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An increase in energy demands and positive public acceptance of clean energy

resources have contributed to a growing need for using solar energy in cities. Solar

photovoltaic (PV) deployment relies on suitable locations with high solar energy potential.

In the urban context, building rooftops are often considered one of the most available

locations for solar PV installation. This work demonstrates a new geospatial-method

for spatiotemporal modeling and mapping solar energy potential based on a high-

resolution (0.2m) digital surface model (DSM) and solar radiation dataset. The proposed

method identifies building rooftops with a high solar energy potential by using the Solar

Analyst (SA) model. The results show that 93.5% of the rooftop area has high solar

energy potential in the study area. The annual averaged sum of solar irradiation values

is estimated to be 1.36MWh/m2. In addition, the study showed that sloped rooftops

facing to the north received up to 30% more incoming solar radiation than other rooftops

with different geometry and orientation. The results are validated using recorded energy

output data from four existing solar PV systems in the study area. The return on the initial

investment of PV systems installation is estimated to be from four to five years.

Keywords: building rooftops, sustainability, geospatially enabled modeling, solar radiation, renewable energy

INTRODUCTION

Cities around the world continue to expand and increase in energy demands. These energy
demands are usually satisfied by gas, coal, and oil. Nevertheless, conventional fossil fuels are limited
sources of energy with a negative impact on the global climate (Bruckner et al., 2014). The most
accepted and available renewable energy source in the urban environment context is solar energy. It
is considered one of the most environmentally friendly energy sources (Bruckner et al., 2014). Solar
photovoltaic (PV) systems are typically deployed on building rooftops. These systems convert solar
energy into electric power. In the last few years, solar PV systems have improved technological
efficiency with lower costs in manufacturing and installation (Arvizu et al., 2011; Dinçer, 2011;
Bruckner et al., 2014). In addition to that, recent studies have shown that solar energy has been
positively accepted by local governments, communities and residents (Mey et al., 2016; Sütterlin
and Siegrist, 2017). These technological, economic, and social changes will allow solar PV systems
to play a crucial role in the sustainable energy future of cities.

Governmental and business organizations are some of the key stakeholders responsible for
the implementation of sustainable development policies. These policies require an effective
and accurate method for maximizing electric power generation from clean energy resources.
Solar energy planning and decision-making rely on accurate and effective geospatial-based
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methods for determining the most appropriate locations for solar
PV systems. One of the main aspects of applying geospatial-
based methods in solar energy planning is the ability to
accurately analyze spatial data to provide the most suitable
location for the employment of PV systems. In addition to
that, geospatial methods by using climate and other data can
accurately describe different environmental modeling processes
related to solar radiation, hydrology, soil, and other natural
phenomenon (Goodchild, 1996).

Geospatial-based solar radiation models have been applied
in modeling and mapping solar energy potential in the urban
landscape. The development and application of these models
have been effectively demonstrated by many studies in the
past (Dubayah and Rich, 1995; Kumar et al., 1997; Šúri and
Hofierka, 2004; Hofierka and Zlocha, 2012; Catita et al., 2014;
Freitas et al., 2015; Liang et al., 2015). Studies showed that three
main groups of parameters limit modeling and mapping solar
radiation potential by applying geospatial methods. These three
main groups of parameters are the following: (i) physical, (ii)
geographic, and (iii) technical (Izquierdo et al., 2008). Most
geospatial-based solar radiation models account for physical and
geographical parameters. Physical parameters are associated with
atmospheric effects and interaction of incoming solar radiation
with Earth’s atmosphere. The atmosphere limits the amount
of incoming solar radiation from the sun (Chen, 2011; Duffie
and Beckman, 2013). The amount of incoming solar radiation
mainly depends on clear sky conditions for a given day or
period. Geographic parameters such as geographical location,
urban density, building height, vegetation, orientation, and
shadow effect describe spatial constraints and urban complexity
(Izquierdo et al., 2008; Bergamasco and Asinari, 2011; Hong
et al., 2016). The complexity of urban landscape usually requires a
high-resolution Digital Surface Model (DSM). The DSM is one of
the most crucial features for analyzing the solar energy potential
in urban environments (Carneiro et al., 2009).

A high-resolution DSM requires high-quality spatial data
to model urban landscapes. The quality of urban surface
modeling will provide a more accurate estimate of solar energy
potential. Technical parameters include technical information
and specifications of PV systems such as array arrangement,
energy efficiency, power, and size of solar PV modules and
nominal power (Izquierdo et al., 2008). Estimating the electric
power potential of PV systems requires information about
technical parameters. Together with physical and geographical
parameters, they provide a set of constraints in solar energy
planning. With the complexity of the urban landscape, the
geospatial-based method offers a framework for incorporating
these three main groups of parameters together with spatial and
other data for estimating solar energy potential (Gadsden et al.,
2003; Kanters and Wall, 2016; Shafiullah et al., 2016).

