
ORIGINAL RESEARCH
published: 15 July 2021

doi: 10.3389/frsc.2021.690660

Frontiers in Sustainable Cities | www.frontiersin.org 1 July 2021 | Volume 3 | Article 690660

Edited by:

Antonio Puliafito,

University of Messina, Italy

Reviewed by:

Andrea Passarella,

Italian National Research Council, Italy

Francesco Lo Presti,

University of Rome Tor Vergata, Italy

*Correspondence:

Giovanni Quattrocchi

giovanni.quattrocchi@polimi.it

Specialty section:

This article was submitted to

Smart Technologies and Cities,

a section of the journal

Frontiers in Sustainable Cities

Received: 03 April 2021

Accepted: 04 June 2021

Published: 15 July 2021

Citation:

Baresi L and Quattrocchi G (2021)

PAPS: A Serverless Platform for Edge

Computing Infrastructures.

Front. Sustain. Cities 3:690660.

doi: 10.3389/frsc.2021.690660

PAPS: A Serverless Platform for Edge
Computing Infrastructures
Luciano Baresi and Giovanni Quattrocchi*

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy

Edge computing infrastructures are often employed to run applications with low latency

requirements. Users can exploits nodes that are close to their physical positions so that

the delay of sending computations and data to the Cloud is mitigated. Since users

frequently change their locations, and the resources available in the Edge are limited,

the management of these infrastructures poses new, difficult challenges. This paper

presents PAPS (Partitioning, Allocation, Placement, and Scaling), a framework for the

efficient, automated and scalable management of large-scale Edge topologies. PAPS

acts as a serveless platform for the Edge. Service providers can upload applications as

compositions of lightweight and stateless functions along with latency constraints. At

runtime, PAPS manages these applications by executing them in containers, it changes

their placement in the Edge topology according to the geographical distribution of the

workload, and efficiently allocates resources according to their needs. This paper also

presents the architecture of a PAPS prototype built atop Kubernetes and OpenFaaS.

The assessment shows both the feasibility of the approach and the ability of efficiently

managing hundreds of serverless concurrent functions and of dealing with intense and

unpredictable workload variations.

Keywords: edge computing, serverless, function as a service, runtime management, resource allocation, control

theory, containers

1. INTRODUCTION

Cloud computing allows application providers to rent virtual resources and exploit a virtually
infinite degree of scalability (Dustdar et al., 2011). While cloud computing radically changed the
way applications are designed, deployed and executed, two main challenges remain open. First,
clients always have to invoke remote services that could be deployed extremely far from them
(potentially, even in another continent). This could be problematic for real-time applications that
require low latency such as augmented reality, self-driving vehicles, and Internet of Things (IoT)
applications. Second, user data must be sent to centralized servers, mining user privacy.

Edge computing (Shi and Dustdar, 2016; Satyanarayanan, 2017) aims to move the computations
from the cloud to executors that are geographically closer to users such as 5G antennas. Locality
and decentralization mitigate network latency and help reduce the amount of data that is
transported to and processed by centralized servers, thus improving interactivity and user privacy.
An edge infrastructure (or topology) is commonly composed of several computing nodes that are
geographically distributed on a certain area. Each node can be connected to another node with a
direct network connection or through routing. Some of the nodes can also be unreachable by others
if no route exists.

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org/journals/sustainable-cities#editorial-board
https://www.frontiersin.org/journals/sustainable-cities#editorial-board
https://www.frontiersin.org/journals/sustainable-cities#editorial-board
https://www.frontiersin.org/journals/sustainable-cities#editorial-board
https://doi.org/10.3389/frsc.2021.690660
http://crossmark.crossref.org/dialog/?doi=10.3389/frsc.2021.690660&domain=pdf&date_stamp=2021-07-15
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles
https://creativecommons.org/licenses/by/4.0/
mailto:giovanni.quattrocchi@polimi.it
https://doi.org/10.3389/frsc.2021.690660
https://www.frontiersin.org/articles/10.3389/frsc.2021.690660/full

Baresi and Quattrocchi PAPS

Edge infrastructures are meant to host and execute multiple
applications at the same time. As an example, in a smart
urban district the dedicated edge topology can execute an
augmented reality software for interacting with the surroundings,
an application that helps traditional and self-driving vehicles
to avoid traffic jams, and another one for supervising and
controlling the energy consumption of multiple smart buildings.

The management of these geo-distributed infrastructures
poses significant challenges (Shi et al., 2016). Besides considering
varying workloads and application performance, one must also
take into account the geographical location of users. Ideally,
to minimize communication latency, one application could be
replicated and deployed on the nodes that are closer to clients.
However, this could not always be possible since Edge resources
are limited and not virtually infinite as in the cloud.

Another key aspect of managing Edge infrastructures is
the speed of control. Time consuming decisions, typical of
centralized or heavy weighted approaches, could negatively affect
the effectiveness of the runtime management. Systems must cope
with highly volatile workloads that are likely-to-happen when
edge nodes serve the needs of mobile users of densely populated
areas. The speed of management does not only depend on
decision time but is also affected by actuation time. The recent
development in virtualization solutions lead service providers to
move from deployments based on virtual machines (VMs) to
ones that exploit containers. Containers (Bernstein, 2014) are a
lightweight virtualization technology that works at the operating
system (OS) level. The application is wrapped in an isolated
environment (i.e., a container) and shares with other containers
the underlying OS. This way, containers are faster to boot than
VMs since they do not manage a full-fledged OS and they are
also faster to be scaled and reconfigured (Felter et al., 2015).

Serverless computing (Baldini et al., 2017; Roberts, 2018) is
a recent cloud-based execution model that lets service providers
organize applications in lightweight and easy to manage stateless
functions. A function is an application slice in charge of a
single functionality. Serverless computing abstracts away the
underlying infrastructure that is only visible to the cloud
provider, which is in charge of deploying functions in containers,
allocating resources and planning capacity properly.

This paper proposes PAPS (Partitioning, Allocation,
Placement, and Scaling) a solution for the automated, efficient
and scalable management of large-scale edge infrastructures.
PAPS is based on a hierarchical control system and serverless
computing. The approach exploits a hierarchy of three control
loops that works at different control periods (the higher the
control loop is in the hierarchy, the higher the control period).
The first exploits heuristics and periodically partitions an edge
topology in communities by considering network connections
and delays among nodes. The second control loop works at
community-level and is in charge of allocating resources (i.e.,
containers) to applications and placing them on close-to-users
nodes. This control loop uses a mixed integer programming
formulation to precisely place applications on the best nodes. We
exploit an optimization problem since migration of containers
in different nodes is a costly operation and errors should be
minimized. Finally, at node level, the third control loop is

responsible for quickly re-configuring containers to cope with
fast-changing workloads. This level exploits lightweight control
theoretical planners that are able to reconfigure containers in less
than a second while providing formal guarantees on the control.

A simulation-based implementation of PAPS allowed us to
assess this control strategy. Obtained results show the feasibility
of the approach and its ability to tackle the management of
large-scale edge topologies with up to 100 distinct functions and
intense and unpredictable fluctuations of the workload.

This paper extends our previous work (Baresi et al., 2019a)
by presenting (i) a prototype of PAPS that exploits Kubernetes1, a
well-known container orchestrator, and OpenFaaS2, a framework
for the implementation of serverless computing systems, and (ii)
additional experiments for the three control loops.

The rest of the paper is organized as follows. Section 2
presents the context and introduces PAPS. Sections 3–5
describe the self-management capabilities provided by PAPS at
system, community, and node levels. Section 6 describes the
prototype and discusses the evaluation, section 7 surveys related
approaches, and section 8 concludes the paper.

