± 2.07 ppb, respectively.

The trends among the ambient pollutants were increasingly significant (p < 0.05) except

for O3 with slopes of 1.83 ± 0.15 µg/m3/year, 2.35 ± 0.24 µg/m3/year, 0.01 ± 0.002

ppm/year, 0.47 ± 0.03 ppb/year, and 0.40 ± 0.02 ppb/year for PM2.5, PM10, CO,

NO2, and SO2, respectively. Pearson correlations revealed a significant association

among the pollutants while a noteworthy correlation was observed between ambient

pollutants and surface temperature. Principal component analysis (PCA) and positive

matrix factorization (PMF) have been employed collectively to examine the main sources

of the pollutants. PCA revealed similar trends for PMs and CO, as well as NO2 and SO2

being equally distributed variables. PMF receptor modeling resulted in attributing four

sources to the pollutants. The factors inferred from the PMF modeling were signified

as vehicular emissions, road/soil dust, biomass burning, and industrial emissions. The

hazard quotient (HQ) values were not antagonistic (HQ < 1) in acute exposure levels for

the three age groups (infants, children, and adults) while showing significant health risk

(HQ > 1) in chronic exposure for infants and children. Children are identified as the worst

sufferers among the age groups, which points to low breathing levels and high exposure

to traffic pollution in Dhaka, Bangladesh.

Keywords: air quality, climate variables, positive matrix factorization, hazard quotient, Kendall and Spearman’s

correlations, Pearson correlations, principal component analysis

HIGHLIGHTS

- Long-term trends of criteria air pollutants and climate variables were analyzed.
- Significant positive trends were observed for the pollutants except ozone.
- Four factors were characterized as estimated sources from PMF modeling.
- HQ exceeded the acceptable limit (>1) for chronic exposure to children and infants.
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GRAPHICAL ABSTRACT | Source apportionment and hazard quotients of ambient air pollutants in Dhaka.

INTRODUCTION

Air pollution and climate change are the twomost significant and
interconnected challenges plaguing the 21st century. If existing
policies remain unchanged, air pollution would be the most
important environmental factor affecting premature deaths by
2050 (OECD, 2012). Global warming has culminated in a 43%
increase in anthropogenic radiative forcing (RF) since 2005,
according to the new IPCC report, focusing on human behavior
as the most significant influencer (Stocker et al., 2013). The
urban heat-island effect causes towns to be far warmer than their
neighboring rural area due to enhanced anthropogenic activities.
Owing to associations between warming and air emissions, this
effect would pose extreme health problems for cities around
the world by 2050 (Schmale et al., 2014). Lancet Commission
on Pollution and Health reported 6.5 million deaths in 2015
due to atmospheric air pollution (Landrigan et al., 2017). while
mortality due to past climate change on air quality was much
lower:∼1500 and∼2200 deaths per year due to ozone and PM2.5,
respectively (Silva et al., 2013). The global air quality scenarios are
unlikely to change anytime soon, and the crisis in the megacities
of developing countries is expected to worsen. As a result, it is
important to continue tackling air quality problems in tandem
with climate change mitigation initiatives (Williams, 2012).

Approximately 91% of the world’s population live in areas

where WHO air quality standards have been exceeded. However,
due to its large population, Bangladesh is one of themost polluted
countries in terms of air quality, with Dhaka ranking as one
of the world’s two most polluted cities (AirVisual, 2018). In
Bangladesh, there had been little to no effort and administrative

works to track or mitigate ambient air pollution before 1999.
In 1999, the government began establishing frameworks and
regulations to meet US EPA and Bangladesh National Air
Quality Standards, especially in Dhaka. In this regard, a number
of controls have been implemented, including the prohibition
of leaded gasoline in July 1999 and the replacement of old
two-stroke engine three-wheelers with compressed natural gas
(CNG)-powered four-stroke three-wheelers beginning in January
2003; introducing CNG-powered cars, buses, and trucks; and
regulating brick kiln emanations, which resulted in a reduction
of airborne Pb concentrations and improved air quality than
before (Salam et al., 2013; Begum and Hopke, 2019). However,
since the introduction of CNG and the prohibition of two-stroke
engines, traffic congestion in Dhaka city has greatly worsened
air quality, and numerous brick kilns using crude oil, fossil fuel,
coal, natural gas, electricity, and biomass as a source of energy
have sprung up all over the city and have been discharging
many air pollutants including black carbon and organic carbon
(Salam et al., 2013). In addition, research on the results of
CNG conversion in other megacities (Rio de Janeiro, Mexico
City, and New Delhi) and the greenhouse gas (GHG) benefits
of such conversion showed that switching from diesel vehicles
increased high-emission particulates and black carbon, which
are more potent as GHGs than CO2 or CH4. Thus, large-scale
conversion of petrol vehicles embodies the risk of reduced GHG
benefit or even negative GHG impacts (Wadud and Khan, 2013).
Furthermore, permanent wetlands have been disappearing at
an unprecedented pace as a result of unplanned urbanization
to accommodate the huge population, with more than 49% of
wetland areas disappearing in Dhaka city between 1960 and
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2008 (Rai et al., 2017). As a result of such adverse situations,
Dhaka had very high (>1) toxicity potential (TP) values of
PM2.5 and PM10 (Zaman et al., 2021) and recorded the highest
mortality and morbidity rates (hospital admissions) among the
megacities studied, with about 7,000 deaths and 2,100 excess cases
(cardiovascular and respiratory) each year (Gurjar et al., 2010).
Table 1 reports several previous researches on ambient air quality
and climate impact in Dhaka, Bangladesh, undertaken after 2003.

Carbon monoxide, lead, ground-level ozone, particulate
matter (PM), nitrogen dioxide, and sulfur dioxide have been
designated as criteria air contaminants by the Environmental
Protection Agency (EPA) and the World Health Organization
(WHO), and national and global ambient air quality standards
(NAAQS) have been developed for these six pollutants (EPA).
These contaminants, which are made up of various materials,
have a broad range of sources of pollution and varying
degrees of health impacts and toxicity, dictating the use of
source apportionment studies to understand the formation
processes and their sources. On source apportionment,
two chemometric techniques, principal component analysis
(PCA) and positive matrix factorization (PMF) receptor
model, were employed collectively. PCA is utilized to
relate the air pollutants and their overall changes in the
aerosol composition while PMF is used to determine the
different sources of pollution and the temporal variability
of each pollutant without considering their correlations
(Padoan et al., 2020).