In the last few years, the solar modeling andmapping of urban
environments was the subject of different studies, with various
scale and complexity levels. A case study in Spain effectively
introduced a hierarchical approach using data such as land use,
population, and building density for the solar energy assessment
of available rooftops (Izquierdo et al., 2008). Similarly, a method
based on a digitized vector map was applied for estimating

the solar PV potential of building rooftops in Piedmont, Italy
(Bergamasco and Asinari, 2011). Another case study investigated
a solar rooftop energy potential at Leased Federal Airports in
Australia by using the Solar Analyst model and DSM derived
from 3D imagery (Teofilo et al., 2021). Different case studies have
analyzed and examined a high-resolution LiDAR generated DSM
for mapping and quantifying solar radiation distribution for
rooftops using the Solar Analyst (SA) module in ArcGIS software
(Brito et al., 2012; Kodysh et al., 2013; Santos et al., 2014). Similar
work investigated impacts of urban texture on spatiotemporal
variations of solar energy potential in downtown Houston based
on a high-resolution LiDAR DSM and solar flux radiation model,
executed through the ArcGIS extension module (Yu et al., 2009).
A solar energy assessment study for buildings in downtown San
Francisco demonstrated a geospatial-based method that included
solar radiation modeling and mapping of building rooftops using
a DSM derived from LiDAR data and r.sunmodel (Li et al., 2015).

One of the main limitations of previous studies is insufficient
or missing validation of geospatial-based solar radiation
modeling and mapping. For example, most of the studies
mentioned in the previous paragraph do not validate solar
radiation modeling results. The validation plays an important
part in assessing the correctness of the geospatial-based method.
This is essential for solar energy planning and investment
in large-size and commercial PV systems across the urban
landscape. Another limitation is the lack of detail related to
providing information about three main groups of parameters
required in geospatial-based modeling and mapping process.
For example, most of the studies provide insufficient or
inadequate transparency associated with setting values for
physical, geographical and technical parameters. This work aims
to provide a geospatial-based method without the limitations
mentioned above.

Monash University is one of the largest universities in
Australia. The university has set goals for delivering carbon-free
and energy-sustainable campuses by 2030 (Monash University,
2020). Hence, efficient and financially viable solar energy
planning is crucial for delivering sustainable goals in the future.
The aim of this study is to demonstrate an accurate and
effective geospatial-based method to model and map solar energy
potential for the sustainable Clayton campus. Unlike previous
studies, the proposed method includes a higher level of details
about modeling and includes the validation of results. In addition
to that, this work provides an estimate about investment return
for installing PV systems on all suitable building rooftops in the
campus area.

The remainder of the paper is organized as follows. Section
Study Area and Data provides information about the study area
and research data. In section Method and Implementation, the
proposed method and its implementation are explained with
a specific focus on three main steps: (i) surface modeling, (ii)
solar radiation modeling and mapping, and (iii) validation.
Section Results and Discussion looks at modeling results and
provides a deeper discussion about validation and uncertainty
of the proposed method. In section Electric Power Generation
Potential, the estimated electric power potential, and the payback
period are calculated for the installation of commercial PV
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systems on building rooftops in the study area. Section Study
Limitations looks at some of the limitations and applications
of the proposed method. Finally, section Conclusions concludes
with a review and summary of the key findings and opportunities
for future research and uptake of the proposed method.

STUDY AREA AND DATA

Figure 1 illustrates the study area and spatial data. The area
is known as Clayton Campus of Monash University located
in the southeast of Melbourne metropolitan area. The campus
is one of the largest campuses in Australia with more than
30,000 students every year (Monash University, 2020). This
area is within a commercial zone and it has a relatively strong
urban presence with a high density of tall buildings. Direct solar
radiation data were obtained from the Australian Government
Bureau of Meteorology (BOM) (Australian Government Bureau
of Meteorology (BOM), 2017) through online access for
daily and monthly solar radiation measurements from ground

meteorological stations close to the study area. Diffuse solar
radiation data were obtained by the NASA Langley Research
Center Atmospheric Science Data Center (NASA and Langley
Research Center Atmospheric Science Data Center, 2017) from
Surface Meteorological and Solar Energy (SSE) web portal
supported by the NASA LaRC POWER Project.