2. PAPS IN A NUTSHELL

PAPS is designed to manage a large scale edge topology that
adheres to the Mobile Edge Computing (MEC) model (Mach
and Becvar, 2017; Several authors, 2019), which is illustrated in
Figure 1.

An edge topology is composed of a set N of geo-distributed
MEC nodes, each of them provides a single machine, but
multiple MEC nodes can be co-located in a given area. Nodes
are connected to one another by using the backhaul network
and the network delay between two nodes i, j ∈ N is defined
as δi,j. Mobile clients (users and/or IoT devices) access the
system through cellular base stations that are connected to the
closest node by the fronthaul network. The communication delay
between a base station and its co-located node i ∈ N is defined
as γi. A request that is produced by a client connected through
a base station to a node i could be served either by i or forward
to another node j. Thus, it follows that the total communication
delay is defined as:

Di,j =

{

γi + δi,j, if i != j

γi, if i = j
(1)

PAPS considers that each application a ∈ A be composed
of one or more function types t ∈ T. Ta is defined as the
set of the function types that belongs to application a. At
runtime, instances of function types (i.e., functions) f ∈ F
are deployed onto nodes using containers (one function per
container). Multiple functions can share the same MEC node.
A function type could be also instantiated multiple times onto
one or multiple nodes to serve highly-intense workloads or ones
that are generated in different locations. The response time of

1https://kubernetes.io
2https://www.openfaas.com

Frontiers in Sustainable Cities | www.frontiersin.org 2 July 2021 | Volume 3 | Article 690660

https://kubernetes.io
https://www.openfaas.com
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles

Baresi and Quattrocchi PAPS

FIGURE 1 | Example topology of geo-distributed MEC nodes.

a function, that is the round trip time between the arrival of a
request and the actual function execution time, is defined as:

RT = D+ Q+ E (2)

where D is the communication delay, Q the time spent by
the request in the queue waiting for the execution, and E the
execution time. Note that most serverless computing providers
try to use existing containers, if possible, and allocate new ones as
soon as they are needed. In contrast, if one queued requests for
a short period Q, resources (containers) may become available,
and thus the number of used resources may decrease. Each
function type is associated with a Service Level Agreement (SLA)
defined as the maximum allowed response time RTSLA, and
a Maximum Execution Time (EMAX) which is the upper limit
of a function execution time E (obtained through profiling).
Parameters similar to EMAX are commonly exploited in the
management of edge infrastructures. PAPS aims to minimize the
difference between RTSLA and RT for all the running function
instances f ∈ F by employing a hierarchy of three control loops.
The lower-level the control loop is, the shorter is its control
period. The goal is 2-fold: (i) to maximize the efficient use of
resources, and thus the number of functions and users that can
be admitted into the system, and (ii) to prevent SLA violations.

The architecture of PAPS is depicted in Figure 2. For each
function type t ∈ T, PAPS requires a descriptor document
that defines the memory required by the containers in charge of
executing functions of type t and the maximum allowed response
time associated with them RTSLA,t . In order to decrease the
complexity of the decisions at lower levels, the first control loop

(detailed in section 3) exploits a graph based heuristic and aims
to partition the edge topology in a set C of communities. In doing
so it also defines a community leader that is in charge of managing
the community through a community-level control loop. This
second control loop is in charge of the allocation of containers
and of their placement onto the nodes of the community. More
specifically, for a given community c ∈ C and a set of admitted
function types Tc, the adaptation problem is 2-fold: one must
decide how many containers are needed for each function type,
and where (onto which nodes) each container should be placed.
Each allocated container works as a execution environment for
a specific function f ∈ Fc. The allocation and placement control
loop is based on mixed integer programming and will be detailed
in section 4. The third control loop (outlined in section 5) works
at the node level and is in charge of the dynamic scaling of
the resources of running containers (vertical scalability). Scaling
actions are based on control-theoretical planners and are meant
to continuously refine the initial allocation set by the community-
level control loop. Note that, even if the actuation model can
vary (Lloyd and et. al., 2018), typically serverless computing
providers let users statically define the amount ofmemory needed
to execute a function type and allocate and allocate a fixed
amount of CPU shares proportionally (Baldini et al., 2017). This
could lead to inefficiency because static allocations cannot cope
with highly fluctuating workloads.

3. SYSTEM-LEVEL CONTROL LOOP

Large-scale edge topologies are composed of hundreds or
thousands of nodes. If we consider the whole system, its

Frontiers in Sustainable Cities | www.frontiersin.org 3 July 2021 | Volume 3 | Article 690660

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles

Baresi and Quattrocchi PAPS

FIGURE 2 | PAPS in a nutshell.

management could be extremely complex and centralized
solutions could be ineffective. For this reason, PAPS employs
a dedicated control loop that has the only goal of reducing
the complexity of the problem that is handled by lower-level
control loops.

At the system level, PAPS assumes the existence of a
supervisor that has the global view of the edge infrastructure
whose goal is to partition the topology in delay-aware
network communities. In complex networks, a network
is said to have a community structure if its nodes can be
(easily) grouped into (potentially overlapping) sets and
each set is densely connected internally (Xie et al., 2011).
PAPS defines a delay-aware network community as a set of
interconnected MEC nodes, whose propagation delay is under a
set threshold.

These communities can be generated using different search
strategies. In general, the algorithm takes two main parameters:
the maximum inter-node delay DMAX , and the maximum size of
a community MCS. DMAX is used to generate a sub-graph GDA

whose vertices are MEC nodes and edges are network links with
a communication delay lower than DMAX . MCS constrains the
amount of MEC nodes that could belong to a community. On
one hand, this is useful to tame the complexity lower level control
loopsmust handle. On the other hand, a small value ofMCS could
lead to sub-optimal solutions because communities are managed
independently of the others, thus limiting the degree of control.

Produced sub-graphGDA is then used as input for creating the
communities. In particular, PAPS exploits the Speaker-listener
Label Propagation Algorithm (SLPA) (Xie et al., 2011), whose
complexity is O(t ∗ n), where t is the maximum amount of
iterations (e.g., t ≤ 30) and n is the total number of nodes. Since
the complexity is linear to the number of nodes, this approach
can also be used for very large topologies. Xie et al. (2011) suggest
that a value of t close to 20 is generally good enough to find

good quality communities. As final step, for each community a
community leader is randomly selected.

PAPS assumes an almost fixed infrastructure where the
network connections remain the same and inter-node delays
are expected to be stable. However, PAPS does not execute the
partitioning once but it employs two control loops to handle two
distinct cases: (i) catastrophic events or unexpected failures that
change the initial topology, and (ii) a significant degradation of
the performance that implies that community- and node-level
control loops are not able alone to handle the incoming traffic.
For the first case, PAPS exploits a lightweight heartbeat health
check system. Periodically, MEC nodes must send a message to
the supervisor to demonstrate their presence. Heartbeat-based
protocols are commonly used in distributed systems and do
not prejudice the scalability of the solution. This control loop
is modeled using a master-slave MAPE loop (Weyns et al.,
2013). Monitoring is carried out by all nodes through heartbeat
messages that contain the latest measured inter-node delay to
all other nodes. The supervisor performs Analysis and Planning
by deciding when and how to adapt the community structure in
the advent of topological changes. In essence, when the original
structure significantly diverges from the actual one (e.g., a certain
amount of heartbeat messages are missing), the communities are
recreated with the same values forMCS and DMAX . Analysis and
Planning also take care of electing new leaders when needed
(e.g., a leader’s hearbeat is not received timely). Finally, Execution
means that each node whose community is modifiedmust update
its community membership (i.e., the addresses of leader and
other community members). For the second case, PAPS employs
a dedicated control loop to help community- and node-level
control loops better handle the incoming traffic. As described
in section 5, the node-level control loops employ a contention
manager to prioritize applications when the resources required
to satisfy the SLAs are greater than the actual nodes’ capacities.