Dhaka is one of the most contaminated cities in the world
and is in dire need of effective mitigation policies to attain
national and global air quality standards. Unfortunately, there is

limited information for the criteria air pollutants levels, sources
apportionment, impact on human health, and climate variables
based on long-term datasets. Therefore, the objective of this study
is to understand the long-term (2003–2019) evolution of major
atmospheric contaminants (PM2.5, PM10, CO, O3, NO2, and
SO2) and the effect of meteorological parameters (temperature,
pressure, and relative humidity) on these pollutants following
the January 2003 ban on old two-stroke engine three-wheelers
in favor of CNG-powered four-stroke three-wheelers. Although
there have been recent comparative studies for fine and coarse
fractions of PM in terms of source attribution in the seasonal
and short-term periods, long-term studies for all of the criteria
contaminants and their health effects, as well as their origins,
have been scarce. This study will help evaluate the aftermath of
implementing the CNG-powered vehicles and how the vehicles
and other sources might be regulated in the future to improve
the ambient air quality in Dhaka, Bangladesh.

Description of the Study Area
Dhaka, Bangladesh’s capital and most populous city, is situated
at the northeastern end of the Indo-Gangetic Plain (IGP).
Dhaka is the center of Bangladesh with an elevation of ∼9m
above sea level (Figure 1). Dhaka encompasses a total area of
1463.60 square kilometers (565.10 square miles) and possesses a
population of 12.5 million and, hence, is one of the most densely
populated cities in the world with a density of 8,229 per square
kilometer. Dhaka has a population growth rate of 3.48% per year
due to ever-growing urbanization (urbanization rate = 77.36%),
which drives a huge chunk of the population toward urban life
every year from rural/suburban areas (www.dhaka.gov.bd). As

TABLE 1 | Recent studies concerning air quality and climate variables in Dhaka, Bangladesh.

Studied variables Observation Model/study methods References

PM2.5, its precursors, and

climate variables

Air quality changes from the CNG conversion scheme in 2010 resulted in

around 2045 (1665) avoided premature deaths and a savings of around

USD 400 million in greater Dhaka. Climate expenses (∼USD 17.7 million)

were in the order of magnitude less than the air quality gains.

GIS-based modeling Wadud and Khan,

2013

Climate variables (monthly rainfall

and temperature)

Daily energy usage in Dhaka city rises by 6.46–11.97 and 2.37–6.25 MkWh

per unit increase in temperature and rainfall, respectively, while daily gross

residential energy demand and peak demand will rise by 5.9–15.6% and

5.1–16.7% by the end of the century, depending on climate change

scenarios.

An ensemble of six GCMs of

CMIP5 under four RCP

scenarios

Shourav et al.,

2018

PM10, PM2.5, BC, and Pb Dhaka’s air quality has remained steady over the last decade, despite

increased economic development and the number of sources such as

passenger cars and brick kilns.

EEL-type Smoke Stain

Reflectometer

Begum and

Hopke, 2018

PM2.5 Wood burning, soil dust, brick kilns, fugitive Pb, road dust, Zn sources,

motor vehicles, and sea salt have been reported as sources.

Ion Beam Analysis (IBA) and

EEL-type Smoke Stain

Reflectometer

Begum and

Hopke, 2019

NO2, CO, O3, SO2, and PM2.5

and PM10

The presence of a seasonal pattern of air quality implies that the air is highly

toxic and polluted.

Seasonal Autoregressive

Integrated Moving Average

(SARIMA) model

Islam et al., 2020

PM2.5 Metal(oid) contamination in dust and soil at school compounds was

primarily caused by traffic-related events, natural causes, and

manufacturing operations.

Ion Beam Analysis (IBA)

methods and

PCA-APCS-MLR receptor

model

Rahman et al.,

2021

GCM, global circulation models; CMIP5, coupled model intercomparison project phase 5; RCP, representative concentration pathway.
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FIGURE 1 | Location of Bangladesh and the district of Dhaka.

a result, Bangladesh with a mean PM2.5 concentration of 77.1
µg/m3 andmegacity Dhaka with the samemean concentration of
that of Bangladesh has emerged as the 1st and 2nd most polluted
country and capital city in the world (Amato et al., 2020).

Air Pollution and Meteorological Data
Although the Department of Environment (DoE) has some
ground-based monitoring stations for atmospheric pollutants,
long-term datasets are still scarce for Dhaka. As a result, 24-
h ambient concentrations of the air pollutants (PM2.5, PM10,
CO, O3, NO2, and SO2) and meteorological data (temperature,
surface pressure, and relative humidity) were collected from
the EAC4 (ECMWF Atmospheric Composition Reanalysis 4)
global reanalysis dataset produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF) from Copernicus

Atmosphere Monitoring Service (CAMS) for the period January
2003 to December 2019. The dataset contains gridded global
data with 0.75◦ × 0.75◦ horizontal resolution and has the
following vertical coverage: surface, total column, model levels,
and pressure levels. This period was chosen to depict long-term
air quality and its consequences on climate variables and human
health in Dhaka, Bangladesh.

CAMS Reanalysis Data
Reanalysis combines model data with measurements from
around the world to construct a globally robust and coherent
resource using a physics and chemistry-based model of the
atmosphere. The data integration is defined as a technique
used by numerical weather prediction centers and air quality
forecasting centers, in which a preceding prediction is merged
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with currently available measurements in an optimized way
every so many hours (12 h at ECMWF) to create a new best
estimate of the atmospheric situation, known as analysis,
from which an updated, enhanced forecast is produced
(ads.atmosphere.copernicus.eu). The CAMS reanalysis is the
most recent global reanalysis data collection of atmospheric
composition (AC) developed by the Copernicus Atmosphere
Monitoring Service, and it consists of three-dimensional
time-consistent AC fields, including aerosols, chemical
species, and greenhouse gases, through the CAMS global
greenhouse gas reanalysis (EGG4). The dataset improves on the
knowledge obtained during the development of the Monitoring
Atmospheric Composition and Climate (MACC) reanalysis and
the CAMS interim reanalysis. The assimilation method estimates
observational biases and separates high-quality data from low-
quality data. Estimates are made using the atmosphere model in
places where data collection is limited or for pollutants for which
no direct measurements are possible. Reanalysis is a very easy
and common dataset to work with since it provides forecasts at
each grid point across the world at each daily production time,
over a long period of time, and in the same format.