METHOD AND IMPLEMENTATION

The proposed method illustrated in Figure 2 is divided into three
main steps:

1. Surface modeling;
2. Solar modeling and mapping; and
3. Validation of results.

In the first step, spatial data is analyzed and processed to model
the urban topography of the study area. According to Figure 2

the step includes the following tasks:

FIGURE 1 | Study area: Monash Clayton Campus, Melbourne, Australia. Spatial data provided by Strategic and Planning Information (SPI) service at Monash

University. The data was originally captured and compiled from aerial photography flown on 30 and 31 January 2010. Reference systems used for this study are: (i)

horizontal datum: Geocentric Datum of Australia GDA94, (ii) vertical datum: Australian Height Datum (AHD), (iii) map projection in Map Grid of Australia (MGA) Zone 55

and (iv) geoid model Ausgeoid98 for heights (Radosevic et al., 2020).
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FIGURE 2 | Workflow for the proposed method with three main steps: (i) surface modeling, (ii) solar modeling and mapping, and (iii) validation of results.
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• Rooftop polygon classification;
• Rasterization of rooftop polygons;
• Digital elevation modeling; and
• Digital surface modeling.

In the second step, the SA model executes solar radiation
modeling and estimates solar irradiation values for building
rooftops. The modeling results are illustrated with the
following maps:

• Monthly and annual solar radiation maps based on pixel
values; and

• Annual solar radiation map based on rooftop polygon values.

In the third step, the model output is validated by conducting the
following tasks:

• Estimating energy output from four building rooftops with
mounted solar PV systems in the study area; and

• Calculating the difference between the recorded and estimated
energy output from four building rooftops with mounted solar
PV systems in the study area.

Surface Modeling
In the first step of the proposed method, the main objective is
to model and generate a high-resolution DSM of the campus
area. This includes the preparation and processing of spatial data
depicted in Figure 1. Firstly, a vector spatial dataset representing
rooftop polygons in Figure 3A is classified into two different
groups: flat and sloped rooftop polygons. This classification is
based on height (Z) values of polygon vertices using Autodesk
Civil 3D software. Rooftop polygons containing vertices with
different Z values are classified as sloped and rooftop polygons
including vertices with the same Z values are categorized as flat.
Figure 3A shows a considerably larger number of flat rooftops or
81.5% of the total campus’ rooftop area. In contrast, the sloped
rooftop area covers only 18.5% of the entire rooftop area on
the campus.

After the classification, these two groups of rooftop polygons
are converted from vector to raster spatial data format. This
process of spatial data manipulations is called rasterizing. In this
case study, sloped rooftops are rasterized by creating additional
rooftop points from polygon vertices in Autodesk Civil 3D.
Each new rooftop point is used for linear interpolation between
two points with known Z values. The objective of this task is to
create a new set of points to define the geometry of each sloped
polygon. Figure 3B shows new rooftop points for converting
sloped rooftops from vector to raster spatial data. The conversion
is executed by interpolation method Spline with Barriers using
polygon boundary as a barrier (Terzopoulos, 1988). Rooftop
polygons classified as flat were directly converted into raster data
format by ArcGIS software using Polygon to Raster tool (http://
pro.arcgis.com/en/pro-app/tool-reference/conversion/polygon-
to-raster.htm). Figure 3C depicts all rooftop polygons rasterized
into a raster format with 0.2m spatial resolution.

Secondly, a Digital Elevation Model (DEM) is generated
from spot heights and contour data illustrated in Figure 1. The
DEM is generated and interpolated by Topo to Raster tool in
the ArcGIS Spatial Analyst toolbox (Environmental Systems

Research Institute, 2021a). Figure 3D depicts the DEM and
configuration of terrain in the study area. Finally, the DSM is
created by using the Map Algebra tool in the ArcGIS Spatial
Analyst toolbox (Environmental Systems Research Institute,
2021b). The rasterized rooftop polygons and the DEM are
merged to create the DSM illustrated in Figure 3E. A color
gradient illustrates different height values of the DSM. For
example, lighter colors in the gradient demonstrate some of the
tallest buildings in the campus area.

Solar Modeling and Mapping
Solar energy assessment across the study area is executed based
on the high-resolution (0.2m) DSM and modeled by the SA
module in ArcGIS software. The SA model is based on a
spatial solar radiation model developed by Fu and Rich (1999).
This model calculates incoming solar radiation based on input
such as topographic and radiation parameters. It provides a
fast and accurate calculation of direct, diffuse, and global solar
radiation. In addition to that, the SA can estimate incoming
solar radiation for any specified period (hourly, daily, monthly,
or yearly) (Fu and Rich, 2000). The SA model does not account
for the reflected component of global solar radiation. Hence,
this component is excluded from the calculation of global solar
radiation. Nevertheless, the reflected component was considered
to be insignificant because of the low value of the average annual
surface albedo for the Melbourne region (NASA and Langley
Research Center Atmospheric Science Data Center, 2017).