Frontiers in Sustainable Cities | www.frontiersin.org 4 July 2021 | Volume 3 | Article 690660

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles

Baresi and Quattrocchi PAPS

When this scenario occurs each contention manager emits an
event that is captured by a dedicated system-level Monitoring
component. An Analysis component processes these events and
decides when to activate Planning. Since the same events are also
captured at the community-level, the Analysis component waits
a time threshold TCRITICAL to let community leaders compute
new placements and allocations with the goal of better handling
the incoming workload. If the system remains unstable, we
start a planning phase. Planning recomputes MCS and DMAX

by increasing them by a given scaling factor (e.g., 20%), up to
a fixed upper bound, to allow the creation of larger and more
connected communities. This means that a bigger solution space
can be exploited by the community-level control loops, possibly
big enough to handle the incoming traffic. It is crucial that both
values are increased since larger communities (MCS) must be
able to connect more distant nodes (DMAX). A down-scaling
action is instead planned when the system is under-saturated to
allow a faster and more efficient community-level control loop.
After running the partitioning algorithm with the new values,
Execution updates the community membership of each node and
elects community leaders.

4. COMMUNITY-LEVEL CONTROL LOOP

The control loop at community level aims to minimize
SLA violations by properly allocating containers for running
applications and to allocate them onto MEC nodes. If violations
occur this control loop reacts to bring the community back to
its equilibrium.

4.1. Resource Allocation for Overlapping
Communities
The communities created by the system-level control loop may
be overlapping. This means that some MEC nodes could belong
to more than one community at the same time. Thus, the
first challenge that arises at the community level is how to
distribute the shared resources (i.e., MEC nodes) to the different
overlapping communities.

A simple solution is to privilege one community over the
others and allocate to it all the shared resources. If we consider
a static workload this approach could be efficient, given that
the community with a greater incoming working could obtain
more resources. However, in a realistic scenario changes to
workload happen frequently and without any warnings. Thus,
disadvantaged communities might require more resources, while
privileged communities could remain underutilized. Instead,
resources of shared nodes should be dynamically allocated to the
overlapping communities to avoid SLA violations.

To efficiently allocate resources to overlapping communities,
PAPS exploits a strategy that considers two main metrics:
the aggregated demand and the aggregated capacity of each
community. The former is defined as the amount of containers
needed to cope with the total workload. The total workload
of a community co is computed as the sum of the incoming
requests to the base stations co-located with the MEC nodes
that belong to co. The latter is, in turn, the total amount of

resources available in a community co computed by considering
all the MEC nodes of co but the ones that are shared with
other communities. PAPS allocate the shared resources to the
overlapping communities proportionally to the ratio of their
aggregated demand and capacity.

Algorithm 1 outlines the aforementioned allocation approach.
This algorithm is performed greedily for all MEC nodes in the
topology that are part of two or more overlapping communities.
Given that each community has a numerical identifier, the
procedure is executed by the community leader that belongs
to the community with the lowest identifier (e.g., if a node n
belongs to communities 3, 7, and 8, the leader of community 3
will execute the procedure for node n).

Algorithm 1 CapacityDemandRatio(node)

1: neighborsInRange← GETNEIGHBORS(node)
2: aggDemand← 0, aggCapacity← 0
3: for all n ∈ neighborsInRange do
4: aggDemand← GETAGGREGATEDEMAND(n)
5: aggregateCapacity← GETAGGREGATECAPACITY(n)
6: end for

7: ovCount← GETOVERLAPPINGCOUNT(node)
8: demandShare← GETDEMAND(node) / ovCount
9: aggDemand← aggDemand + demandShare
10: return aggDemand / aggCapacity

4.2. Container Allocation and Placement
The main objective of the community-level control loop is to
allocate containers to applications and to place them in proper
MEC nodes within a community. The community leader is in
charge of solving the joint allocation and placement problem
introduced in section 2. Given that the solution space is greatly
reduced by the partitioning step, “centralized” leaders (i) allow
the allocation-placement problem to be solved in a single step for
the whole community, (ii) do not require complex coordination
protocols, and (iii) can safely exploit well-known centralized
optimization techniques.

When dealing with the general problem of allocation and
placement of resources, one can use either proactive or reactive
solutions. Proactive solutions are effective if the workload is
characterized by a well-known probabilistic distribution (e.g., a
Poisson distribution). In this case, techniques such as queuing
theory can be used to predict the number and placement
of containers needed to maintain the response time under
a certain value. However, at the edge workloads are difficult
to predict and the use of a well-known distribution could
be unrealistic. Users can freely move among different areas
and the level of variability could be greater than what is
usually measured in the cloud. For this reason, PAPS employs
reactive management for solving the joint allocation and
placement problem.

The community-level control loop is activated when workload
fluctuations are so intense that the node-level control loops
(installed on each node of the community) are unable to keep

Frontiers in Sustainable Cities | www.frontiersin.org 5 July 2021 | Volume 3 | Article 690660

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles

Baresi and Quattrocchi PAPS

the system in equilibrium. When this happens, the community-
level control loop computes a new allocation and placement
for the community. The community-level control loop can be
seen as an instance of the regional planner MAPE loop (Weyns
et al., 2013). Each community member exploits its geographical
position within the MEC topology to monitor and analyze the
workload incoming from co-located base stations (see Figure 1).
The number of containers required to address a workload while
satisfying the SLA is computed at the node level by using a
feedback loop with a short control period—compatible with
the container start-up time (i.e., up to a few seconds). This
number can also exceed the actual resource capacity of the
MEC nodes. The community leader gathers and aggregates this
information from all the communty nodes and uses them to plan
the containers required to satisfy the SLA over a broader control
period—compatible with the time needed to compute the optimal
placement (i.e., up to a few minutes).

The community-level control loop outputs the fraction of
incoming workload for each function type that should be
addressed on each node. This means that part of the workload
that is generated from a node i ∈ N could be served by a node
j ∈ N that belongs to the same community. To do that on
each MEC node a load balancer is deployed to route traffic when
needed. During the execution phase, load balancers are updated
with new routing tables and containers are created/terminated
on the community nodes. The node-level control loop is then in
charge of properly configure the running containers to optimize
their resource usage and prevent undesired SLA violations.

4.3. Problem Formulation
PAPS is independent of the formulation of the optimal allocation
and placement problem and different approaches can be used. In
this paper we formulate it as a mixed integer programming (MIP)
problem as follows:

min
x

∑

s∈N

∑

d∈N

∑

t∈T

δs,d ∗ xt,s,d (3a)

subject to
∑

d∈N

xt,s,d = 1 ∀s ∈ N ,∀t ∈ T

(3b)

ct,i = (
∑

s∈N

xt,s,i > 0) ∀i ∈ N ,∀t ∈ T

(3c)
∑

t∈T

ct,i ∗mt ≤ Mi ∀i ∈ N

(3d)

δs,d ∗ xt,s,d ≤ xt,s,d ∗ Dt ∀s ∈ N ,∀d ∈ N ,∀t ∈ T
(3e)

The decision variable 0 ≤ xt,s,d ≤ 1 denotes the fraction
of workload incoming from any base station co-located with
a source node s ∈ N , for function type t ∈ T, to be
routed to a destination node d ∈ N that belongs to the same
community. The objective function (Equation 3a) minimizes the
overall network delay that results from placing containers. The

first constraint (Equation 3b) states that, for a given function type
t ∈ T, the workload incoming at source node s ∈ N must be fully
served by a set of destination nodes (note that s could be included
in this set).