The CAMS reanalysis was created with 60 hybrid
sigma/pressure (model) levels in the vertical, with the top
level at 0.1 hPa, using 4DVar data assimilation in ECMWF’s
Integrated Forecast System (IFS) CY42R1. The 4DVar data
assimilation employs 12-h assimilation periods spanning 09
UTC to 21 UTC and 21 UTC to 09 UTC, respectively. The IFS
model documentation for various model cycles can be found
at https://www.ecmwf.int/en/forecasts/documentation-and-
support/changes-ecmwf-model/ifs-documentation. On these
levels, atmospheric data are available, which are also interpolated
to 25 strain, 10 potential temperature, and 1 potential vorticity
level(s). Data on the “surface” or “single stage” are also available.

EAC4 is the fourth-generation ECMWF global reanalysis of
AC. Monthly surface data were utilized to study human exposure
to the selected pollutants and the effect of the climate variables.
Monthly means for assessments and instantaneous predictions
are calculated using data with a valid time in the month, ranging
from 00 to 23 UTC, except the time 00 UTC on the first day of
the next month. Data with a prediction date that falls within the
month are used to establish monthly means for accumulations
and mean rates.

However, there have been some issues associated with
assimilation of the CAMS global reanalysis (EAC4). During
2003 and between March and August 2004, the ozone analysis
has a degraded quality, while from 2013 onwards, there is a
larger seasonally varying bias in ozone in the free troposphere,
particularly in the Arctic and Antarctic that is not seen in
the control run. Furthermore, NO2 in the CAMS reanalysis is
mainly influenced by prescribed emissions (e.g., anthropogenic
MACCity, GFAS biomass burning) and only to a lesser extent by
assimilated findings due to its short lifespan. As a result, patterns
or deviations derived from NO2 reanalysis fields will primarily
represent trends in underlying pollution. More details about
the EAC4 data products, i.e., the observation techniques, data
assimilation methods, bias correction, etc. have been described
by Inness et al. (2019) and Flemming et al. (2015).

TABLE 2 | Observations used in the assimilation and validation of CAMS, ordered

by species.

Species, Vertical

range

Assimilation Validation

Aerosol mass (PM10,

PM2.5)

MODIS Aqua/Terra European Airbase stations

O3, PBL/surface Surface ozone: WMO/GAW,

NOAA/ESRL-GMD, AIRBASE

CO, PBL/surface IASI, MOPITT Surface CO: WMO/GAW,

NOAA/ESRL

NO2, troposphere OMI, GOME-2, partially

constrained due to

short lifetime

TROPOMI, SCIAMACHY,

GOME-2, MAX-DOAS,

TROPOMI

SO2 GOME-2 (Volcanic

eruptions)

MODIS, Moderate Resolution Imaging Spectroradiometer; IASI, Infrared Atmospheric

Sounding Interferometer; MOPITT, Measurements of Pollution in the Troposphere;

WMO/GAW,WorldMeteorological Organization/Global AtmosphereWatch; NOAA/ESRL-

GMD, National Oceanic and Atmospheric Administration/Earth System Research

Laboratory-Ground-based midcourse defense; GOME-2, Global Ozone Monitoring

Experiment-2; TROPOMI, Tropospheric Monitoring Instrument; SCIAMACHY, Scanning

Imaging Absorption Spectrometer for Atmospheric Cartography; MAX-DOAS, Multi-Axis

Differential Optical Absorption Spectroscopy.

Validation of the Reanalysis Data
The CAMS-84 is a sub-project of CAMS that deals with
service product validation. The validation reports for the
global and regional services are updated every 3 months
by CAMS-84. The validation is focused on a variety of
measurements and measuring methods, including in situ
observations, surface remote sensing, airplane observations,
balloon sounding, ship observations, and satellite observations.
With a deadline of ∼1 month after sensing, the validation
reports’ three-monthly interval adds restrictions on the timely
availability of the findings. Table 2 represents the assimilation
and validation products for specific species along with their
vertical range. The validation reports and the verification
websites can be found at http://atmosphere.copernicus.eu/user-
support/validation/verification-global-services.

For this study, the selected reanalysis products were validated
with the monthly average air pollution concentration data
overlapping the months of the analysis period obtained from the
Department of the Environment (DoE, CASE project) in Dhaka,
Bangladesh. Validation of PM2.5 and PM10 NO2, and SO2 with
the DoE data has been depicted in the following figure and the
concentrations showed R2 values of 0.93, 0.85, 0.58, and 0.76,
which confirms that the reanalysis data are capable of reflecting
the ground-based air pollution data (Figure 2). Validation for
the other pollutants was not done due to temporal anomalies
between the reanalysis and ground-based data.

Source Apportionment Using PCA and
PMF Modeling
Correlations among the variables were studied through Pearson
correlation coefficients instead of non-parametric tests as non-
parametric tests are better suited for datasets having no linear
relationships or violating normality (Hauke and Kossowski,
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FIGURE 2 | Validation of the Copernicus Atmosphere Monitoring Service (CAMS) products with ground-based products obtained from the Department of

Environment (DoE), Bangladesh.

2011). Source apportionment has always been tricky in the case
of environmental datasets (Gao et al., 2016). PCA has been used
robustly (Cotta et al., 2020) and coupled with other techniques
(Sun and Sun, 2017; Franceschi et al., 2018; Gao et al., 2020;
Liu et al., 2020). On the other hand, the contribution of various
sources to PM and other contaminants around the world have
been studied by PMF analysis, as well as references therein
(Cesari et al., 2016, 2018; Sharma et al., 2016a,b; Crilley et al.,
2017; Liu et al., 2017; Ryou et al., 2018; Jain et al., 2019, 2020).
Although PCA is useful for evaluating the association between
variables and measurements, it can also be used to describe
each observation independently, whereas PMF is more based
on the overall dataset definition. As a result, PCA can be used
to explain how each attribute affects the observations, as well
as whether certain observations or classes of observations have
unusual characteristics. Instead of focusing on each observation
or indicator, PMF explores the temporal pattern of all variables to
find a potential common source. As a result, combining PCA and
PMF to achieve an aggregate statistical summary of data is a safe
way to view each observation as “independent” and as part of a
temporal pattern (Padoan et al., 2020).

Firstly, the distribution of the variables over the studied
period was evaluated through PCA, a widely used chemometric

technique (Jollife and Cadima, 2016). PCA allows rotating the
space spanned by the original variables to a new space spanned
by the principal components (PCs), in which the first (generally
two or three) PCs report the majority of the details found in the
original data. As a result, analyzing the behavior of samples (in
the scores plot) and variables is made easier by visualizing the
two- or three-dimensional plot of PC1 vs. PC2 (and/or PC3) (in
the loading plot).

