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of Water-Energy Nexus: Combining
Wastewater Treatment and Energy
System
Pouya Rezazadeh Kalehbasti*, Michael D. Lepech and Craig S. Criddle

Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States

Designing more sustainable urban infrastructure is an essential topic in practice and

research. While many have tried to address this challenge by focusing on sustainability

of either supply or demand in a single infrastructure system, few studies have integrated

the decisions for both supply and demand across several infrastructure. This paper

proposes a novel method to design and optimize the hourly demand and supply of

integrated energy and water system in an urban district for environmental and economic

sustainability. This modular framework concurrently designs the optimal building mix

of an urban district and the systems supplying the district with wastewater treatment,

cooling, heating, and electricity. The model is tested on a sample neighborhood from

San Francisco, California, with 21 building prototypes, 32 combined heating and power

engines, 16 chillers, and 3 wastewater treatment systems (a central treatment plant

and two decentralized membrane-based systems). The results of this study show

that the median values of normalized life-cycle cost, social cost of carbon, annual

energy demand, and annual wastewater production of the integrated designs of water-

energy system are, respectively, 20, 75, 8, and 20% lower than those of the traditional

segregated designs. The results also demonstrate the economic and environmental

viability of using decentralized advanced treatment in urban areas when energy system,

wastewater treatment, and building mix are designed together.

Keywords: district energy system, water-energy nexus, multi-objective optimization, wastewater treatment,

membrane, K-means clustering

INTRODUCTION

Motivation
While covering only 3% of the earth’s land, urban areas accommodate 55% of world population and
are responsible for more than two-thirds of global energy consumption and CO2 emissions (United
Nations, 2015; International Energy Agency, 2016). These ever-growing numbers make cities the
forefront of the fight against climate change. On the other hand, around 39% of US primary energy
is consumed by residential and commercial sectors (Energy Information Administration, 2019):
designing more efficient buildings as well as water and energy systems can play an essential role
in reducing the energy consumption and environmental footprint of urban districts. Coordinated
design of infrastructure has proven to be an effective approach for creating more sustainable
urban systems. Such coordination leads to integrated municipal supply systems (e.g., energy and
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water supply) with improved overall performance when
compared to the simple superposition of individual supply
systems (Mancarella, 2014). Further, integrated design of
infrastructure systems facilitates closed-loop management of
resources and can help create “circular economy” in urban areas
(World Economic Forum, 2014; Kalmykova et al., 2018).

This study focuses on integrating urban energy and
wastewater treatment systems. Typically, urban energy and
water infrastructure are designed after the demands of the
community are determined. At that late stage, improving the
environmental and economic performance of the system is
difficult (Best, 2016). However, if the supply and demand of
municipal services are optimized simultaneously, the resulting
urban system has proven to outperform the isolated design
based on social, economic, and environmental sustainability
metrics (Keirstead et al., 2012; Allegrini et al., 2015; Best et al.,
2015). Since building mix largely determines the consumption
profile of urban neighborhoods (Best, 2016; Wu et al., 2018),
simultaneously optimizing the building mix and integrating
infrastructure represents an opportunity for designing more
sustainable urban systems (Keirstead et al., 2012; Best, 2016).
Developing a framework to investigate and understand this
opportunity is the focus of this research paper.

Prior Research
Factors including urbanization, environmental stresses due to
climate change, and demand for more livable built environments
are creating challenges for cities to satisfy the needs of an
increasing urban population (Bauer et al., 2015; Best, 2016;
Khan et al., 2017; O’Neill et al., 2017). This imperative is urging
urban and infrastructure planners to design more sustainable
infrastructure systems that can maintain and improve the
livability of cities (Arup, 2016; SF Environment, 2018). However,
concerning the focus of this study, literature shows several
obstacles to achieving more sustainable water and energy systems
in urban areas;

1. Disconnected modeling of supply and demand: This
disconnect results in a missed opportunity to design more
sustainable systems by leveraging integrated supply and
demand optimization (Manfren et al., 2011; Keirstead et al.,
2012; Best et al., 2015; Wang et al., 2018),

2. Isolated design of infrastructure: This isolation overlooks
the interdependence between different infrastructure systems
and the opportunity to increase the efficiency of the overall
urban system by exploiting this interconnection (Howells and
Rogner, 2014; Wu et al., 2015; Khan et al., 2017; Saidi et al.,
2018),

3. Qualitative assessment of economic and environmental
outcomes of planning: The application of qualitative
assessment, rather than quantitative metrics, yields inefficient
designs with suboptimal performance (Coutts et al., 2008;
Keirstead et al., 2012; Eicker et al., 2015; Best, 2016;
Hukkalainen et al., 2017).

To address these deficiencies in the context of urban water and
energy systems, a framework is needed to optimize the supply
and demand of infrastructure systems concurrently (Manfren

et al., 2011; Keirstead et al., 2012; Best et al., 2015; Wang
et al., 2018; Bakhtiari et al., 2020), integrate the design of
urban water and energy infrastructure (Siddiqi and Anadon,
2011; Rodriguez et al., 2013; Bauer et al., 2015; Khan et al.,
2017; United Nations, 2019), and provide quantitative feedback
on the life-cycle performance of design alternatives (Keirstead
et al., 2012; Best et al., 2015; Eicker et al., 2015). This paper
develops such a framework to design the supply and demand
of integrated wastewater treatment and energy infrastructure
for urban neighborhoods. The framework designs infrastructure
systems at the neighborhood scale and on an hourly basis
following the recommendations by Hawkes and Leach (2005),
Jaccard (2006), Evins et al. (2011), and Best et al. (2015).