The second constraint (Equation 3c) defines the boolean
variable ct,i that decides if a container for function type t ∈ T
should be placed into the MEC node i ∈ N . ct,i is 1 if i is the
destination node of some part of the workload incoming into a
source node s for function type t ∈ T. Note that for a single
function type t ∈ T, PAPS deploys maximum 1 container into
each MEC node and allocates an amount of CPU cores that is
proportional to the incoming workload. The node-level control
loop is in charge of dynamically changing (vertical scaling) the
resources allocated to the containers if the workload vary during
two community level control loops.

The third constraint (Equation 3d) ensures that the sum of
the memory needed by all the containers deployed into a node
i ∈ N does not exceed the node memory capacity Mi. Note
that the memory needed by a container of type t ∈ T is mt

and defined in the function type descriptor. The last constraint
(Equation 3e) limits the communication delay for any function
type t ∈ T, source node s ∈ N , and destination node d ∈ N .
If the decision variable xt,s,d is 0 than no constraint is defined,
otherwise the communication delay δs,d should be less than Dt

defined as follows:

Dt = β ∗ (RTSLA,t − EMAX,t) (4)

where 0 < β ≤ 1 is the fraction of the (maximum) marginal
response time RTSLA,t−EMAX,t for function type t ∈ T that can be
used for networking. On the other hand, 1−β is the (maximum)
fraction of the marginal response time dedicated to queuing time
for function f of type t deployed on node i:

Qf ,i = (1− β) ∗ (RTSLA,t − Ef ,i) (5)

where Ef ,i is the monitored execution time for function f running
on node i. The queue component Qf ,j is particularly relevant
for the node-level control loop (see section 5) since it provides
an additional margin for actuating control and to mitigate the
probability of violations.

5. NODE-LEVEL CONTROL LOOP

The node-level control loop aims to continuously reconfigure
the running containers that are deployed and orchestrated by
the community-level control loop. In particular the node-level
control loop dynamically changes, through a very short control
period (around 1 s), the amount of CPU cores3 (vertical scaling)
to allocate for each deployed function type. This control loop has
the goal of making the core allocation for each function follow
the fluctuations of the workload and minimize SLA violations.

If we consider a static allocation of resources, the
response time of a function can be affected by various

3The amount of allocated memory is fixed and defined in the function type
descriptor as explained is section 2.

Frontiers in Sustainable Cities | www.frontiersin.org 6 July 2021 | Volume 3 | Article 690660

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles

Baresi and Quattrocchi PAPS

FIGURE 3 | Node-level control loop.

factors such as variations in the workload, changes in the
execution environment, and divergences from the expected
performance. While some of these factors are not foreseeable,
others can be monitored and taken into account while
computing the amount of resources needed to eliminate
SLA violations.

PAPS exploits a control-theoretic solution (Baresi et al., 2016)
to scale containers deployed onto MEC nodes. It uses a dedicated
controller for each deployed function f ∈ F (each function is
deployed in one container). Figure 3 outlines a schematic view
of the node-level control loop. We consider a discrete time,
and define λf (k) as the monitored arrival rate of a function
f at each control step k. λ̄(k) is the vector of all the arrival
rates of the functions. At control step k the amount of cores
allocated to a function container is defined as cf (k) and c̄(k)
is the vector of all the allocations. Disturbances are denoted
by a vector d̄ of metrics that cannot be measured and/or
controlled. The measured response time at each control step
is collected for all the functions in vector τ̄ , while τ̄ ◦ denotes
the vector of the desired response times (or set-points) for
each function.

While the control system allows for varying τ̄ ◦(k), the current
implementation of PAPS considers a constant desired response
time for each function. These values should be set to a value
lower than the actual SLA to avoid violations. For example, a
reasonable target response time could be 0.8∗RTSLA, while lower
values imply a more conservative approach and can be used for
safety-critical applications.

τ̄ cannot be calculated instantaneously but it should be
aggregated over a set time window. The aggregation could be
done by using different techniques that would not require a

change in the control system. PAPS uses the average response
time for computing τ̄ , but more conservative aggregation
functions (e.g., 99th percentile) could be used given the need of
the application providers.

The node-level control loop employs a characteristic function
(ϒ) that defines the dynamics that govern the system, that is, how
the response time changes given the monitored and controlled
variables. We assume that this function be (i) dependent on
the ratio between the allocated cores to the function (c) and
the incoming arrival ratio λ (the higher the ratio, the lower
the response time), (ii) monotonically decreasing toward an
horizontal asymptote, which means that after a certain value
of the aforementioned ratio the response time stop decreasing
(e.g., when the degree of parallelism is completely exploited),
and (iii) regular enough to be linearizable in the domain space
of interest.

We found that a practically acceptable function is:

ϒ

(

c(k)

λ(k)

)

= s1 +
s2

1+ s3
c(k)
λ(k)

(6)

where parameters s1, s2, and s3 were obtained by profiling each
function.

Given this model, PAPS exploits PI controllers as an effective
mechanism to handle control systems dominated by first-
order dynamics (Åström and Hägglund, 1995) (i.e., a system
representable with first-order differential equations) such as

Frontiers in Sustainable Cities | www.frontiersin.org 7 July 2021 | Volume 3 | Article 690660

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles

Baresi and Quattrocchi PAPS

the studied ones. Thus, PAPS executes the following control
algorithm at each control step k for all deployed controllers:

e : = τ ◦r − τr;

xR : = xRp + (1− p) ∗ ep;

c : = λ ∗ϒinv((α − 1)/(p− 1) ∗ (xR + e));

c : = max(min(Kmax, c),Kmin);

xRp : = (p− 1)/(α − 1) ∗ ϒ(c/λ)− e;

ep : = e;

where e is the error, the p subscript refers to variables computed
in the previous time step (k − 1), ϒ and ϒinv correspond to the
characteristic function and its inverse, respectively, α ∈ [0, 1)
and p ∈ [0, 1) are the single pole of the controller and of the
system, respectively, while xR is the state of the controller. The
higher the value of α is, the faster the error converges to its steady
state value (ideally to zero). On the other hand, if the value of
α is too high, the allocation c could be too fluctuating. Kmax
and Kmin are, respectively, the maximum and minimum allowed
core allocations.

Within a MEC node, each controller oversees a single
function/container and it is independent of the others (i.e.,
no synchronization is required). The computed allocations are
collected in vector ĉ, which is not directly actuated since
the sum of the allocation could be greater than the physical
resource capacity of theMEC node. Instead, an additional control
component, called contention manager, is in charge of computing
a feasible allocation for all the functions (c̄) as:

c̄(k) =

{

ĉ(k), if no resource contention

solveContention(ĉ(k)), otherwise
(7)

Function solveContention down-scales the values in ĉ
proportionally to the original allocation computed by the
community-level control loop. However, other heuristics could
be used to manage resource contention scenarios: for example
one can easily prioritize safety-critical applications by using a
weighted approach. Component contention manager is also in
charge of updating the state of each controller (variable xRp) to
make them consistent with the actuated allocations.

6. EXPERIMENTAL EVALUATION

This section shows the prototype we implemented to materialize
PAPS and a set of experiments that demonstrate the feasibility of
the approach and its benefits.

6.1. Prototype
The prototype4 comprises two sub-systems as shown in Figure 4

(control-related components are shown in darker color). The first
one is a simulator based on PeerSim5 that allows us to quickly and
inexpensively test the implemented control strategies without the

4Source code available at: https://github.com/deib-polimi/PAPS
5http://peersim.sourceforge.net/

need of employing real resources. The second is kubPAPS, an
implementation of PAPS that can be used to deploy the actual
system and functions as in real-world edge topologies. kubPAPS
is based on Kubernetes, a well-known container orchestrator, and
Open-FaaS, a framework that integrates with Kubernetes and
provides a serverless-like interface.