Table 1 defines input parameters for solar radiation modeling
with the SA model. Geographic latitude is one of the main
geographical parameters required for setting the location of
the study area. Time is required for setting the time interval
for modeling solar radiation potential. The z-factor is used for
correcting calculations in cases when different units of length
are used in the z-direction (height) compared to the x, y planar
units of the DSM. The type parameter determines the accuracy
of the SA model. For diffuse model type, it was selected the
standard overcast sky in which the amount of incoming diffuse
radiation varies with zenith angles (Fu and Rich, 2000). The
transmission of solar energy through the Earth’s atmosphere
is defined with a transmission proportion index. This physical
parameter demonstrates weather conditions for transmission of
solar radiation through the sky (Fu and Rich, 2000; Chen, 2011).
The monthly averaged transmission index value for all months
was set to 0.55 which indicates generally clear sky conditions (Fu
and Rich, 2000).

The remaining group of parameters in Table 1 defines
the spatiotemporal granularity of solar radiation modeling.
According to the sun positions during a day, zenith and azimuth
divisions define the number of sectors in the sky map (Fu and
Rich, 1999, 2000). In this study, the number of divisions was
set to 32 to reduce an error in estimating incoming global solar
radiation (Li et al., 2016). The sky size is associated with raster
resolution of the hemispherical viewshed, sun map and sky map
raster maps for calculation of solar irradiation maps (Dubayah
and Rich, 1995; Fu and Rich, 1999, 2000).

The number of azimuth directions defines the number of
rays to calculate the viewshed. Also, the viewshed calculation
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FIGURE 3 | (A) Rooftop polygon classification; (B) sloped rooftop polygon points; (C) raster rooftop polygons; (D) digital elevation model (DEM); (E) digital surface

model (DSM) (Radosevic et al., 2020).

includes other topographic parameters such as slope and aspect
from the DSM. In addition to that, a shadow effect on solar
radiation potential is calculated based on the rooftop elevation
value provided by the DSM.

Another important physical parameter in the modeling is
a diffuse proportion index. This index determines how much

solar radiation is diffused and reflected within Earth’s atmosphere
(Fu and Rich, 2000; Chen, 2011). A monthly diffuse index is
calculated with the following equation:

Kd = Gd/(Gb + Gd) (1)
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TABLE 1 | Solar Analyst parameters (Radosevic et al., 2020).

Parameter Setting

value

Units Data source

Geographic

latitude

−37.91 Degrees DSM of the study area

(Figure 3)

Time period [1, 365] Days User defined

Z-factor 1 Dimensionless DSM of the study area

(Figure 3)

Diffuse model type Diffuse model

type

Dimensionless User defined

Transmission

proportion index

0.55 Dimensionless User manual (Fu and Rich,

2000)

No. azimuth

divisions

32 Divisions User defined

No. zenith

divisions

32 Divisions User defined

Sky size 1,000 Cell per side User defined

No. azimuth

directions

32 Directions User manual (Fu and Rich,

2000)

TABLE 2 | Monthly setting values for diffuse proportion index.

Month Gd [kWh/m2] Gb [kWh/m2] Kd [Dimensionless]

January 2.46 6.80 0.27

February 2.08 5.90 0.26

March 1.66 4.57 0.27

April 1.22 3.10 0.28

May 0.89 2.10 0.30

June 0.75 1.68 0.31

July 0.82 1.38 0.30

August 1.10 2.68 0.29

September 1.54 3.67 0.30

October 2.01 4.96 0.29

November 2.41 5.99 0.29

December 2.61 6.71 0.28

The monthly diffuse index demonstrates the ratio of monthly
averaged diffuse solar radiation and the monthly averaged clear
sky insolation incident on a horizontal surface (Fu and Rich,
1999, 2000). The monthly averaged clear sky insolation incident
on a horizontal surface is equal to the sum of the monthly
averaged diffuse and beam solar radiation for standard overcast
days (NASA and Langley Research Center Atmospheric Science
Data Center, 2017). Table 2 presents calculated values for diffuse
proportion index, monthly averaged values of diffuse solar
radiation, and beam solar radiation for the study area. Parameter
setting values shown in Tables 1, 2 were used to configure the
model and to estimate the solar radiation potential of building
rooftops in the study area.

Validation of Results
The last main step in the proposed method involved a validation
procedure for calculated solar energy potential. The validation
was determined by the difference between themean recorded and

estimated energy output per unit area. Estimated values for the
energy output were calculated for four building rooftops marked
with red color in Figure 4. The values were derived frommonthly
solar maps in Figure 6.

Mean recorded monthly values for energy output were
calculated from recorded energy output captured by the existing
solar PV systems illustrated in Figure 4. Monthly values for
energy output are measured and recorded for solar PV systems
mounted at the rooftops of building 10 (B10), building 48 (B48),
and building 74 (B74) and obtained online from Sunny Portal
website (www.sunnyportal.com). Measured energy output data
recorded from the solar PV system mounted at the rooftop of
building 56 (B56) was received from Monash University. The
data for some months was not available or incomplete. Hence,
it was excluded from the validation process.