Co-optimizing Supply and Demand in Energy

Systems
Jaccard (2006) defined energy system as “the combined processes
of acquiring and using energy in a given society or economy.”
Manfren et al. (2011), Keirstead et al. (2012), and Allegrini
et al. (2015) reviewed 400+ articles and tools on modeling
supply and demand in urban energy systems, and concluded
that frameworks must be developed to concurrently optimize
energy supply and demand technologies at an urban scale. These
frameworks can enable designers to make urban energy systems
which are more efficient than systems created using traditional
design methods (Manfren et al., 2011; Allegrini et al., 2015; Best,
2016).

To address this requirement, Best et al. (2015) made a
framework to simulate and optimize the energy supply systems
and the building mix of an urban district composed of 100–
1,000 neighboring buildings. As a case study, Best et al. (2015)
used NSGA-II Genetic Algorithm (Deb et al., 2002) to optimize
the building mix and the combined cooling, heating, and power
(CCHP) plant for an arbitrary development in San Francisco
for minimum life-cycle cost (LCC), minimum greenhouse
gas emissions (GHG), and maximum energy efficiency. The
simulation successfully generated many neighborhoods with
desirable life cycle costs, zero and near-zero operational GHG
emissions, and energy efficiencies more than 70%.

Best et al. took an essential step in integrating the optimization
of the supply and demand of energy and numerically evaluating
the infrastructure and urban planning. However, this framework
and its successors (Best et al., 2019; Rezazadeh Kalehbasti and
Lepech, 2021) did not consider the non-energy infrastructure.
Wu et al. (2018) followed the method proposed by Best et al.
(2015) and added simplified pumping and heat losses as functions
of pipe dimensions. Wu et al. optimized the building mix and
Combined Heating and Power (CHP) engine for an arbitrary
neighborhood in Shanghai, China.

More recently, Waibel et al. (2019) developed a framework
for parametrically optimizing buildings and supply technologies
in an urban setting. They optimized the height and geometry of
four office buildings in Zurich, Switzerland. Supply systems for
electricity, space heating, hot water, and cooling were composed
of electricity and heat generators, an absorption chiller, and
storage technologies. Waibel et al. developed a nested bi-level
optimization routine to avoid direct multi-objective optimization
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and used it to minimize the life cycle cost and carbon emissions
of the system. They also simplified the timescale for the
optimization from an entire year to only 6 weeks. Similar to Best
et al. (2015) and Wu et al. (2018), this paper focused only on
energy infrastructure, and did not consider the water system and
designing an integrated water-energy infrastructure.

The Water-Energy Nexus
Until recently, urban water and energy infrastructure systems
were planned and managed independently (Howells and Rogner,
2014). However, urban infrastructures are becoming more
interdependent in the face of mutual challenges including aging,
population growth, shrinking resources, extreme events, and
climate change (Bauer et al., 2015; Saidi et al., 2018; Moazeni
et al., 2020). In particular, “integrated water and energy planning”
has gained global public and scholarly attention due to recent
difficulties faced by many countries to secure sustainable water
and energy resources (Rodriguez et al., 2013; Bauer et al.,
2015; Khan et al., 2017; United Nations, 2019; Huang et al.,
2020). This concept, dubbed the “water-energy nexus,” focuses
on the interrelations between production, transmission, and
consumption of water and energy (Siddiqi and Anadon, 2011;
Bauer et al., 2015; Dai et al., 2018).

Water used for power plant cooling accounts for half of
the freshwater withdrawals in the US (World Economic Forum
Water Initiative, 2012). Meanwhile, water scarcity and growing
demands require new sources of freshwater and more efficient
technologies to treat water and generate energy (Luck et al., 2015;
Khan et al., 2017). Wastewater treatment using the wasted heat
and electricity of a power plant has shown to be effective in:

1. reducing the need for power plant cooling and, consequently,
the required cooling water (Khan et al., 2017; Gingerich and
Mauter, 2018),

2. improving the energy efficiency of the integrated water-energy
system by increasing the amount of useful work done per unit
input fuel (Khan et al., 2017; Gingerich and Mauter, 2018),

3. providing a fresh and “renewable” source of potable/irrigation
water for cities (Cath et al., 2009; Guo and Englehardt, 2015;
Atab et al., 2016),

4. reclaiming the wastewater and mitigating the environmental
repercussions of discharging it into receiving waters
(McGovern and Bastian, 2009), and

5. creating a potential revenue stream for cities through selling
the reclaimed water (Dayton et al., 2016).