Then, PMF modeling was employed for the allocation of
sources and the inner characteristics of ambient air pollutants
(PM2.5, PM10, CO, O3, NO2, and SO2) on a monthly basis using
EPA PMF (version 5.0). PMF also rotates space spanned by the
original variables but the calculated factors are not orthogonal
to each other like PCA. This way, a better or worse solution
can be obtained by PMF modeling by rotating the variables.
Standard deviations associated with each measurement are also
required to choose the most suitable number of factors and
to evaluate the rotational stability of the obtained solution
in the PMF analysis (Paatero and Tapper, 1994). PMF allows
for the visualization of diverse sources of air contaminants as
well as their contributions to specific pollutant concentrations.
Several previous research and related sources enumerated in
those publications had detailed explanations of PMF algorithms
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and their use (EPA PMF 5.0 guide; Sharma et al., 2016a; Cesari
et al., 2018; Jain et al., 2020). Therefore, only the compulsory
information to elucidate PMF modeling has been described here.

The PMF decomposes a matrix composed of the factors (p),
source profiles (f ), and the contribution (g) of each source to
individual samples based on the following equation (Liu et al.,
2017):

Xij =

p
∑

k=1

gikfkj + eij (1)

where ij signifies species residuals, i is the number of
concentrations, j is the number of chemical components, and X
denotes i by jmatrix.

Monthly average concentrations of the ambient air pollutants
were utilized in the PMF modeling. To attain acceptable results
reducing the uncertainties of online datasets, the following
precautions were employed: (1) purging of the outliers (far-off
values compared to the average value); (2) apportionment of the
sources from monthly datasets (using daily mean concentrations
obtained from hourly values); and (3) employment of multiple
receptor model (Belis et al., 2015; Cesari et al., 2016).
Photochemical oxidation of carbon monoxide (CO) and volatile
organic compounds (VOCs) in the presence of nitrogen oxides
(NOx = NO + NO2) and sunlight is the primary source of
ozone (Lu et al., 2018). Thus, including O3 concentrations could
bias the source apportionment of the receptor models by using
PMF. Therefore, O3 was excluded from the input dataset in
the modeling.

Standard deviations for each month were included to
account for uncertainties of each data point and ease the
model to estimate results with a significant confidence level
for each pollutant. PMF has the establishment of considering
uncertainties accompanying each chemical component of the
data (EPA PMF 5.0 guide).

Uncertainty =

√

(Error fraction× Concentration)2 + (0.5×MDL)2 (2)

where Error fraction is defined as a measure of the standard
deviation of particular pollutants divided by the square root of
the total number of concentrations. The signal-to-noise (S/N)
ratio is utilized to categorize quality of data and the S/N ratios
found in this study fall within the acceptable range of those
presented in many PMF studies (Sharma et al., 2016a; Cesari
et al., 2018; Amato et al., 2020; Jain et al., 2020). The data used
in the modeling were specifically divided into three groups based
on S/N ratios, with variables with S/N ratios of >2 being labeled
as “strong variables,” variables with S/N ratios of 0.2–2 being
labeled as “weak variables,” and the model employing three-fold
uncertainty with them. Variables that had S/N ratios <0.2 were
disregarded from further analysis and denoted as “bad variables”
(Amato et al., 2020). The S/N ratio of all the variables of the air
pollutants has been reported in Supplementary Table 1.

PMF modeling was employed to run in robust mode,
and the Q robust and Q true values were found to be in
good agreement with the base run for a four-factor solution.
Supplementary Table 2 displays the Q robust and Q true values

for the base runs. The little discrepancies between the two Q-
values indicate that the models were able to achieve a satisfactory
fit for the data and outliers. Furthermore, 100% convergence
rate for all analytical runs was obtained in the model runs,
which also affirms the steadiness of the model and the ability
to fit all the variables suitably (Nayebare et al., 2018). Extra
modeling uncertainty is an additional important parameter that
pronounces the fitness of the model. No (0%) error constant
(extra modeling uncertainty) was found for all the air pollutants.
The results obtained for the air pollutants by PMF modeling
had a significant agreement between measured and modeled
concentrations specified by R2 that further confirmed that the
concentrations were well-reconstructed (Cusack et al., 2013).
R2 values [from the one-way analysis of variance (ANOVA)
F-test] for all the air pollutants were detected to be higher
than 0.98, and p-values [from the two-sample Kolmogorov–
Smirnov (KS) test] were close to 0 (Supplementary Table 2).
The performance factor profiles’ uncertainties were also assessed
using error estimation methods, namely, the Bootstrap (BS) and
Displacement (DISP) methods. Details about error estimation
methods used in EPA PMF software, 5.0, have been described by
Brown et al. (2015). A strong mapping of the PMF species was
observed for all datasets in the BS study, with unmapped cases
accounting for <5% of the total. Furthermore, the findings are
consistent since no factor profile swap was observed in DISP for
any of the datasets (Manousakas et al., 2017).

Human Health Risk Assessment
Adverse effects due to exposure to toxic agents can be inclusively
estimated through health risk assessment (USEPA, 1989). This
procedure predicts effects on human health caused by a
particular pollutant utilizing existing exposure data (WHO,
1996). Exposure to PM2.5, PM10, CO, O3, NO2, and SO2 and their
adverse effects has been studied in this study through the US EPA
human health risk assessment framework. This method has been
employed in several previous studies to assess non-carcinogenic
risk due to the criteria pollutants (Megido et al., 2017; Piersanti
et al., 2018; Embiale et al., 2020; Mundackal and Ngole-jeme,
2020; Edlund et al., 2021; Morakinyo et al., 2021). The four steps
involved in the HHRA are depicted below:

Hazard Identification
Firstly, PM2.5, PM10, CO, O3, NO2, and SO2 have been identified
as criteria air pollutants by the WHO as well as USEPA (World
Health Organization, 2005; USEPA, 2016).

Dose–Response Assessment
Secondly, the amount of pollutants absorbed by the body was
calculated as a function of concentration and exposure time.
This research did not have a dose–response analysis. Rather,
WHO and the DoE environmental quality guidelines for these air
contaminants were used as a benchmark in this study (depicted
in Table 3).