The simulator exploits PeerSim to implement the
communication protocol that allows the control components
and MEC nodes to exchange messages one another (e.g., to elect
leaders, update communities, and actuate plans). To solve the
optimization problem the simulator exploits the IBM CPLEX
solver (v12.8). A MEC node is implemented as a set of dynamic
pools of threads, where each pool is a container and a thread is
one core.

The simulator also allows one to create different types of
workloads and scenarios for each function deployed onto each
MEC node. The execution time of a single function is randomly
generated by using a normal distribution, while arrival rates are
simulated by using three different scenario types (low, regular,
and high) that are chosen randomly every 15 s to mimic an
extremely fluctuating workload. Each of the three scenarios
computes the time between two requests with an exponential
distribution where, for example, scenario high is set with a lower
value of the scale exponential parameter (the lower this value is
the skewer the distribution is).

The users of kubPAPS can define function types and deploy
them in the edge topology by using the OpenFaaS GUI that
provides means to deploy applications in a serverless style.
OpenFaaS extends Kubernetes by adding a set of APIs to manage
functions that behind the scene operate with the Kubernetes
cluster. PAPS itself reads the inputs sent to OpenFaaS and works
directly with the Kubernetes API for managing the containers.
Each MEC node is considered to be a Kubernetes node (e.g., in
our test deployments we used Azure virtual machines as nodes).

The system-level control loop, deployed on a dedicated
external node, expects a delay matrix where each value is the
delay between two MEC nodes. The system-level-control loop
reads this input and retrieves, using the Kubernetes API, the
list of connected nodes. After checking that the nodes included
in the matrix match the ones deployed in Kubernetes (i.e., the
nodes in the matrix should be the same as the one running in
the Kubernetes cluster), the SLPA algorithm is executed. Each
node is then marked with two Kubernetes labels: COMMUNITY
and ROLE. The former tags each node with the identifiers of the
assigned communities, while the latter indicates if a node is the
leader of a given community. This way, other components, or the
system administrator, can access all the nodes of a community
by simply using the Kubernetes API and retrieve the nodes
filtered by label COMMUNITY. A dedicated container, which
runs the CPLEX IBM solver, is deployed in the leader nodes
which have the role of running the community-level control loop.
The joint allocation-placement problem is solved periodically
and the deployment of new containers is planned. This plan is
sent to a dedicated custom Kubernetes scheduler that allows one
to deploy the planned containers onto selected nodes.

Finally, the node-level control loop is implemented as
additional container deployed onto each node. This container,

Frontiers in Sustainable Cities | www.frontiersin.org 8 July 2021 | Volume 3 | Article 690660

https://github.com/deib-polimi/PAPS
http://peersim.sourceforge.net/
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles

Baresi and Quattrocchi PAPS

FIGURE 4 | PAPS simulator and kubPAPS.

which includes the PI controllers and contention manager, can
reconfigure the containers running user functions. To do that,
the node-level control loop uses a dedicated Kubernetes volume,
an additional Kubernetes component that allows a container to
communicate with the underlying file system or, as in this case,
with the underlying container runtime (e.g., Docker6).

All the following experiments were run using the PAPS
simulator deployed on two servers running Ubuntu 16.04 and
equipped with an Intel Xeon CPU E5-2430 processor for a total
of 24 cores and 328GB of memory. The maximum number of
(simulated) containers that can be allocated onto a node depends
on its memory capacity and the memory requirements of the
functions that are to be deployed: 96GB and 128MB, respectively,
in our experiments.

6.2. Partitioning
Our first experiments were dedicated to the partitioning
algorithm. We tested the SLPA algorithm with multiple values
for (i) the initial nodes N (10, 20, 50, 100, 200, 500, 1, 000,
2, 000, and 5, 000), (ii) network delay threshold DMAX (0.1, 0.3,
0.5, and 0.7 s), and (iii) maximum community size MCS (10,
25, and 50). For each combination of these values, we built a
N × N matrix that contained the inter-node delays (δi,j) drawn
from a uniform probability distribution [bounded to interval
(0, 1)]. Each test was repeated ten times, and Figure 5 shows the
resulting median values.

Figure 5A depicts the execution time (in logarithmic scale)
of the algorithm with different values for N and MCS. The
results clearly show that the number of initial nodes significantly
impacts the execution time that ranges from a few milliseconds
with N = 50 to 100 s with N = 5,000. On the other hand,

6https://www.docker.com

the community size does not significantly affect the partitioning
time and similar results are obtained with MCS equal to 10, 25
and 50. Figure 5B illustrates, instead, how the execution time
changes when varying DMAX for different values of N (x-axis
adopts a logarithmic scale). For small networks (N < 100) the
execution time is equal to a few milliseconds with different
values of DMAX . When the size of the network increases the
execution time becomes significantly higher: around 10 s with
DMAX = 0.1 s, and more than 100 s with DMAX = 0.7 s. These
results can be explained by the fact that higher delays mean a
less restrictive possibility of partitioning, and thus the solution
space is wider. Note that edge computing applications require
low latency and thus DMAX should be even lower than 0.1 s.
Moreover, the system-level control loop is supposed to only run
when catastrophic events or significant failures happen, thus the
obtained results seem quite reasonable for the analyzed problem.

6.3. Allocation, Placement, and Scaling
To evaluate the other control loops we used a large-scale
edge topology of 250 nodes and normally distributed node-
to-node latencies. We tested the allocation, placement, and
scaling with different community sizes of 10, 25, and 50 nodes.
Figure 6 exemplifies the resulting partitioning with communities
of 25 nodes each. Equally-colored squares represent edge nodes
within a single community; those that belong to overlapping
communities are rendered with multi-color circles.

We exploited this setup to run two additional types of
experiments to evaluate the feasibility and the scalability of
PAPS, and to assess the benefits of having the node-level
control loop —a key characteristic of our approach (see
section 7). The first experiment, called testOPT, measured the
system performance under an extremely fluctuating workload
by only using the community-level control loop. This means

Frontiers in Sustainable Cities | www.frontiersin.org 9 July 2021 | Volume 3 | Article 690660

https://www.docker.com
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles

Baresi and Quattrocchi PAPS

FIGURE 5 | Execution times of partitioning phase when varying community size (A) and total number of nodes (B).

FIGURE 6 | Communities found in a large scale topology with 250 nodes.

that between two community-level decisions the resource
allocation remains the same. The second, called testCT,
added the node-level control loop that, instead, allocates
resources dynamically with the goal of refining the initial
configuration. The second experiment evaluates PAPS in
its entirety.

For each of the three community sizes, we assessed PAPS
with a different amount of function types: 50, 75, and 100. Each
experiment used a simulation horizon of 10 min and tested
one of the nine combinations of amount of function types and
community sizes. For each of these combinations, we run 10
executions of testOPT and other 5 of testCT for a total of 180
experiments. The control periods of the community-level and
node-level control loops were set to 1 min (maximum) and
5 s, respectively.

TABLE 1 | Results of testOPT and testCT.

RT

Test Conf V µ σ 95th

OPT 10/50 7.0% 88.1 13.7 113.8

CT 10/50 0.6% 74.8 5.2 81.0

OPT 10/75 7.3% 89.9 18.1 115.9

CT 10/75 0.8% 77.4 7.9 81.9

OPT 10/100 8.7% 91.4 28.7 144.3

CT 10/100 0.9% 78.1 8.9 85.8

OPT 25/50 8.9% 99.0 38.6 166.1

CT 25/50 1.0% 75.1 15.7 85.9

OPT 25/75 10.3% 115.3 53.6 171.4

CT 25/75 1.6% 77.4 37.9 101.8

OPT 25/100 10.7% 117.7 33.4 187.6

CT 25/100 2.1% 81.3 39.4 105.6

OPT 50/50 11.3% 113.1 71.1 194.7

CT 50/50 1.5% 79.8 17.0 98.9

OPT 50/75 12.9% 116.9 38.1 197.7

CT 50/75 1.9% 81.6 17.5 103.4

OPT 50/100 15.1% 127.8 40.0 202.2

CT 50/100 2.4% 89.2 55.5 107.7

If no solution is computed by the community-level control
loop within the minute, PAPS exploits a constraint-relaxed
version of the optimization problem (described in section 4)
and schedules the next community-level control loop after 1
min. As configuration parameters, we set the fraction of the
marginal response time β and the value of the pole of the control
theoretical planners to 0.5 and 0.9, respectively. The incoming
traffic was generated by changing the workload scenario each 15 s
as described in section 6.1. Finally, RTSLA was set to 120ms for all
the function types, and EMAX was set to 90ms.