Many studies on the water-energy nexus assess the water
consumed in different processes involved in energy generation
(e.g., Bouckaert et al., 2014; Khan et al., 2017; Murrant et al.,
2017), or the energy consumed or produced during desalination
or water treatment (e.g., Al-Karaghouli and Kazmerski, 2013;
EPA, 2013; Gude, 2015; Buonocore et al., 2018). A subset of
these studies examines the direct integration of power plants
and desalination/water-treatment facilities. A part of these works
focuses on implementing small-scale combined heating and
power (CHP) or combined cooling, heating, and power (CCHP)
plants inside existing water or wastewater treatment facilities
to use the biogas from digestion processes (Chacartegui et al.,

2013; Caceres and Alca, 2016; Mehr et al., 2018; MosayebNezhad
et al., 2018). Other researchers have studied CHP/CCHP plants
powering the desalination processes, also called dual-purpose
or water-power plants. Examples of these articles are found in
Ferreira et al. (2010), Xianli et al. (2014), González-Bravo et al.
(2017), and Mata-Torres et al. (2019).

Of specific interest, Zhou et al. (2015) modeled a wastewater
treatment system based on forward osmosis (FO), which used the
waste-heat from a thermal power generator to recover the draw
solution of the FO process. Zhou et al. concluded that the FO
process can treat the boiler makeup water and desulfurize the flue
gas of all power plants in the US using the waste heat from the
plants. The detailed modeling in this study provides evidence for
the feasibility of combining a membrane-based treatment system
with a power plant to exploit the waste-heat from the facility
for wastewater treatment. In another study, Gabriel et al. (2016)
investigated the techno-economic feasibility of several use-cases
for excess heat from industrial processes. Gabriel et al. modeled
power and cooling generation, as well as seawater desalination,
using multi-effect and reverse osmosis processes to leverage
industrial waste heat.

More recently, Gingerich and Mauter (2018) studied 66
retrofit configurations to comply with scenarios of air and
wastewater emission regulations (planned for 2030) for a typical
coal-fired power plant. They combined several carbon capture
and wastewater treatment technologies to retrofit the plant and
use the electricity or residual heat and steam generated by the
plant. The potential revenue under each scenario was then used
to evaluate the combinations. The authors concluded that under
the strictest regulation scenario, maximum revenue would result
from allocating waste heat to amine-based carbon capture and
allocating electricity to a mechanical vapor recompression water
treatment system. This study is one of few in which the heat
and electricity consumption of modern wastewater treatment
technologies (including FO) are used to complement the
operation of a power plant. Notwithstanding, their optimization
algorithm adopted a single objective, and the operation of the
plant and the considered technologies were independent of time
and ambient temperature. Therefore, the effects of variations in
the energy and wastewater treatment load as well as the ambient
temperature on the operation of the facility were not captured.

Objective and Contributions
CCHP plants are a recurrent example of integrated energy
infrastructure in practice and research. These plants have shown
up to 30% higher overall energy efficiency than comparable
segregated energy systems (Rezaie and Rosen, 2012; DOE, n.d).
Despite the high efficiency of a CCHP plant, its constant
power-to-heat ratio often causes electricity and heating losses
(Díaz et al., 2010), as the electricity and heat demanded from
the plant to power the network throughout the day do not
necessarily align with this fixed ratio. Studies have shown that a
wastewater treatment system located within or near the CCHP
plant can effectively exploit any “excess” heat and electricity
(Elimelech and Phillip, 2011; Zhou et al., 2015), providing an
opportunity to design and optimize the water treatment and
energy systems concurrently. Given growing water scarcity in
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many urban areas around the globe, this integration is important
for curtailing the fresh water withdrawal used for dissipating
the excess heat due to energy generation (Luck et al., 2015;
Khan et al., 2017; Energy Information Administration, 2019)
and providing decentralized wastewater treatment systems at
the neighborhood scale. To realize this opportunity, this paper
proposes a framework to design and optimize the demand and
supply of integrated energy and water systems (water-energy
nexus) for environmental and economic sustainability in an urban
neighborhood on an hourly basis.

The contributions of this paper are as follows:

1. Hourly water demand profiles of 21 building types: This paper
creates, for the first time, the hourly water demand profiles
for 21 building archetypes which represent more than 70%
of the buildings in the US (Deru et al., 2011; Best et al.,
2015), for the climate zone of San Francisco County, CA.
This contribution is essential for integrating the design of
different infrastructure systems with the water system at the
neighborhood scale. Section Hourly Wastewater Treatment
Demand details this contribution.

2. Models for hourly energy consumption and life-cycle cost
of FO-RO and FO-MD wastewater treatment systems: This
paper introduces computational models of the specific energy
consumption, as well as the capital and operational costs
of, forward osmosis-reverse osmosis (FO-RO) and forward
osmosis-membrane distillation (FO-MD) treatment systems
as functions of the temperature and flow of the input
wastewater. These compact wastewater treatment systems
can be located within the energy plant, can use the waste
heat and electricity from the CHP engine to operate, and
can output water ranging in quality from irrigation to
drinking. These models provide a straightforward method to
include these high-performance treatment systems in large-
scale simulations of the water system, and enable integrated
design of a wastewater treatment system or desalination
system with the energy infrastructure. Section Wastewater
Treatment Module details the developed models.