Exposure Assessment
Then, identification of the exposed population and the
magnitude of hazard and duration of exposure are estimated
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TABLE 3 | Comparison of ambient guideline values of the criteria pollutants in

Bangladesh.

Criteria pollutants Averaging time Guideline values

Bangladesha USEPAb WHOc

PM2.5 (µg/m3 ) 24 h 65 35 25

Annual 15 15 10

PM10 (µg/m3 ) 24 h 150 150 50

Annual 50 - 15

CO (ppm) 1 h 35 35 26.25

8 h 9 9 9

O3 (ppm) 1 h 0.12 0.12 -

8 h 0.08 0.08 0.051

NO2 (ppm) Annual 0.053 0.053 -

SO2 (ppm) 24 h 0.014 0.14 0.0077

Annual 0.03 0.029 -

acase.doe.gov.bd.
bwww.epa.gov/criteria-air-pollutants.
cwww.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.

through exposure assessment. Inhalation is considered the major
route of exposure to pollutants. Chronic (annual) and acute (1-
h) exposure assessments were determined for three different age
groups, namely, infants (birth to a year), children (6–12 years),
and adults (19–75 years).

The acute exposure assessment for the non-carcinogenic
pollutants (PM2.5, PM10, CO, O3, NO2, and SO2) was based on
the rate equation as follows:

AHD =
C × IR

BW
(3)

where AHD stands for average hourly dosage for inhalation
(µg/kg/h), C stands for chemical concentration (µg/m3), IR
stands for inhalation rate (m3/hour), and BW stands for
bodyweight (kg) (WHO, 1999).

The rate equation for the chronic exposure assessment for the
non-carcinogenic pollutants (PM2.5, PM10, CO, O3, NO2, and
SO2) was:

ADD =
C × IR× ED

BW × AT
(4)

where ADD represents the average daily dosage of the chemical of
interest (µg/kg/day), C represents the volume of the chemical in
ambient air (µg/m3), IR represents the inhalation rate (m3/day),
ED represents the exposure period (days), BW represents the
exposed group’s body weight (kg), and AT represents the
averaging time (days) (WHO, 1999). ED is defined by the
following equation:

ED = ET × EF × DE (5)

where ET denotes exposure time (h/day), EF denotes exposure
frequency (days/year), and DE denotes exposure period (year).
Table 4 shows the estimated values of each variable used in this
assessment for each population group in terms of acute and

chronic exposure periods (Morakinyo et al., 2017, 2021; Embiale
et al., 2020).

Risk Characterization
Finally, using the hazard quotient (HQ), the potential non-
carcinogenic consequences of exposure to a known pollutant are
quantified via the “Risk characterization” process (Morakinyo
et al., 2017). HQ expresses the likelihood of a negative
health outcome among stable and/or sensitive people. The
adverse health outcome occurring among different individuals
of different age groups is reflected by this process. Thus, non-
cancer risks associated with the air pollutants were estimated
through HQ. Acute and chronic non-cancer risks were calculated
according to the following equations:

HQ =
ADD

RfC

(

chronic exposure
)

(6)

HQ =
AHD

RfC

(

acute exposure
)

(7)

where RfC is an approximation containing uncertainty of
considerable scale of an incessant inhalation exposure to the
human population (including sensitive subgroups) that possesses
a substantial risk of lethal effects during a lifetime (www.epa.gov).
The chemical identifications, RfC values, and affecting organs are
presented in Supplementary Table 2.

An HQ value of 1.0 indicates no risk to human health, while
an HQ value of 1.0 indicates a marginal risk, indicating that
the considered contaminant is not a potential health risk, to
even a sensitive person. However, an HQ > 1.0 signifies risks
to some extent upon exposure to different individuals, adults,
and/or children (USEPA, 1989).

RESULTS AND DISCUSSION

Ambient PM Trends in Dhaka
Long-term yearly as well as monthly trends of PM2.5 and PM10

have been depicted in Figure 3. Supplementary Table 4 shows
the statistics of PM2.5 and PM10 during the studied period. Both
PM2.5 and PM10 showed normal distribution for the studied
period with mean yearly concentrations of 88.69 ± 9.76 and
124.57 ± 12.75 µg/m3, respectively. The yearly values of PM2.5

and PM10 exceeded the national air quality standards respectively
by nearly 6.0 and 2.5 times while exceeding WHO standards
by 9.0 and 6.0 times. The linear regression analysis has been
performed to determine the trends and statistical significances of
PM2.5 and PM10. Increasing trends have been observed for PM2.5

and PM10 over the years with slopes of 1.83 ± 0.15 and 2.35 ±

0.24µg/m3/year, respectively. One-way ANOVA showed that the
increasing trends were statistically significant (p < 0.05) for both
the PMs (Figure 3). Rana et al. (2016) reported similar findings
in Dhaka that showed that PM2.5 concentrations exceeded the
WHO guideline value by 8–13 times. Begum and Hopke (2018)
also showed that long-term trends for PM2.5 and PM10 exceed the
USEPA standards in Dhaka.

Monthly variations were identical for the PMswith the highest
values observed in winter (November–February) and the lowest
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TABLE 4 | The variables used in the calculation of exposure rate and risk assessment factors for different age groups.

Variable Description Value Unit

Infant (Birth to 1 Year) Child (6–12 years) Adult (19–75 years)

Acute Chronic Acute Chronic Acute Chronic

C Contaminant

concentration in

ambient air

µg/m3

IR Mean inhalation rate 0.30 6.80 1.20 13.50 1.20 13.30 m3/h

BW Mean body weight 11.30 45.30 71.80 kg

ET Exposure time 1.00 14.60

[(350/24) × 1]

1.00 1050.00

[(4200/24) × 6]

1.00 1312.50

[(10,500/24) ×

3]

h

EF Exposure frequency 350.00 350.00 350.00 days

DE Exposure duration 1.00 12.00 30.00 years

AT Averaging time 365.00

(1 × 365)

4380.00

(12 × 365)

10,950.00

(30 × 365)

days

in monsoon (June–August). Previous studies also supported such
seasonality of PMs with the highest values being associated with
the dry season compared to the wet season (Rana et al., 2016;
Rahman et al., 2020).