Table 3 demonstrates a summary of existing solar PV systems
in the study area. Solar PV systems mounted at rooftops of B10
and B56 have significantly higher power output capacity and a
considerably larger number of solar PV modules (Pn) than solar
PV systems mounted at rooftops for B48 and B74. In addition to
that, the table shows the rooftop type and commencing dates of
solar PV systems, the total area (Asystem), tilt, and aspect angles of
installed solar PVmodules in the study area. Solar PVmodules at
the rooftop of B56 were mounted directly to the rooftop without
additional tilting. Table 2 also provides technical specifications
for different solar PV panel types mounted on these four building
rooftops in the study area.

The estimated monthly averaged global solar radiation on a
tilted surface (Gt) was calculated in RETScreen Clean Energy
Management software (Natural Resources Canada, 2000). The
following parameters were used for the estimation: geographic
location (latitude and longitude), aspect, and tilt angle for the
existing solar PV systems (Table 3). The estimated monthly
averaged global solar radiation on a flat surface (Gh) was obtained
by the SA model. Figure 5 summarizes Gt and Gh values from
four rooftops with solar PV systems in the study area. Using
the estimated Gt and Gh values the tilt factor was calculated
according to the following equation:

Tfactor = Gt/Gh (2)

Monthly estimated solar radiation potential and parameters in
Table 3 were used to calculate monthly estimated power output
per unit area with the following equation (Singh and Banerjee,
2015):

PE = GmonthlyNpowerTfactorη (3)

Absolute values for the difference (D) between the estimated
(PE) and mean measured (PM) energy output per unit area were
calculated according to the following equation:

|D| = PE − PM (4)

RESULTS AND DISCUSSION

Solar Energy Potential of Building Rooftops
Solar irradiation values for each month were estimated in
kWh/m2 and presented in the 12-month solar map series.
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FIGURE 4 | Locations of existing solar PV systems in the study area.

TABLE 3 | Summary information for solar PV systems mounted at four building

rooftops.

Parameter Building 10 Building 48 Building 56 Building 74

Roof type Flat Flat Sloped Flat

Commencing date Mar 2010 Feb 2011 Jul 2015 Aug 2011

PV system power

[kWp]

71.4 4.2 69.8 5.3

Number of panels

(Pn)

420 26 225 29

Area of system

(Asystem)

472.50 29.25 394.24 32.63

Tilt angle [◦] 15 30 13 30

Aspect angle [◦] 19 8 8 0

Panel type Sunowe

SF125X125-

72-m

BP SX140S

and Silex

Solar SLX175

JAP6 72/295-

315/3BB

BP2015OS

and SHOTT

PERFORM

Area of panel [m2 ] 1.12 1.12 1.75 1.12

Panel energy

efficiency [%]

14.00 11.10–14.00 15.22 11.90–14.50

Nominal power [%] 90.00 90.00 90.00 90.00

Figure 5 demonstrates a monthly variation of solar irradiation
values in the Clayton campus. Lower values are presented with
yellow color and they dominate through Jun and July. From
July solar irradiation value starts to increase and it reaches the
highest values illustrated with red color during summer months
in December and January.

Twelve monthly solar maps depicted in Figure 6 were
aggregated into the annual solar map. Figure 7 depicts the annual

solar map. The map also shows the influence of the shadow
effect on the annual solar radiation potential. An example of a
building is illustrated in Figure 7. Lower rooftop areas of the
B11 building with yellow color received significantly less solar
irradiation compared to higher rooftop areas marked with red
color. The range of annual solar irradiation values shown in the
map is from 69.5 kWh/m2 to 1548.2 kWh/m2 with the mean
annual value of 1363.9 kWh/m2.

The solar energy potential of building rooftops was further
analyzed by classification of rooftop polygons based on their solar
irradiation values from the modeling. Figure 8A demonstrates a
distribution of building rooftop polygons in 8 different categories
based on estimated solar irradiation values from the annual solar
map. Figure 8B demonstrates that more than 90% of the total
rooftop area is included in categories 7 and 8 with high annual
solar irradiation values (1,200–1,400 and 1,400–1,600 kWh/m2).
Hence, this shows that most of the rooftop area has a high solar
energy potential for PV system installation.

Solar Energy Potential for Different
Rooftop Geometry and Orientation
The electric power generation from rooftop-mounted PV
systems may vary due to different rooftop geometry and
orientation. This section goes further with rooftop solar radiation
modeling by analyzing six different rooftop geometry and
orientation. All selected rooftops had no shadow cast from
surrounding buildings and vegetation. Figure 9 illustrates six
different rooftops in the study area. The rooftops and their
properties are the following:
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FIGURE 5 | Estimated monthly averaged global solar irradiation on tilted PV system and flat rooftop surfaces of four buildings in the study area.

FIGURE 6 | Monthly solar maps.
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FIGURE 7 | Annual solar map based on rooftop polygons (Radosevic et al., 2020).