3. Integrated approach to designing the wastewater treatment
and energy system: The framework proposed in this paper is
the first of its kind to concurrently design the optimal building
mix of an urban neighborhood and the systems supplying the
neighborhood with wastewater treatment, cooling, heating,
and electricity on an hourly basis. The proposed framework
is expected to inform urban planners and infrastructure
designers of a “range” of optimal configurations, e.g., in
terms of building mix or floor area ratio, for designing
a neighborhood, thereby allowing them to flexibly select
infrastructure systems and enact zoning rules leading to more
sustainable urban neighborhoods when measured in terms of
environmental and economic sustainability metrics. Unlike
the typical approach where the energy system is designed
independently from the wastewater treatment system, the
proposed method allows for designing urban neighborhoods
with lower life-cycle cost and emissions by reducing the energy
loss and by improving the overall efficiency of the integrated
energy system-wastewater treatment. The accuracy of the

outputs of this integrated framework depends directly upon
the accuracy of the models simulating the supply technologies,
i.e., the CCHP engines and the wastewater treatment system,
and the demand systems, i.e., the building models.

MODEL DEVELOPMENT

The model presented here extends and improves a previous
framework created by Best et al. (2015) in Python programming
language (Van Rossum, 2007). The original framework by Best
et al. (2015) was able to simulate the supply and demand of
energy for a community given its building uses and energy
supply equipment. Three main modules comprised the original
framework: (1) energy demand modeler, (2) energy supply
modeler, and (3) analyzer and optimizer. The first component,
“energy demand modeler,” could simulate the annual hourly
cooling, heating, and electricity demands from several building
archetypes and the associated losses at the supply and distribution
levels. The “energy supply modeler” could model the hourly
performance of a range of combined heating and power (CHP)
engines and chillers given the ambient conditions (e.g., ambient
temperature and pressure) as well as heating, cooling, and electric
loads imposed on the engines. The final component of the
framework, “analyzer and optimizer,” could (1) evaluate the life-
time performance of the supply equipment in terms of the
defined optimization objectives (e.g., annual carbon emissions,
life-cycle cost of equipment) and (2) using an evolutionary
algorithm generate a set of neighborhoods optimized with respect
to the optimization objectives.

This study extends the demand modeler from the framework
mentioned above by enabling it to model the hourly wastewater
treatment demands for the 21 building archetypes presented
by Best et al. (2015). This work also enables the supply-side
module in the mentioned framework to model wastewater
treatment systems and thermal energy storage. The former is
done by adding three wastewater treatment technologies to
the set of supply models developed by Best et al. (2015):
two modern hybrid treatment technologies, namely Forward
Osmosis-Reverse Osmosis (FO-RO) and Forward Osmosis-
Membrane Distillation (FO-MD), and one conventional central
treatment. These treatment technologies augmented with a
set of pre-treatment and post-treatment techniques can treat
input municipal wastewater up to a potable quality. Finally,
the triple optimization objectives in the original framework—
annual carbon emissions, total fuel cycle energy efficiency, and
undiscounted life-cycle cost of equipment—are reduced here
to two modified objectives—discounted life-cycle social cost
of carbon and discounted life-cycle cost of equipment, both
normalized by the total gross-floor area of the buildings in the
neighborhood. Figure 1 shows the flow diagram of the proposed
framework, showing the threemain components (supplymodule,
demand module, and analysis and optimization module) and
their subcomponents.

The following provides the semi-formal formulation of the
optimization problem solved by the proposed framework:

Objective Functions
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FIGURE 1 | Flow diagram of the proposed framework.

Minimize {Life-cycle cost (in $/m2), Social cost of carbon
(in $/m2)}

Decision Variables
Number of each building type (21 integers)
Type of the CHP engine (integer ǫ [1,32])
Type of the chiller (integer ǫ [1,16])
Type of the wastewater treatment system (integer ǫ [1,3])
Constraints
Sum of all building footprints must be less than 0.7 km2

Sum of all floor areas (i.e., total GFA) must be larger than 0.1
km2 but less than 3.3 km2

The following sections detail the demand module, supply
module, and optimization objectives.

Hourly Wastewater Treatment Demand
This work enables the demand module from Best et al. (2015)
to model the hourly wastewater treatment demands for the 21
building archetypes originally discussed by Best et al. (2015)
which represent more than 70% of the buildings in the US (Deru
et al., 2011). Table 1 shows a summary of the specifications for
these 21 building archetypes. The hourly wastewater outflow
for these building archetypes were modeled by converting the
potable water demand for each building into the wastewater
generated by the building. Table A2 in Supplemenatry Material

lists the references used to create the profiles of hourly water
use for these 21 building archetypes over the 12 months of the
year. As mentioned later in this article, San Francisco, CA, is
selected as the location of the test case study; hence, studies on
buildings located in San Francisco or in areas of California with
similar climates to San Francisco, e.g., Santa Barbara (“IECC
Climate Zone Map | Building America Solution Center”, 2012),
were used for synthesizing the water demand profiles for the 21

building archetypes. The water demand was considered only for
indoor use—outdoor use, comprisedmostly of irrigation use, was
disregarded in this study.

In converting water use to wastewater outflow, the
consumptive use of water in the buildings was conservatively
assumed negligible, i.e., the outflow of wastewater was taken
equal to the inflow of potable water. The average daily water use
of the four “residential” building types were calculated using
Equation (1).