Table 1 reports the results obtained for experiments testOPT
and testCT. Column Test shows the type of the experiment,
column Conf reports the configuration used (e.g., 50/75 means

Frontiers in Sustainable Cities | www.frontiersin.org 10 July 2021 | Volume 3 | Article 690660

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles

Baresi and Quattrocchi PAPS

FIGURE 7 | testOPT and testCT with configurations 10/50 (A), 10/75 (B), 10/100 (C), 25/50 (D), and 25/75 (E).

that each community had 50 nodes and the number of function
types was 75),V shows the percentage of SLA violations occurred
in the experiment (e.g., 100% means that during the whole
experiment the response time was above the SLA), and the last
three columns report, respectively, the average (column µ), the
standard deviation (column σ), and the 95th percentile (column
95th) of the response times in milliseconds (ms). All these data
were calculated as average of the 10 repetitions executed for
each test.

If we focus on testOPT, we can see that the community-
level control loop is able to keep the violations always lower
than 15.1%. The average response time is only higher (127.8 ms)
than the SLA with configuration 50/100 where the combination
of having a large community size, a high amount of function
types to manage, and an extremely varying workload to handle
makes the problem too complex for the community-level control
loop alone. The reported standard deviation shows that that the
average variation is always under 71 ms. The 95th percentile

Frontiers in Sustainable Cities | www.frontiersin.org 11 July 2021 | Volume 3 | Article 690660

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles

Baresi and Quattrocchi PAPS

FIGURE 8 | testOPT and testCT with configurations 25/100 (A), 50/50 (B), 50/75 (C), and 50/100 (D).

varies from 113.8 to 202.2 ms with configuration 10/50 and
50/100, respectively.

If we consider testCT, the maximum percentage of violations
is 2.4%, almost one order of magnitude lower than testOPT. The
average response time never reaches 100 ms, with a peak of 89.2
ms with configuration 50/100. The standard deviation (ranging
from 5.2 to 55.5 ms) is always around half compared to the
one obtain in testOPT with the same configuration, except for
configurations 25/100 and 50/100 where testCT has a higher
value than testOPT. The 95th percentile of the response time,
which varies from 81.0 and 107.7 ms, is again lower than the one
obtained by testOPT and never exceed the SLA.

The obtained results clearly show the advantages of having
the node-level control loop. Solutions that require a large control
period could result inefficient when dealing with highly varying
workloads. The node-level control loop exploits lightweight
control theoretical planners that do not require synchronization
and can be used with control periods of 1 s or less. This way,
containers can be dynamically reconfigured almost in real-time
and precisely follow the curve of the workload.

The charts of Figures 7, 8 help better visualize obtained
results. These figures show four charts for each configuration: two
charts on the left for testOPT and two on the right for testCT. For
each test type and configuration, the chart positioned above the

other shows the curve of response time (the horizontal line is the
SLA) of the system during a single randomly selected repetition
of the experiment; the chart positioned below shows the number
of requests (lighter line) and the allocation (darker line) during
the execution of a function on a single node.

Figure 7A shows the results with configuration 10/50. The
response time measured in testOPT is more fluctuating than the
one of testCT, and while in testOPT the SLA is violated multiple
times, in testCT there is one single peak of almost 140ms around
450 s. If we compare the charts about the workload we can clearly
see how the node-level control loop helps follow the workload
more precisely (i.e., the light and dark curves have a similar
trend), while a resource allocation only based on the outputs
of the community-level control loop appears to be far from the
optimal in many cases. For example, the workload (light line)
for the depicted (randomly selected) function has some peaks
between 15 and 40 s. For this reason, the community-level control
loop raises the allocation from 1 to 2 cores, however after 40 s the
workload decreases and the allocation remains sub-optimal.

Another paradigmatic example can be seen in Figure 8B that
shows the results for configuration 50/50. In this case, testCT
presents some more violations with respect to the previous
scenario, but the response time is almost always (coherently with
what is reported in column 95th of Table 1) below the SLA. On

Frontiers in Sustainable Cities | www.frontiersin.org 12 July 2021 | Volume 3 | Article 690660

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles

Baresi and Quattrocchi PAPS

the other hand testOPT shows different SLA violations and the
resource allocation does not fit the actual workload.

7. RELATED WORK

Edge computing is considered one of the key enablers of smart
and sustainable cities (Jararweh et al., 2020; Khan L. U. et al.,
2020; Khan Z. et al., 2020) and many kinds of applications related
to smart cities can exploit edge infrastructures to provide urban
users with intelligent services such as autonomous vehicles (Ning
et al., 2019), building energy management (Liu et al., 2019) and
crowd routing (Zhao et al., 2019). PAPS handles the management
of edge infrastructures, which is considered one of the open
challenges of the field (Khan L. U. et al., 2020).

Some relevant works in the literature focus on the efficient
management of edge computing topologies. Our previous
work (Baresi et al., 2019b) proposes a framework for
the opportunistic deployment of serverless functions onto
heterogeneous executors at the edge. However, the framework
does not handle the allocation and placement problems across
MEC nodes.

Nastic et al. (2017) present a reference architecture for
the development and execution of functions dedicated to data
analysis at the edge. The architecture exploits a centralized
orchestrator that receives a contract, which defines the QoS goals
to fulfill and the corresponding management policy to operate.
Compared to PAPS, this work provides an abstract overview
of the system, it does not provide a concrete realization of the
architecture and the management mechanisms are delegated to
external users.

Goethals et al. (2020) propose Swirly, an approach for the real-
time management of large-scale edge topologies. Swirly, as PAPS,
considers the scalability of the management solution at the edge
given the huge amount of nodes, applications, and virtualized
resources involved. Swirly focuses on application placement onto
edge nodes by taking into account the latency between nodes
and the capacity of the infrastructure. Moreover, Swirly handles
changes in the network topology and in the communication
latency. Experiments show that Swirly can efficiently manage
thousands of edge devices. Compared to PAPS, Swirly considers
fixed resource allocation while our solution dedicates the node-
level control loop to that. Our evaluation shows the benefit of this
additional control loop.

Yu et al. (2018) describe an approach for the placement
and routing problems for QoS-aware applications at the edge.
Their formulation considers multiple workload sources and its
(approximated) solution has polynomial complexity. Compared
to PAPS, they limit an application to be single instance (i.e., not
replicated) and they do not consider the (dynamic) allocation of
resources, which is key for edge systems characterized by highly
volatile workloads.

Nardelli et al. (2018) propose an approach for the deployment
and resource allocation of containerized applications at the edge.
This solution, among all, is the most similar to PAPS since
it provides smart placement and both horizontal and vertical
auto-scaling. Their problem formulation is defined by means

of Integer Linear Programming and it is NP-hard. Thus, they
use greedy, sub-optimal algorithms to solve the problem in
reasonable time. Compared to PAPS, their solution does not
provide any management at the system-level (no partitioning or
failure resistance). Moreover, their approach is not hierarchical
and they compute the next placement and horizontal and vertical
allocations in a single step. However, placement requires a lower
frequency than scaling since the migration of an application is
a critical task. We advocate that the solution embedded in PAPS
can better handle the complexity of this domain. The system-level
adaptation is slow and is only activated in case of critical events.
The Edge topology is split in small, low latency communities
so that it is feasible to find an optimal application placement
with our MIP formulation. Finally, to handle the highly variable
workload we employ extremely fast control-theoretical planners
that perform vertical scaling for running applications at the
node-level. Re-configuring the resource allocated to a running
application is not a critical operation and can safely be done at
a very fast rate.