Gaseous Pollutants’ Trends in Dhaka
Trace gases CO, O3, NO2, and SO2 showed yearly concentrations
of 0.69 ± 0.06 ppm, 51.42 ± 1.82 ppb, 14.87 ± 2.45 ppb, and
8.76± 2.07 ppb, respectively for 2003–2019. Normal distribution
was observed for all the trace gases over the studied period
(Supplementary Figure 1). NO2 and SO2 were below the annual
national guideline values set by DoE. Yearly trends of CO, O3,
NO2, and SO2 showed slopes of 0.01 ± 0.002 ppm/year, 0.13 ±

0.09 ppb/year, 0.47 ± 0.03 ppb/year, and 0.40 ± 0.02 ppb/year
for the studied period. One-way ANOVA showed that the trends
of the trace gases were statistically significant (p < 0.05) except
for O3 (Figure 4). Rahman M. M. et al. (2019) showed similar
significant positive trends for SO2 and CO in Dhaka, Bangladesh
for 2013–2017.

Monthly observations showed that CO, NO2, and SO2

followed an almost similar pattern over the year with the
highest values in winter (November–February) and the lowest
in monsoon (June–August). On the contrary, O3 showed the
maximum values in March–May and the minimum in July–
September. The seasonal trends of ozone in Dhaka differed from
those of other contaminants, which all exhibited distinct seasonal
variation with a peak in the winter and a trough in the monsoon
(Rahman M. M. et al., 2019).

Meteorological Parameters’ Trends in
Dhaka
The air quality of an urban area is heavily influenced by
meteorological factors (Rahman M. S. et al., 2019; Afrin et al.,
2021). Long-term trends of the meteorological parameters have
been depicted in Figure 5. Surface temperature, pressure, and
relative humidity showed yearly values of 25.99 ± 0.750◦C,
1006.46 ± 0.54 hPa, and 71.30 ± 1.36%, respectively, over

the studied period. Monthly variation of temperature showed
the highest values in April–June and lowest in December–
January. Surface pressure showed opposite monthly variation
with the highest values observed in June–July and lowest
in December–January. Relative humidity, on the other hand,
showed the highest values in June–September and lowest in
February–March. Linear regression of the parameters showed
slopes of 0.12 ± 0.02◦C/year, 0.03 ± 0.02 hPa/year, and 0.11 ±

0.07%/year, respectively, for temperature, pressure, and RH. The
one-way ANOVA study revealed that the trends were statistically
insignificant except for temperature.

Correlation Among the Pollutants and
Meteorological Parameters
Pearson correlation analyses were employed to quantify
relationships among the ambient air pollutants and
meteorological parameters as the variables did not violate
the normality test (Table 5; Supplementary Figure 1). PM2.5

and PM10 showed significant positive values with PMs, NO2,
and SO2. Furthermore, NO2 and SO2 also showed significant
positive values with each other, PMs, and CO. The significant
positive correlations among the air pollutants suggested similar
production pathways for them.

Previous studies also investigated associations among the
air pollutants and meteorological parameters. Ozone had non-
significant associations with the other pollutants, according to
Rahman M. M. et al. (2019). Although not significant, O3 has a
positive association with PMs, CO, NO2 (R

2
> 0.37), suggesting

that the other pollutants could play important roles in the
development of O3. Besides, O3 showed a negative correlation
with RH but a positive correlation with temperature.

In the case of the meteorological parameters, temperature
showed significantly positive correlations with all the pollutants
but not in the case of the other meteorological variables. Surface
pressure did not show any significant association with any other
variables other than RH. Lastly, RH did not exhibit any significant
connection with the variables. However, according to Afrin et al.
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FIGURE 3 | Yearly and monthly trends (A) of particulate matters (PM2.5 and PM10) and the long-term evolution of PM2.5 and PM10 (B) for 2003–2019 (the shaded

regions represent the standard deviations).

(2021), air temperature, wind speed, and wind direction could
account for more than 90% of PM2.5 variability.

Source Apportionment
Principal Component Analysis
PCA was employed on the monthly datasets of the air pollutants.
The datasets were auto-scaled before the analysis. This indicates
that the column mean has been subtracted from each digit of the
dataset, and the result has been separated by the column standard
deviation. Figure 6 shows the bi-plots obtained by the PCA
carried out on the datasets. It reports both scores and loadings
in the same PC1 vs. PC2 graph. PC1 and PC2 loadings account
for 98.88% of the total variance of the pollutants. PC1 carries
45.20, 45.20, 45.02, 44.09, and 44.09% of explained variance for
PM2.5, PM10, CO, NO2, and SO2 and PC2 carries 55.32 and
55.25% of explained variance for NO2 and SO2 (Figure 6). The

two PMs, CO, NO2, and SO2 have the same characteristics as
they are distributed evenly along the x-axis, which accounts for
almost ∼45% of the variance. Thereby, PC1 can be inferred to
be vehicular emissions according to the component variance test,
whereas NO2 and SO2 showed similar discrimination along the
y-axis, contributing ∼55% of these variables. Thus, PC2 can be
attributed to the industrial emissions enriched in NO2 and SO2.
Furthermore, the variables are almost evenly distributed in the
positive and negative regions of PC1 and PC2. It indicates that
the chemical composition of the studied compounds has similar
concentrations in the case of these two variables.

PMF Modeling
The factor profiles of all the sources of the air pollutants
(PM2.5, PM10, CO, NO2, and SO2) are depicted in
Supplementary Figure 2. Four factors were attributed to be
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FIGURE 4 | Yearly and monthly trends (A) of the gases (SO2, NO2, O3, and CO) and the long-term evolution of SO2, NO2, (B) O3, and CO (C) for 2003–2019 (the

shaded regions represent the standard deviations).

Frontiers in Sustainable Cities | www.frontiersin.org 11 July 2021 | Volume 3 | Article 681759

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles


Pavel et al. Long-Term Air Quality Characterization in Dhaka

FIGURE 5 | Yearly and monthly trends (A) of temperature, pressure, and relative humidity and the long-term evolution of temperature, pressure, (B) and relative

humidity (C) for 2003–2019 (the shaded regions represent the standard deviations).

Frontiers in Sustainable Cities | www.frontiersin.org 12 July 2021 | Volume 3 | Article 681759

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles


Pavel et al. Long-Term Air Quality Characterization in Dhaka

TABLE 5 | Pearson correlation coefficients among the air pollutants (PM2.5, PM10, CO, NO2, and SO2 ) and the meteorological parameters (surface temperature, pressure,

and relative humidity).