FIGURE 8 | (A) Histograms of building polygon counts with corresponding categories for solar energy potential. (B) Histograms of rooftop polygon area within

corresponding categories for solar energy potential.
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FIGURE 9 | Selected rooftops in the study area.

1. Sloped rooftop Awith a 15◦ tilt angle and oriented to the north
at an azimuth angle of 24◦;

2. Sloped rooftop B with a 12◦ tilt angle and oriented to the south
at an azimuth of 186◦;

3. Sloped rooftop C with an 11◦ tilt angle and oriented to the east
at an azimuth angle of 98◦;

4. Sloped rooftop D with a 14◦ tilt angle and oriented to the west
at an azimuth angle of 278◦;

5. Sloped rooftop E with a 15◦ tilt angle and oriented to the north
at an azimuth angle of 8◦; and

6. Flat rooftop F oriented to the north at an azimuth angle
of 1◦.

Estimated results by the Solar Analyst model show that rooftops
A and E have the highest annual sum of solar irradiation values
between the selected rooftops. Figure 10 graphically represents
results from this analysis. The analysis also demonstrates that
north-facing rooftop F has a lower annual sum of solar irradiation
values when is compared to rooftops A and E. In addition to that,
the sloped rooftop B has the lowest solar energy potential between
all rooftops. The annual solar irradiation difference between
rooftop E and rooftop B is of 345.5 kW/m2.

Based on the results from the analysis most suitable rooftops
for PV systems deployment are sloped rooftops A and E. In
contrast, rooftop B is less likely to be selected for PV system
installation from all six rooftops. This assessment also shows that
within a year flat rooftops oriented to the north (F) may receive
more incoming solar radiation than sloped rooftops oriented
to the west and the east (C and D). During winter months
sloped rooftops oriented to the north can receive up to 20%
more incoming solar radiation than flat rooftops facing to the
north. On the annual basis, north-facing rooftops with sloped
geometry can receive up to 6% more incoming solar radiation

than flat rooftops with the same orientation and up to 29%
more than sloped rooftops facing to the south. This analysis
demonstrates that the geometry and orientation of rooftops can
have a significant impact on potential electric power generation
from PV systems.

Uncertainty in Solar Radiation Modeling
Uncertainty may arise at any step of the solar radiation modeling
process. Some of the sources of uncertainty may be related to the
following: (i) spatial data and the DSM, (ii) parameter setting
values, and (iii) inherited uncertainty of the model itself. In
this study, high-quality spatial data and DSM were used for
the modeling. A high granularity DSM with 0.2m pixel size
was generated demonstrating a minimal uncertainty in terms
of spatial data representation. In addition to that, the DSM
included sloped rooftops with a minimum level of generalization.
In terms of parameter setting values, most of the parameters
were set according to the Solar Analyst user manual (Fu and
Rich, 2000). The exception is monthly setting values for diffuse
proportion index (Table 2) estimated by using solar radiation
data provided by NASA Langley Research Center Atmospheric
Science Data Center (NASA and Langley Research Center
Atmospheric Science Data Center, 2017). For two parameters,
sky size and number of azimuth directions, an increase in
setting value may provide higher accuracy of estimated solar
irradiation values. Nevertheless, the improvement is rather
insignificant compared to a longer computational time with
higher setting values for these two parameters. Finally, model
uncertainty may be another source of errors in the estimated
solar radiation potential of the study area. A study conducted
by Li et al. (2016) showed that the Solar Analyst has a tendency
to slightly overestimate solar irradiation values. In summary,
the estimated solar radiation modeling results provide accurate
and reliable information for solar energy planning in the
study area.

The Difference Between Measured and
Estimated Energy Output
In this section, validation results are graphically represented
in Figure 11. Figure 11A illustrates the bar chart of monthly
estimated (PE) and mean measured (PM) energy output per unit
area from PV systems mounted on four building rooftops in the
study area. The linear graph in Figure 11B demonstrates absolute
values for difference (D) in kW/m2 between PM and PE. Monthly
D values are between 0.1 kWh/m2 and 2.4 kWh/m2 and annual
D values are between 1.0 kWh/m2 and 3.7 kWh/m2. The results
show a relatively small difference between estimated and mean
measured energy output.

The source of errors for validating results can be divided
based on two major variables in Equation (4): (i) estimated
energy output, and (ii) mean measured energy output.
Errors in calculating estimated energy output are directly
related to the accuracy of estimated solar irradiation values
by the Solar Analyst and tilt factor. Monthly tilt factor
values were calculated based on estimated solar radiation
data for horizontal and tilted surfaces. The estimated solar
radiation data for the horizontal surface was adopted from
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FIGURE 10 | Monthly and annual solar irradiation values for the selected rooftops.