Qd
w = GFA ∗ RESa ∗ Qc

w (1)

here Qd
w is the average daily indoor water use (m3/h), GFA is

the total gross floor area of the building (in m2), RESa is the
average number of residents per unit area (person/m2), and Qc

w

is the average daily indoor water use per capita for the building
(m3/h/person). For this equation, for each different building type,
the average number of residents per unit area was extracted from
Deru et al. (2011) and the average daily indoor water use per
capita was extracted from Carollo Engineers (2015). The average
daily water use (Qd

w) for all the other building types, except for
the mixed-use buildings, were calculated using Equation (2).

Qd
w = GFA ∗ Qa

w (2)

here Qa
w is the average daily indoor water use per unit area of the

building (m3/h/m2) based on US EIA (2017).
The average daily water use (Qd

w) of mixed-use building M1
(symbol explained in Table 1) was computed by combining the
average daily water uses of buildings R1 and C2 proportional to
the gross-floor-area assigned to each building type, i.e., 8,621 m2

of R1 and 784 m2 of C2, based on the definition of this mixed-
use building archetype (Best et al., 2015). The same approach was
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TABLE 1 | Specifications of each building type—modified from Best et al. (2015).

Symbol Type Building Gross floor area (m2) Number of stories

R1 Res Residential high-rise condo 9,405 12

R2 Res Residential midrise apartment 3,135 4

R3 Res Residential townhouse 392 2

R4 Res Residential single-family house 223 1

O1 Off Large office 46,320 12

O2 Off Medium office 4,982 3

O3 Off Small office 511 1

C1 Com Retail strip mall 2,090 1

C2 Com Stand alone retail 2,294 1

C3 Com Full-service restaurant 511 1

C4 Com Quick-service restaurant 232 1

C5 Com Supermarket 4,181 1

I1 Ind Warehouse 4,835 1

L1 Hos Large hotel 11,345 6

L2 Hos Small hotel 4,013 4

H1 Med Hospital 22,422 5

H2 Med Outpatient building 3,804 3

E1 Edu Primary school 19,592 1

E2 Edu Secondary school 6,871 2

M1 Res+Com Mixed use condo and retail 9,405 12

M2 Off+Com Mixed use large office and retail 46,320 12

followed for computing the average daily water use for mixed-use
building M2: the average daily water uses of buildings O1 and C2
were combined proportional to the gross-floor-area assigned to
each, i.e., 8,621 m2 of O1 and 784 m2 of C2.

Assuming the same water demand profile for every day in a
month, the wastewater demand of each building type at each hour
was calculated using Equation (3).

Qh, m
ww = Qd

w ∗ Ch
∗ Cm (3)

here Qh, m
ww is the wastewater outflow at hour h during month m

(m3/h), Qd
w is the average daily indoor water use (m3/h). Ch and

Cm are the hourly and monthly coefficients for converting the
average daily water use to water used at hour h and in month
m, respectively. The assumption of constant daily water demand
profiles for each day in a month enabled us to construct hourly
profiles of water demand over the entire year across several
building types within the same climatic region.We recognize that
such profiles do change but found that this information is lacking
in the technical and academic literature. Tables 2–4 list Qd

w, C
h

and Cm, respectively, for all the 21 building archetypes.

Wastewater Treatment Module
This work enables the framework proposed by Best et al. (2015)
to simulate wastewater treatment processes at the neighborhood
scale. For this purpose, three wastewater treatment technologies
are modeled and added to the supply module of the original
framework: two membrane-based treatment technologies,
namely FO-RO and FO-MD, and one conventional central
treatment plant (CTP). These treatment systems augmented with

TABLE 2 | Average daily water use for all the 21 building archetypes.

Building type Avg daily

use (m3/h)

Building

type

Avg daily

use (m3/h)

R1 2.1 C5 0.2

R2 0.7 I1 0.1

R3 0.1 L1 2.2

R4 0.1 L2 0.8

O1 3.1 H1 5.2

O2 0.3 H2 0.3

O3 0.0 E1 1.3

C1 0.1 E2 0.5

C2 0.2 M1 2.0

C3 0.9 M2 3.2

C4 0.3

pre-treatment and post-treatment processes can treat municipal
wastewater to a drinking quality. “Appendix B: Wastewater
Characteristics” in Supplementary Material shows the assumed
composition of the input wastewater, the required quality of the
output drinking water, and discusses the treatment capabilities
of FO-RO and FO-MD systems.

The advanced water/wastewater treatment technologies
Forward Osmosis (FO), Reverse Osmosis (RO), and Membrane
Distillation (MD) have recently received considerable attention
from researchers and practitioners for water reuse applications
(Alkhudhiri et al., 2012; Council, 2012; McCutcheon and Huang,
2013; Coday et al., 2014; Blandin et al., 2015; Shaffer et al., 2015;
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TABLE 3 | Monthly coefficients for all the 21 building types (average of all the 12-month coefficients for each building equals 1).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