Pearson

correlation

PM2.5 PM10 CO O3 NO2 SO2 T P RH

PM2.5 1.00 0.96** 0.93** 0.42 0.96** 0.96** 0.69** 0.33 0.34

PM10 0.96** 1.00 0.96** 0.43 0.94** 0.96** 0.68 0.25 0.22

CO 0.93** 0.96** 1.00 0.37 0.87** 0.92** 0.61* 0.22 0.18

O3 0.42 0.43 0.37 1.00 0.42 0.41 0.41 0.05 −0.31

NO2 0.96** 0.94** 0.87** 0.42 1.00 0.95** 0.66** 0.37 0.40

SO2 0.96** 0.96** 0.92** 0.41 0.95** 1.00 0.78** 0.25 0.29

T 0.69** 0.68** 0.61* 0.41 0.66** 0.78** 1.00 0.22 0.22

P 0.33 0.25 0.22 0.05 0.37 0.25 0.22 1.00 0.50*

RH 0.34 0.22 0.18 −0.31 0.40 0.29 0.22 0.50* 1.00

*Significant at the 95% confidence level.

**Significant at the 99% confidence level.

FIGURE 6 | PCA bi-plot of the monthly datasets of the pollutants (PM2.5,

PM10, CO, NO2, and SO2 ).

the estimated sources contributing to the aforementioned
ambient air pollutants. The percent contributions of the factors
influencing the air pollutants have been depicted in Figure 7.

Factor 1: The first factor is characterized by the highest
contribution (74.7%) to NO2 followed by the signature of 36.5,
35.7, 20.5, and 19.7%, respectively, for PM2.5, PM10, CO, and SO2

(Figure 7). Thus, factor 1 is inferred to be vehicular emissions as
these pollutants were significantly correlated, suggesting similar
sources. Despite the fact that many buses in Dhaka have been
converted to CNG engines, heavy-duty trucks that are limited
continue to run on diesel between the hours of 10 p.m. and
6 a.m. However, the lower contribution to SO2 suggests that the
conversion of most light-duty vehicles and buses to CNG has
resulted in significant reductions in light-duty vehicle and bus
emissions (Begum and Hopke, 2018).

Factor 2: PM loadings appeared to be highest (42.9 and 42.7%,
respectively, for PM2.5 and PM10) for factor 2 with contributions

of 28.5 and 22.5% for CO andNO2, suggesting that this factor can
be inferred to be road/soil dust or secondary sources. Elemental
characterization is needed to correctly attribute this factor to
the ambient pollutants. Spearman correlation revealed that PMs
have significant correlations with CO, NO2, and SO2 that further
affirms traces of the same factor in the case of these pollutants.
Due to both anthropogenic and natural sources, dust has been
identified as a significant contributor to measure PM2.5 in Dhaka,
accounting for 11% of total PM2.5 (Weagle et al., 2018).

Factor 3: This factor is characterized by the highest
contribution (50.5%) to CO with significant contributions to
SO2. PMs are also influenced by this factor with loadings of 14.2
and 15.1%, respectively, for PM2.5 and PM10. This factor can be
inferred to biomass or fossil fuel burning as suggested by the high
loading of CO. Ommi et al. (2017) reported the transboundary
influence of biomass burning from the IGP to be an important
factor in Dhaka, mainly arising from the preparations of the lands
through field burning. Furthermore, Salam et al. (2008) reported
that the higher concentration of SO2 in the city center is possibly
due to the high content of sulfur in fossil fuel.

Factor 4: Factor 4 can be inferred as industrial emissions as it
contributes mostly (39.2%) to SO2 with traces in the case of CO
(0.5%) andNO2 (2.0%). Both PM2.5 and PM10 are associated with
about 6.5% for factor 2. The high contribution to SO2 from this
factor signifies the effect of industrialization centered in Dhaka,
which has increased exponentially in the last decade or so. The
commercial areas of Dhaka had the highest SO2 concentration
(76.8 µg/m3) (Salam et al., 2008).

However, since sources of atmospheric pollutants are
extremely complicated and diverse, particularly for unorganized
emission sources, ambient pollutants cannot be apportioned
perfectly through receptor modeling, and some factors remain
unknown (Liu et al., 2016, 2017). Furthermore, the dearth of
element analysis for metals limits the capability of receptor
models to categorize all the sources present regionally. Moreover,
the transboundary effects are also significant for ambient regional
pollutants in Bangladesh that might affect the ambient air quality
as reported by many previous studies (Rana et al., 2016; Rahman
et al., 2020).
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FIGURE 7 | Contribution of the sources to the air pollutants (PM2.5, PM10, CO, NO2, and SO2 ) obtained from PMF modeling.

Human Health Risk Assessment
The HQ was calculated for three age groups (infant, child, and
adult) in acute and intermediate level exposures, which have been
reported in Figure 8. At the acute exposure level, no pollutants
showed an adverse effect, that is, HQ values were below 1, for
any of the age groups. On the other hand, the HQ values posed
significant health risk (HQ > 1) at the chronic exposure level for
infants and children while no antagonistic health effects risk (HQ
< 1) were observed for the pollutants in the case of the adults.
Among the pollutants, PM2.5 (1.81 × 103 ± 2.00 × 102) and
O3 (1.03 × 103 ± 3.65 × 101) were observed to be the most
harmful pollutants affecting the studied age groups, especially
the children. In terms of the studied age groups, children were
observed to be affected far more than infants and adults at
the chronic exposure level. These results suggest that the air
pollutants affect all age groups significantly when considered at
the chronic level with children being the worst sufferers while
negligible effects are observed at the acute level. Owing to a
variety of factors, including their comparatively higher level of
air inhalation (a resting infant’s air consumption per weight unit
is double that of an adult), their immune system and lungs not
being fully grown, children are the population most impaired by
indoor air contamination (Lina Thabethe et al., 2014).Morakinyo

et al. also demonstrated a similar adverse impact on children
when compared to other age groups. These results essentially
signify that low breathing heights could be the main factor along
with other indoor and outdoor air pollution sources behind
this phenomenon in children who are particularly susceptible to
ground-level pollution. In a study conducted at a local school,
Sharma andKumar (2020) found that in-pram babies are exposed
to up to 44% higher fine particle concentrations than adults.
Table 6 lists some more previous studies comparing health risks
associated with ambient air pollutants.