FIGURE 11 | (A) Monthly values for mean measured (PM) and estimated (PE) power output per unit area from four building rooftops; (B) the difference in absolute

values between PM and PE.

the modeling. Errors in estimating solar radiation on the
tilted surface may be related to errors in modeling and
uncertainty in the application of RETScreen Clean Energy
Management software (Natural Resources Canada, 2000).
Further, errors in calculating mean measured energy output
can be directly related to the quality of measured data available
on the Sunny Portal website (www.sunnyportal.com). This
data depends on monthly recorded energy output from PV

systems. For the same period between different years, the
monthly recorded energy output may vary because of various
weather conditions causing a reduction or increase in solar
irradiation exposure.

In summary, the validation showed a relatively low difference
between the estimated and mean energy output from four
building rooftops. Hence, the estimated solar irradiation values
are with a high level of confidence.
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TABLE 4 | Definition and values of parameters used in Equations (5) and (6).

Parameter Definition Value Units

EP The electric power

generation potential per year

23488.24 MWh

AR Annual solar radiation

received per unit horizontal

area

1.36 MWh/m2/year

RA Rooftop areas with received

annual solar radiation above

1 MWh/m2

250846.30 m2

AF The area factor, a fraction of

the rooftop area (RA)

suitable for solar PV

installation

0.50 Dimensionless

η energy efficiency of solar

panel Trina 250W

0.153 Dimensionless

Npower The nominal power of solar

panel

0.90 Dimensionless

IR Investment return period Scenario 1: 4

Scenario 2: 5

Years

SC 50 kW system installation

cost per 250W panel

247.50 (Solar Choice,

2021a)

AU$

Pn Total number of panels 76,010 Dimensionless

UEP Used electric power

potential from installed PV

systems during on peak

time

Scenario 1: 16,000

(50% of yearly peak on

electricity demand)

Scenario 2: 8,000 (25%

of yearly peak on

electricity demand)

MWh

EC Electricity cost 272.9 (Australian

Energy Market

Commission, 2020)

AU$ per MWh

RFIT Revenue from feed in tariffs Scenario 1: 763,800.48

Scenario

2: 1,579,800.48

AU$ per year

ELECTRIC POWER GENERATION
POTENTIAL

The annual potential for electric power generation can be
estimated according to the following equation (Gastli and
Charabi, 2010):

EP = ARRAAFηNpower (5)

Where all parameters and their values are defined and calculated
in Table 4.

The adopted AR value is the estimated average solar radiation
potential from the Solar Analyst model. The RA parameter value
is equal to the sum of rooftop areas classified in categories 6, 7,
and 8 shown in Figure 7. The AF parameter value is adopted after
the inspection of the aerial image of the study area. Rooftops were
assessed on their spatial and technical limitations. This includes
a tree shadow effect, rooftop complexity, and required space
between solar arrays. In addition to that, the energy efficiency
and nominal power values of solar panel Trina 250W were
used in the estimation of annual power generation potential.
The annual electric power potential from roof-mounted PV

systems was estimated to be 23488.24 MWh based on the
set of parameters provided in Table 4. From Table 4, it seems
apparent that parameter setting values may vary according to
different scenarios. Hence, the EP should be only considered as
an estimated value.

In the long term, PV systems can offer financial savings and
a reduction of electricity costs. The investment return for the
installation of commercial rooftop PV systems is estimated by
using the set of parameters in Table 4 and the following equation:

IR = (SCPn)/(UEPEC + RFIT) (6)

An average commercial PV system installation cost for a rating
between 10 and 100 kW is from AU$0.88 to AU$1.10 per Watt
in Melbourne (Solar Choice, 2021a). The cost of the PV system
installation (SC) is adopted based on a 50 kW commercial PV
system per Watt (Solar Choice, 2021a). The energy efficiency
and nominal power setting values of the Trina 250W solar
panel were used in the equation above. The total number of
panels was estimated by dividing 50% of the available rooftop
area by the Trina 250W solar panel area (1.65 m2). Parameter
setting value for used electric power potential during peak time
(UEP) was set according to two scenarios. In the first and more
optimistic scenario, the UEP is set to be 50% of the yearly peak
electricity demand on the Clayton campus. In the second and
more pessimistic scenario, the UEP is set to be 25% of the yearly
peak electricity demand on the Clayton campus. These parameter
setting values were estimated based on electricity consumption
data provided by Monash University. Data shows that electricity
consumption on the campus during peak time was around 32,000
MWh in 2010 and 2011. The electricity cost in Victoria was
set according to a report from the Australian Energy Market
Commission in 2020 (Australian Energy Market Commission,
2020). In both scenarios, the amount of annual electric power
generation potential exceeded the yearly peak energy demand of
the campus. The exceeded electricity was counted as potential
revenue from feed-in tariffs (RFIT). The estimated value for this
parameter was defined on the minimum feed-in tariffs rating of
102AU$ per MWh or 10.2 cents per kWh in Victoria for 2021
(Solar Choice, 2021b).