R1 0.97 0.92 0.84 0.94 0.89 1.00 1.14 1.05 1.15 1.08 1.02 0.99

R2 1.01 0.93 0.88 0.97 0.93 1.03 1.10 0.99 1.14 1.02 1.03 0.96

R3 0.98 0.90 0.85 0.94 0.92 1.04 1.14 1.04 1.19 1.04 1.02 0.95

R4 0.98 0.90 0.85 0.94 0.92 1.04 1.14 1.04 1.19 1.04 1.02 0.95

O1 0.53 0.55 0.97 0.79 1.16 1.60 0.92 1.47 1.62 0.73 1.14 0.51

O2 0.53 0.55 0.97 0.79 1.16 1.60 0.92 1.47 1.62 0.73 1.14 0.51

O3 0.53 0.55 0.97 0.79 1.16 1.60 0.92 1.47 1.62 0.73 1.14 0.51

C1 0.97 0.78 0.93 0.93 1.03 1.11 1.16 1.10 0.98 0.97 1.04 0.99

C2 0.97 0.78 0.93 0.93 1.03 1.11 1.16 1.10 0.98 0.97 1.04 0.99

C3 0.88 0.71 0.70 0.74 0.93 0.85 1.26 1.30 1.45 1.39 1.01 0.78

C4 0.88 0.71 0.70 0.74 0.93 0.85 1.26 1.30 1.45 1.39 1.01 0.78

C5 0.97 0.78 0.93 0.93 1.03 1.11 1.16 1.10 0.98 0.97 1.04 0.99

I1 0.53 0.55 0.97 0.79 1.16 1.60 0.92 1.47 1.62 0.73 1.14 0.51

L1 0.94 0.99 1.14 1.06 1.05 1.03 1.04 1.00 0.95 0.96 0.95 0.90

L2 0.94 0.99 1.14 1.06 1.05 1.03 1.04 1.00 0.95 0.96 0.95 0.90

H1 0.80 0.75 1.00 0.99 1.13 1.09 1.14 1.11 1.12 1.07 0.90 0.89

H2 0.80 0.75 1.00 0.99 1.13 1.09 1.14 1.11 1.12 1.07 0.90 0.89

E1 1.25 1.11 1.09 1.03 1.29 0.55 0.53 0.44 1.16 1.28 1.17 1.10

E2 1.25 1.11 1.09 1.03 1.29 0.55 0.53 0.44 1.16 1.28 1.17 1.10

M1 0.97 0.92 0.84 0.94 0.89 1.00 1.14 1.05 1.15 1.08 1.02 0.99

M2 0.53 0.55 0.97 0.79 1.16 1.60 0.92 1.47 1.62 0.73 1.14 0.51

TABLE 4 | Hourly coefficients for all the 21 building types in “percent of total daily water use.”

Hour of the day (24-h basis)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