Zanzi et al. (2018) propose a multi-tenant resource
orchestration approach for systems that adhere to the MEC
model. The authors introduce the concept of MEC broker, a
component that is in charge of granting tenants (prioritized
by their privilege level) access to resources. The proposed
system optimizes the placement of application components onto
dedicated nodes for users with higher priority, or onto shared
nodes according to resource availability and network latency.
PAPS exploits the same MEC model but employs a serverless
architecture, takes into account the SLA of each function, and
can cope with highly-variable fluctuations of workloads by
exploiting control theoretical planners.

A number of other works (Bahreini and Grosu, 2017; Li and
Wang, 2018; Ouyang et al., 2018; Wang et al., 2019; Salaht et al.,
2020) focus on the problem of placing applications on geo-
distributed topologies. The combinatorial nature of this problem
makes optimal solutions nearly unfeasible to find (NP-Hard
problems) (Yu et al., 2018). Existing solutions often employ
heuristics and approximations, are often validated for a limited
number of nodes and applications, and usually do not consider
allocating and scaling resources dynamically as PAPS does. We
conceived our solution with the goal of targeting scalability and
the management of unpredictable workloads specifically as first
class requirements. PAPS employs a hierarchical control strategy
that reduces the complexity of the placement by partitioning the
original topology and highly fluctuating workloads are tackled by
means of control theoretical planners in real time.

As for industrial tools, k3s7 and kubeedge8 provide a
distribution of Kubernetes dedicated to edge computing. In
essence, these tools simplify the deployment of Kubernetes on
resource constrained devices (e.g., Raspberry PIs) and provide
means to distinguish beween and connect edge and cloud nodes
without changing the original Kubernetes API. These tools rely
on Kubernetes existing components for the management of the
resources. Kubernetes does not provide any dedicated means

7https://k3s.io
8https://kubeedge.io

Frontiers in Sustainable Cities | www.frontiersin.org 13 July 2021 | Volume 3 | Article 690660

https://k3s.io
https://kubeedge.io
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles

Baresi and Quattrocchi PAPS

TABLE 2 | Comparison with the state-of-the-art.

Approach Computing

abstraction

Topology

management

(system-level)

Placement Horizontal

scaling

Vertical scaling Metrics

PAPS Serverless/Functions SLPA + Heuristic MIP MIP Control-theory Inter-node latency,

network topology,

response time,

node and resource

availability,

workload, clients

geo-location

Nastic et al. (2017) Serverless

functions

x x x x No used metrics

(abstract

architecture)

Goethals et al. (2020) Containers Heuristic Heuristic x x Inter-node latency,

network topology,

node and resource

availability, clients

geo-location

Yu et al. (2018) Unspecified x Heuristic x x Inter-node latency,

network topology,

bandwidth

Nardelli et al. (2018) Containers x Heuristic Heuristic Heuristic Inter-node latency,

response time,

resource

availability,

workload

Zanzi et al. (2018) Virtual machines x MIP x x Inter-node latency,

response time,

resource

availability,

workload

k3s and kubeedge Containers x Heuristic Heuristic Heuristic

(as alternative to

horizontal scaling)

Response time,

resource and node

availability

to manage an edge topology (e.g., no partitioning) and does
not consider the inter-delay between nodes as PAPS and some
of the described approaches in the literature do. Kubernetes
provides a scheduler for the placement of containers that,
by default, only considers the resource availability of nodes
(containers are assumed to have a fixed resource allocation). As
for resource allocation, Kubernetes provides two auto-scaling
systems: the Horizontal Pod Autoscaler (HPA) and the Vertical
Pod Autoscaler (VPA). These scaling systems allow users to set a
desired target value for a metric (e.g., response time) and exploit
a heuristic that computes the new allocation proportionally to
the difference between the target value and the measured one.
However, HPA and VPA cannot work together and VPA requires
containers to be rebooted to be reconfigured thus adding extra
latency to the process.

Table 2 shows a detailed summary of the different examined
approaches by focusing on computing abstractions, techniques
for adaptation actions, and metrics used to carry out the
control. PAPS has a holistic view of the system and adapts
each conceptual level (the full edge topology, communities and
nodes) in a dedicated and optimized way. Other approaches
provide a partial adaptation and only focus on certain aspects:

as shown in column metrics, PAPS exploits the richest set
of data to control the system. Most of the solutions employ
heuristics, to limit the resolution time of expensive optimization
problems, at the cost of providing less precise solutions.
PAPS solves this problem by partitioning the topology in
communities that are small enough to compute optimal
placements in reasonable times. Fast PI controllers provide
adaptation at the node-level with a control period of a
few seconds. However, compared to heuristics, this does not
come at the cost of scarifying formal guarantees that control-
theory provides. Finally, while most of the solutions focus
on containers, PAPS exploits the serverless paradigm that
facilitates users, when they deploy applications, by completely
hiding the underlying infrastructure (containers, VMs, or
physical machines).

8. CONCLUSIONS

This paper presents PAPS, a system for the management of large-
scale edge topologies. PAPS exploits the serverless computing
model and employs a hierarchy of three control loops. At the

Frontiers in Sustainable Cities | www.frontiersin.org 14 July 2021 | Volume 3 | Article 690660

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles

Baresi and Quattrocchi PAPS

system-level it partitions the edge topology into smaller, delay-
aware communities which are, in turn, managed by an elected
leader. The community leader is responsible for allocating and
placing containers into the edge nodes according to the incoming
workload and the desired response time. Finally, at the node-
level, control-theoretical planners are in charge of refining the
initial allocation by vertically scaling containers in almost real-
time. The paper also describes a prototype of PAPS composed of
two sub-systems: a simulator that was used to run the empirical
assessment and an extension of Kubernetes and OpenFaaS for
real-world deployment. The reported experiments show the
feasibility of the approach, its performance under extremely
fluctuating workloads, and highlights the benefit of the multi-
level solution.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

LB supervised the work, participated in the writing, and co-
directed the research line. GQ participated in the implementation
of the work and its assessment, participated in the writing, and
co-directed the research line. All authors contributed to the
article and approved the submitted version.

FUNDING

This work has been partially supported by the SISMA national
research project, which has been funded by the MIUR under
the PRIN 2017 program (Contract 201752ENYB) and by the
European Commission grant no. 825480 (H2020), SODALITE.

ACKNOWLEDGMENTS

This work would have not been possible without the precious
work of Danilo Filgueira Mendonca. We also thank Oscar
Pindaro and Fabio Losavio for their work on the SLPA algorithm.

REFERENCES

Åström, K. J., and Hägglund, T. (1995). PID Controllers: Theory, Design, and

Tuning, Vol. 2. Raleigh, NC: Isa Research Triangle Park.
Bahreini, T., and Grosu, D. (2017). “Efficient placement of multi-component

applications in edge computing systems,” in Proceedings of the Second

ACM/IEEE Symposium on Edge Computing (San Jose, CA), 1–11.
Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., et al.

(2017). “Serverless computing: current trends and open problems,” in Research

Advances in Cloud Computing (Singapore: Springer), 1–20.
Baresi, L., Guinea, S., Leva, A., and Quattrocchi, G. (2016). “A discrete-time

feedback controller for containerized cloud applications,” in Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (Seattle, WA: ACM), 217–228.
Baresi, L., Mendonça, D. F., Garriga, M., Guinea, S., and Quattrocchi, G. (2019b).