Results from the analysis demonstrate the estimated
investment return period for scenario 1 and scenario 2 are 4 and
5 years, respectively. This analysis shows that even by providing
only 25% of the yearly peak electricity demands from rooftop PV
systems the investment can be financially viable with a relatively
short economic return. It is worth mentioning that with the
minimum feed-in tariffs rating, a yearly revenue from generating
and distributing electricity from PV systems to the national grid
may reach almost 1.6 million Australian dollars. This estimate
demonstrates only the investment return on the initial cost of PV
systems installation at the study area. The other costs associated
with the solar PV system are not included in the estimate. These
costs may relate to the maintenance and servicing of the system
after the installation. In addition to that, this analysis does not
account for the deployment of battery storage in the study area.
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LIMITATIONS OF THE STUDY

Primarily, study limitations are associated with limited spatial
data related to trees and vegetation in the case study area. With
the application of LiDAR (Light Detection and Ranging) data,
the accuracy of the solar radiation modeling and mapping may
be improved by including a potential shadow cast from tall trees
and vegetation. Nevertheless, Figure 1 shows that the presence of
tall trees near building rooftops may be insignificant in the study
area. Another limitation is that the scope of this study focuses
only on the analysis of the solar energy potential of building
rooftops. With more detailed spatial data, this analysis can
include other urban features such as building facades, concrete
pavements, and parking areas present in the study area. Onemore
limitation is associated with energy consumption data. This data
included some incomplete information about several buildings
in the study area. Also, the available data showed only monthly
peak and off-peak energy consumption for every building on the
Clayton campus. The average hourly energy demands data for
each building would allow for a more accurate estimation of how
much solar PV system-generated electricity power may exceed
the peak time energy demands.

CONCLUSIONS

Deployment of PV systems involves planning and decision-
making for their future locations. Hence, a geospatial-based
method can play an important part in the planning and
installation of future PV systems. The motivation for this case
study comes from the growing need to use building rooftops
as a place for generating clean and renewable energy. Building
rooftops are one of the most suitable urban locations for
generating electricity across the urban landscape. In addition
to that, buildings powered by renewable energy represent an
ultimate goal for the development of sustainable cities in
the future.

This paper demonstrates a new geospatial-based method
using spatial data for modeling, mapping, and quantifying
available solar energy resources for building rooftops in
Melbourne urban area. The results show that 93.5% of rooftop
area has high solar energy potential. The annual sum of solar
irradiation values showed an average estimated value of 1.36
MWh/m2 in the study area. In addition to that, the rooftop
analysis for different orientations and geometries showed that
sloped rooftops facing to the north received up to 30% more
incoming solar radiation than sloped rooftops facing to the south.
The validation of modeling results showed a relatively small
difference between estimated and recorded energy output for
four building rooftops in the study area. The monthly difference
was in the range between 0.1 and 2.4 kWh/m2 and the annual
difference between 1.0 and 3.7 kWh/m2. The estimated annual

electricity generation from 50% of the suitable rooftop area can
provide 23488.24 MWh. The investment return of the initial
investment in PV systems installation is estimated to be from 4
to 5 years.

The main focus of this research was on demonstrating the new
geospatial method for solar energy modeling and mapping for
delivering solar energy assessment and planning. Future research
may include an analysis of the solar energy potential of vertical
surfaces such as building facades. In addition to that, future work
may look at PV energy output performance between fixed and PV
tracking energy systems.

As a general conclusion, the assessment of solar energy
potential provides valuable information to energy planners and
decision-makers. The method in this study accurately estimates
solar energy resources across specific urban environment
contexts. The assessment conducted with this method provides
an incentive for solar energy-powered cities in the future.
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NOMENCLATURE

Kd diffuse proportion index

Gd the monthly averaged diffuse solar radiation for the study area (kWh/m2 )

Gb the monthly averaged beam solar radiation for the study area (kWh/m2 )

B10 Building 10

B11 Building 11

B48 Building 48

B56 Building 56

B74 Building 74

Tfactor tilt factor

Gt estimated monthly averaged global solar radiation on tilted surface (kWh/m2 )

Gh estimated monthly averaged global solar radiation on horizontal surface (kWh/m2)

PE estimated monthly energy output per unit area in (kWh/m2 )

Gmonthly estimated monthly averaged global solar radiation for rooftop (kWh/m2 )

Npower nominal power of solar panel

η the energy efficiency of solar panel

PM recorded monthly energy output per unit area (kWh/m2 )

D difference between recorded and estimated energy output per unit area

EP annual electricity generation potential (MWh/year)

AR annual solar radiation received per unit horizontal area (MWh/m2/year)

RA rooftop areas with annual solar radiation above 1000 kWh/m2

AF the area factor, defines a fraction of calculated total area suitable for solar panels

IR investment return in years

SC average system cost per Watt

NP number of panels

EC electricity cost per MWh in Victoria
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