R1 2.7 1.8 1.3 1.1 1.0 1.8 3.8 4.9 5.6 6.0 6.0 5.3 5.5 4.9 4.4 4.2 4.3 4.5 5.7 5.7 5.5 5.5 4.6 3.9

R2 2.7 1.8 1.3 1.1 1.0 1.8 3.8 4.9 5.6 6.0 6.0 5.3 5.5 4.9 4.4 4.2 4.3 4.5 5.7 5.7 5.5 5.5 4.6 3.9

R3 1.9 1.4 1.2 1.1 1.4 2.6 5.0 6.6 6.4 6.4 5.8 5.4 4.9 4.3 4.0 4.3 4.6 4.9 5.4 5.5 5.2 4.8 4.1 3.0

R4 1.9 1.4 1.2 1.1 1.4 2.6 5.0 6.6 6.4 6.4 5.8 5.4 4.9 4.3 4.0 4.3 4.6 4.9 5.4 5.5 5.2 4.8 4.1 3.0

O1 5.2 4.8 5.8 5.2 4.5 3.4 3.1 2.6 3.7 5.7 4.5 4.7 3.7 3.9 2.8 4.2 2.3 2.9 2.2 2.5 4.6 6.2 5.7 5.8

O2 5.2 4.8 5.8 5.2 4.5 3.4 3.1 2.6 3.7 5.7 4.5 4.7 3.7 3.9 2.8 4.2 2.3 2.9 2.2 2.5 4.6 6.2 5.7 5.8

O3 5.2 4.8 5.8 5.2 4.5 3.4 3.1 2.6 3.7 5.7 4.5 4.7 3.7 3.9 2.8 4.2 2.3 2.9 2.2 2.5 4.6 6.2 5.7 5.8

C1 1.3 2.5 2.0 2.8 2.2 1.6 1.9 2.1 3.2 4.2 6.1 6.8 6.9 8.0 8.4 6.6 6.2 6.5 5.4 5.1 4.4 3.3 1.7 1.0

C2 1.3 2.5 2.0 2.8 2.2 1.6 1.9 2.1 3.2 4.2 6.1 6.8 6.9 8.0 8.4 6.6 6.2 6.5 5.4 5.1 4.4 3.3 1.7 1.0

C3 2.2 4.7 1.2 3.5 3.2 1.8 1.8 2.0 4.1 4.2 4.5 5.2 5.3 5.8 6.3 4.7 3.9 4.4 5.0 5.2 5.8 5.6 5.5 4.3

C4 2.2 4.7 1.2 3.5 3.2 1.8 1.8 2.0 4.1 4.2 4.5 5.2 5.3 5.8 6.3 4.7 3.9 4.4 5.0 5.2 5.8 5.6 5.5 4.3

C5 2.7 3.1 3.5 5.6 5.7 4.8 3.9 4.0 4.2 4.2 4.3 4.8 4.8 4.7 4.6 4.5 4.4 4.3 4.4 4.2 3.9 3.7 3.1 2.8

I1 5.2 4.8 5.8 5.2 4.5 3.4 3.1 2.6 3.7 5.7 4.5 4.7 3.7 3.9 2.8 4.2 2.3 2.9 2.2 2.5 4.6 6.2 5.7 5.8

L1 2.8 2.6 2.4 2.2 2.5 3.1 4.0 6.1 5.4 5.0 5.5 4.9 4.7 4.8 4.8 4.9 4.6 4.5 4.6 4.4 3.9 4.0 4.4 3.9

L2 2.8 2.6 2.4 2.2 2.5 3.1 4.0 6.1 5.4 5.0 5.5 4.9 4.7 4.8 4.8 4.9 4.6 4.5 4.6 4.4 3.9 4.0 4.4 3.9

H1 2.6 2.6 2.5 2.4 2.7 3.0 3.1 3.9 4.7 6.1 6.4 5.2 5.2 6.3 6.6 5.8 5.2 4.2 4.7 4.9 3.1 2.9 3.1 2.8

H2 2.6 2.6 2.5 2.4 2.7 3.0 3.1 3.9 4.7 6.1 6.4 5.2 5.2 6.3 6.6 5.8 5.2 4.2 4.7 4.9 3.1 2.9 3.1 2.8

E1 5.1 5.0 4.3 4.6 4.3 3.6 3.7 4.6 4.0 2.8 4.1 4.3 2.8 4.3 4.0 4.4 3.7 4.0 3.9 4.4 4.4 5.0 4.5 4.7

E2 5.1 5.0 4.3 4.6 4.3 3.6 3.7 4.6 4.0 2.8 4.1 4.3 2.8 4.3 4.0 4.4 3.7 4.0 3.9 4.4 4.4 5.0 4.5 4.7

M1 2.7 1.8 1.3 1.1 1.0 1.8 3.8 4.9 5.6 6.0 6.0 5.3 5.5 4.9 4.4 4.2 4.3 4.5 5.7 5.7 5.5 5.5 4.6 3.9

M2 5.2 4.8 5.8 5.2 4.5 3.4 3.1 2.6 3.7 5.7 4.5 4.7 3.7 3.9 2.8 4.2 2.3 2.9 2.2 2.5 4.6 6.2 5.7 5.8

Guizania et al., 2019). This is partly because these technologies
are more compact, require lighter maintenance, are easier to
automate, and can more effectively remove pathogens compared

to traditional treatment systems (Council, 2012). These systems
have consistent effluent quality and can potentially reduce the
chemical demand of the treatment process (Council, 2012).
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Such qualities make these technologies ideal for implementing
at a combined cooling, heating, and power (CCHP) plant
with limited space, and for treating domestic wastewater to
drinking water quality—a procedure which requires robust
treatment processes.

RO and MD membranes suffer irreversible fouling (Husnain
et al., 2015a,b; Kim et al., 2018). This phenomenon gradually
reduces the water flux, demanding frequent replacement of
the membrane. FO can largely mitigate this problem when
used as a pretreatment step for RO (Cath et al., 2005; Zaviska
and Zou, 2014; Kim et al., 2018) and MD (Husnain et al.,
2015a,b). FO prevents the foulants from reaching the RO or MD
membrane, whereas the resulting fouling of the FO membrane
is mostly reversible and can be resolved with backwashing
and chemical cleaning (Husnain et al., 2015a,b). Further, FO-
pretreatment filters the bacteria, viruses, and organic and
inorganic compounds (Zaviska and Zou, 2014; Akther et al.,
2015) making for a more robust treatment.

“FO-RO” (Figure 2) and “FO-MD” (Figure 3) are the hybrid
treatment processes resulting from combining FO process with
RO andMD. The wastewater treatmentmodule in the framework
introduced here incorporates these two systems as the main
“integrated” wastewater treatment technologies, i.e., treatment
technologies collocated with the energy supply equipment. This
module takes as its input the volume of hourly wastewater
produced by the neighborhood and the ambient temperature
(taken as the temperature of the wastewater). Assuming a 24-h
storage capacity for the input wastewater, the module calculates
the maximummembrane area required to treat the 24-h moving-
average of the inflow over the entire year. This number is
used to calculate the capital and operational expenses of the
treatment systems. The treatment module also outputs (1) the
hourly electricity and heat demand of the selected treatment
models (which will be supplied by the CHP engines), and (2)
the operational electricity requirement as well as the initial
and operational expenses associated with the pre-treatment
processes, e.g., screening, and the post-treatment processes, e.g.,
disinfection and pH adjustment. The calculation of life-cycle
expenses for the treatment modules also considers the costs
associated with chemicals, labor, retentate handling, and all the
other expenses required for normal operation of a treatment
plant (Al-Obaidani et al., 2008; McGivney and Kawamura,
2008).

Both treatment models consume electricity while the FO-
MD also consumes low-grade heat to treat the wastewater. This
characteristic was the other reason for selecting these systems to
be integrated with the CCHP plant: these wastewater treatment
technologies can consume the unused heat and electricity
generated by the CHP engine, and thus mitigate the loss of
primary energy and increase the efficiency of the integrated
CCHP-wastewater treatment plant over the levels achievable
using segregated systems. FO-RO only requires electricity to
operate while FO-MD mostly requires heat: FO-RO consumes
3.34 kWh of electricity, while FO-MD consumes 33.2 kWh of
heat and 0.55 kWh of electricity to treat 1 m3 of input wastewater
at 20◦C. The optimization algorithm is expected to favor FO-RO
for treating the wastewater in cases with large amounts of extra

FIGURE 2 | Schematic diagram of the FO-RO hybrid wastewater treatment

system.