DISCUSSION AND FUTURE IMPLICATIONS

The air pollutant (PM2.5, PM10, CO, NO2, and SO2)
concentrations except O3 showed significantly increasing
trends in this study. However, an analysis of Dhaka’s air quality
over two decades (1996–2015) found that the city’s air quality
has remained constant over the last decade, despite increased
economic development and the number of sources such as
passenger cars and brick kilns (Begum and Hopke, 2018). On
the contrary, a recent analysis found that PM2.5 concentrations
in Dhaka decreased slightly (statistically non-significant) from
2013 to 2017, but fine PM concentrations remained elevated and
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FIGURE 8 | Hazard quotients associated with the ambient pollutants (PM2.5, PM10, CO, O3, NO2, and SO2) for infants, children, and adults in chronic and acute levels.

TABLE 6 | Human health risk assessments in various samples and sites according to the USEPA method.

Study area Studied variables Findings References

Gijón, Spain PM10 samples Cancer and non-cancer risk values were within tolerable limits for

both adults and children while the health risk was predicted to be

higher for children

Megido et al.,

2017

Cordoba city, Argentina PM samples HI < 1 for all age groups and land use areas Mateos et al.,

2018

Beihai and Shanghai, China Heavy metals in street dust Non-carcinogenic risks due to Cr for children in both the sites

were relatively higher than other metals (HI < 1)

Chen et al.,

2019

Dhaka, Bangladesh Heavy metals in street dust Children may have a slight non-cancer health risk as a result of

exposure to street dust (HI > 1).

Rahman M. S. et

al., 2019

Dhaka, Bangladesh Heavy metals in road dust and

roadside soil from different school

buildings

Children are more susceptible to non-cancer risks than adults and

ingestion was identified as the dominant pathway (HI < 1).

Rahman et al.,

2021

This study PM2.5, PM10, CO, O3, NO2, and SO2 HQ < 1 at acute levels but HQ > 1 for infants and children at

chronic level

presumably continue to affect human health (Rahman M. M. et
al., 2019). Therefore, there remains a need for further study into
long-term seasonal cycles, as well as their assessment concerning
actions taken by relevant bodies.

Among the meteorological parameters, the temperature
seemed to significantly correlate with the air pollutants (PM2.5,
PM10, CO, NO2, and SO2) except O3. However, according to
Afrin et al. (2021), meteorological factors (temperature, relative
humidity, etc.) account for about 57% and 35% of the variations

in PM2.5 and PM2.5−10 concentrations, respectively, implying
that the finer PM fraction is affected more by meteorology than
the coarser fraction. Thus, more quantitative approaches to how
climate change affects urban air quality may provide further
insights into contaminant reduction policies.

This study estimates four probable main sources contributing
to the emission of the six air pollutants in Dhaka, Bangladesh,
which are vehicular emissions, road/soil dust, biomass burning,
and industrial emissions. In a study on NOx pollution from
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vehicular emissions in Dhaka, Iqbal et al. (2019) found that,
while a critical urban health ecosystem already exists, the current
pattern of vehicular expansion, combined with current vehicle
technology and on-road traffic management systems, may soon
lead to an unbecoming situation. As a result of these findings, the
vehicular management system in Dhaka should be strengthened,
and further research into PMs, CO, and NOx emissions caused by
them should be conducted. Furthermore, according to Rahman
M. S. et al. (2019), ingestion of dust particles increases the
risk of heavy metals (Cr, Cd) in children and adults in Dhaka
City, where children were facing a possible health risk. Dhaka
is witnessing several infrastructure schemes, such as the Dhaka
Metrorail Project and the Dhaka Elevated Expressway Project,
which have raised the risk of dust contamination by a factor of
many. So, heavy metal contamination caused by dust particles
should be investigated more thoroughly in Dhaka, as it poses a
threat to children in particular. Rahman et al. (2020) suggested
that air pollution in Dhaka is influenced by both local and
transboundary sources, but biomass-related PM2.5 was found
to be the most prevalent during cycles of crop-burning in
the IGP. Thus, biomass burning is a major contributor to
Dhaka’s poor air quality, necessitating further study into the
source’s impact and mitigation. Finally, the rising pattern of
SO2 in this study and previous studies (Rahman M. M. et al.,
2019) indicates that industrial operations in Dhaka, especially
brick kiln operations and high sulfur diesel usages, are still
contributing significantly to detrimental air quality. More studies
encompassing the brick kiln operations and other industrial
usage of high sulfur materials in Dhaka are also of paramount
importance. Begum et al. (2011) described vehicular emissions
and emissions from brick kilns as the two major sources of
air pollution in Dhaka and stated that the government of
Bangladesh is exploring various measures to minimize emissions
from those sources through the adoption of regional policies.
However, the pollutant patterns in this study indicate that
effective implementation of such measures is still scarce in
Dhaka, Bangladesh.

CONCLUSION

In this study, monthly ambient concentrations of the air
pollutants (PM2.5, PM10, CO, O3, NO2, and SO2) and
meteorological data (temperature, surface pressure, and relative
humidity) were utilized to explore long-term variations of
these parameters and their association with each other. Long-
term trends of the ambient pollutants were observed to be
increasing significantly in the one-way ANOVA test except for
surface ozone while the meteorological parameters showed no
significant trends over the studied period. Pearson correlation
studies revealed that the ambient pollutants were significantly
(CI > 95%) correlated with each other, suggesting probably
the same sources. The PCA bi-plot revealed that the PMs
and CO demonstrated similar variance while NO2 and SO2

followed an analogous pattern. However, four factors emerged
as estimated sources of the pollutants in PMF receptor
modeling, which were vehicular emissions, road/soil dust,
biomass burning, and industrial emissions. PMs were dominated
(∼42%) by the road/soil dust along with emissions from
vehicles. Biomass burning played a major role in CO (50.5%)
and SO2 (41.1%) production while industrial emissions were
another prominent factor (39.2%) in the case of SO2. On the
contrary, NO2 was identified to be mainly emitted from vehicular
emissions (74.7%).

Health risk assessment of the pollutants for three age groups
(infant, child, and adult) in acute level exposures indicated no
adverse effect (HQ < 1) for any of the age groups. On the other
hand, the HQ values posed significant health risk (HQ > 1)
at the chronic exposure level for infants and children while no
antagonistic health effects risk (HQ < 1) were observed for the
pollutants in the case of the adults.

This study reveals that the implementation of CNG wheelers
in 2003 might have reduced Pb emissions in megacity Dhaka,
but vehicular emissions along with road dust, biomass burning,
and industrial emissions remain the most prominent sources that
have a significant hazard risk on children and infants particularly.
However, since most studies have focused on Dhaka, there is still
room to assess long-term possible health risks and the effect of
climate variables on air quality at the divisional and district levels
in Bangladesh.
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