A unified model for the mobile-edge-cloud continuum. ACM Trans. Internet

Technol. 29, 1–21. doi: 10.1145/3226644
Baresi, L., Mendonça, D. F., and Quattrocchi, G. (2019a). “PAPS: a framework

for decentralized self-management at the edge,” in International Conference on

Service-Oriented Computing (Cham: Springer), 508–522.
Bernstein, D. (2014). Containers and cloud: from lxc to docker to kubernetes. IEEE

Cloud Comput. 1, 81–84. doi: 10.1109/MCC.2014.51
Dustdar, S., Guo, Y., Satzger, B., and Truong, H.-L. (2011). Principles of elastic

processes. IEEE Internet Comput. 15, 66–71. doi: 10.1109/MIC.2011.121
Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2015). “An updated

performance comparison of virtual machines and linux containers,” in 2015

IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS). (Philadelphia, PA: IEEE), 171–172.
Goethals, T., De Turck, F., and Volckaert, B. (2020). Near real-time optimization

of fog service placement for responsive edge computing. J. Cloud Comput. 9,
1–17. doi: 10.1186/s13677-020-00180-z

Jararweh, Y., Otoum, S., and Ridhawi, I. A. (2020). Trustworthy and
sustainable smart city services at the edge. Sus. Cities Soc. 62:102394.
doi: 10.1016/j.scs.2020.102394

Khan, L. U., Yaqoob, I., Tran, N. H., Kazmi, S. M. A., Dang, T. N., and Hong, C.
S. (2020). Edge-computing-enabled smart cities: a comprehensive survey. IEEE
Internet Things J. 7, 10200–10232. doi: 10.1109/JIOT.2020.2987070

Khan, Z., Abbasi, A. G., and Pervez, Z. (2020). Blockchain and edge computing-
based architecture for participatory smart city applications. Concurrency

Computat. 32:e5566. doi: 10.1002/cpe.5566

Li, Y., and Wang, S. (2018). “An energy-aware edge server placement algorithm
in mobile edge computing,” in 2018 IEEE International Conference on Edge

Computing (EDGE) (San Francisco, CA: IEEE), 66–73.
Liu, Y., Yang, C., Jiang, L., Xie, S., and Zhang, Y. (2019). Intelligent edge computing

for iot-based energy management in smart cities. IEEE Netw. 33, 111–117.
doi: 10.1109/MNET.2019.1800254

Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., and Pallickara, S. (2018).
“Serverless computing: an investigation of factors influencing microservice
performance,” in 2018 IEEE International Conference on Cloud Engineering

(IC2E) (Orlando, FL), 159–169.
Mach, P., and Becvar, Z. (2017). Mobile edge computing: a survey on architecture

and computation offloading. IEEE Comm. Surveys Tutorials 19, 1628–1656.
doi: 10.1109/COMST.2017.2682318

Nardelli, M., Cardellini, V., and Casalicchio, E. (2018). “Multi-level elastic
deployment of containerized applications in geo-distributed environments,” in
2018 IEEE 6th International Conference on Future Internet of Things and Cloud

(Barcelona). 1–8.
Nastic, S., and Rausch, T. (2017). A serverless real-time data analytics

platform for edge computing. IEEE Internet Comput. 21, 64–71.
doi: 10.1109/MIC.2017.2911430

Ning, Z., Wang, X., and Huang, J. (2019). Mobile edge computing-enabled 5g
vehicular networks: Toward the integration of communication and computing.
IEEE Vehicular Technol. Mag. 14, 54–61. doi: 10.1109/MVT.2018.2882873

Ouyang, T., Zhou, Z., and Chen, X. (2018). Follow me at the edge: mobility-aware
dynamic service placement for mobile edge computing. IEEE J. Selected Areas

Commun. 36, 2333–2345. doi: 10.1109/JSAC.2018.2869954
Roberts, M. (2018). Serverless Architectures. Available online at: https://

martinfowler.com/articles/serverless.html
Salaht, F. A., Desprez, F., and Lebre, A. (2020). An overview of service placement

problem in fog and edge computing. ACM Computi. Surveys 53, 1–35.
doi: 10.1145/3391196

Satyanarayanan, M. (2017). The Emergence of edge computing. Computer 50,
30–39. doi: 10.1109/MC.2017.9

Several authors (2019). Mobile Edge Computing (mec); Framework and Reference

Architecture. Technical report, ETSI GS MEC.
Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge computing:

vision and challenges. IEEE Internet of Things J. 3, 637–646.
doi: 10.1109/JIOT.2016.2579198

Shi, W., and Dustdar, S. (2016). The promise of edge computing. Computer 49,
78–81. doi: 10.1109/MC.2016.145

Frontiers in Sustainable Cities | www.frontiersin.org 15 July 2021 | Volume 3 | Article 690660

https://doi.org/10.1145/3226644
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/MIC.2011.121
https://doi.org/10.1186/s13677-020-00180-z
https://doi.org/10.1016/j.scs.2020.102394
https://doi.org/10.1109/JIOT.2020.2987070
https://doi.org/10.1002/cpe.5566
https://doi.org/10.1109/MNET.2019.1800254
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.1109/MVT.2018.2882873
https://doi.org/10.1109/JSAC.2018.2869954
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://doi.org/10.1145/3391196
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/MC.2016.145
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles

Baresi and Quattrocchi PAPS

Wang, S., Zhao, Y., Xu, J., Yuan, J., and Hsu, C.-H. (2019).
Edge server placement in mobile edge computing. J. Parallel

Distributed Comput. 127, 160–168. doi: 10.1016/j.jpdc.2018.
06.008

Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C.,
et al. (2013). “On patterns for decentralized control in self-adaptive
systems,” In Proceedings of the Software Engineering for Self-Adaptive

Systems II: International Seminar (Berlin; Heidelberg: Springer),
76–107.

Xie, J., Szymanski, B. K., and Liu, X. (2011). “Slpa: uncovering overlapping
communities in social networks via a speaker-listener interaction dynamic
process,” in Proceedings of the 11th IEEE Int. Conf. on Data Mining Workshops

(Vancouver, BC), 344–349.
Yu, R., Xue, G., and Zhang, X. (2018). “Application provisioning in FOG

computing-enabled internet-of-things: a network perspective,” in Proceedings

of the 37th IEEE International Conference on Computer Communications,

INFOCOM (Honolulu, HI), 783–791.

Zanzi, L., Giust, F., and Sciancalepore, V. (2018). “M2ec: a multi-tenant resource
orchestration in multi-access edge computing systems,” in Proceedings of the

19th IEEE Wireless Communications and Networking Conference, WCNC, 1–6.
Zhao, L., Wang, J., Liu, J., and Kato, N. (2019). Routing for crowd management in

smart cities: a deep reinforcement learning perspective. IEEE Commun. Mag.
57, 88–93. doi: 10.1109/MCOM.2019.1800603

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Baresi and Quattrocchi. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Sustainable Cities | www.frontiersin.org 16 July 2021 | Volume 3 | Article 690660

https://doi.org/10.1016/j.jpdc.2018.06.008
https://doi.org/10.1109/MCOM.2019.1800603
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles

	PAPS: A Serverless Platform for Edge Computing Infrastructures
	1. Introduction
	2. PAPS in a Nutshell
	3. System-Level Control Loop
	4. Community-Level Control Loop
	4.1. Resource Allocation for Overlapping Communities
	4.2. Container Allocation and Placement
	4.3. Problem Formulation

	5. Node-Level Control Loop
	6. Experimental Evaluation
	6.1. Prototype
	6.2. Partitioning
	6.3. Allocation, Placement, and Scaling

	7. Related Work
	8. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