FIGURE 3 | Schematic diagram of the FO-MD hybrid wastewater treatment

system. The hot water produced by the CHP engine acts as the “Heat

Source”.

electricity (generated by the CHP engine), and to favor FO-MD
in cases with large quantities of extra heat. As Figure 3 shows, the
excess heat produced by the CHP engine will be used to heat the
feed water to the MD process, while the ambient air will be used
to cool the product water and concentrated draw solution. The
induced temperature difference will provide the vapor pressure
difference required to run the MD process. “Appendix C: FO-
RO” and “Appendix D: FO-MD” in Supplementary Material

detail the mathematical models developed for simulating the

Frontiers in Sustainable Cities | www.frontiersin.org 8 March 2022 | Volume 4 | Article 856996

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles


Rezazadeh Kalehbasti et al. Optimization of Water-Energy Nexus

FO-RO and FO-MD systems, respectively, with overall water
recovery ratios (RR) of 50%.

In addition to the integrated treatment systems, a
conventional wastewater treatment plant was modeled according
to the treatment plant serving the location of the case study in San
Francisco. “Appendix E: CWWTP” in Supplementary Material

describes the model developed for computing the electricity
requirements and expenses associated with this central plant. The
wastewater treatment module takes as its input the aggregated
hourly demands of the neighborhood for wastewater treatment,
and computes the required cost and electricity (1.1 kWh per 1
m3 of input wastewater) to process this wastewater as well as the
emissions due to the treatment process. The resulting heating
and electric loads are added to the rest of the heating and electric
loads imposed on the CHP engine. This module also considers
the costs of chemicals, labor, bio-solid and retentate handling,
and all the other expenses required for normal operation of a
treatment plant (McGivney and Kawamura, 2008).

Thermal Energy Storage Model
This study enables the supply-sidemodeler from Best et al. (2015)
to model Sensible Thermal Energy Storage (TES). Hot water
storage tanks are selected and modeled for this purpose: hot
water generated by the CHP engine for heating with a source
temperature of 85◦C (Best, 2016) is assumed to get stored in the
TES and discharged to satisfy the heating loads when necessary.
Four primary factors contribute to the heat loss in a storage
tank (Dincer, 2002): heat loss to the surrounding environment,
heat conduction between the segments of the storage fluid with
higher and lower temperatures (due to the stratified storage of hot
water), vertical conduction in the tank wall, and mixing of water
during charging and discharging. “Capacity model,” a common
loss model (Schütz et al., 2015), assumes the hot water tank to
contain a homogenous fluid. With this assumption, the thermal
storage at each time-step can be calculated using Equation (4):

TES (t) =
[

1 − kv
]

∗ (TES (t − 1) + 1t.Hin
TES,t) (4)

where TES is the energy stored in the TES at time t [in kW], kv is
a temporal loss factor (assumed 0.0534% based on Schütz et al.,
2015), 1t is the time interval (1 h), and Hin

TES,t [in kW] is the
net heat flow into the TES tank at time-step t (positive for net
charging and negative for net discharging of the tank).

Equation (5) was extracted from IEA-ETSAP and IRENA
(2013) to calculate the capital costs of a TES tank.

TESCAPEX [$] ∼= 95 ∗ TESCap ∗ 1.17 (5)

here, TESCap is the capacity of the TES [in MWh], and 1.17 is a
factor converting 2008 USD to 2019 USD (CPI, 2020). The TES
is sized to store enough hot water to satisfy 6 h of maximum
aggregate heating demand from the buildings that is computed
for each designed neighborhood. The unused heating, in the form
of hot water, at each hour gets stored in the TES tank, and the
stored hot water in the tank is the first resource responding to
heating demand at each hour, i.e., TES has priority over the CHP
engine for satisfying the heating demand.

Objective Functions
The original objective functions defined by Best et al. (2015)
comprised undiscounted life-cycle cost of equipment, annual
CO2 emissions of equipment, and total-fuel-cycle energy
efficiency. In this study, the energy efficiency metric was removed
from the set of objectives, as it was considered intangible and
with no direct monetary or environmental consequences which
were not captured by the other two objectives. Reducing the
number of optimization objectives lowered the complexity of
the optimization algorithm: now, the algorithm needs to inspect
only two objectives rather than three when comparing different
neighborhoods and finding the most optimal ones.

Further, the two optimization objectives for carbon emissions
and life-cycle cost were normalized by the GFA of the
neighborhood. Without this normalization, the optimization
algorithm would only favor neighborhoods with low emissions
or low operational costs regardless of their size: e.g., a small
neighborhood with 10,000 ft2 of total GFA, would be equivalent
to a 1,000,000 ft2 neighborhood if they both have the same
values of annual carbon emissions and life-cycle cost. However,
the larger neighborhood is satisfying a much larger demand
in a far more sustainable way than the smaller neighborhood.
Normalization addresses this error, enabling the optimization
method to achieve optimal (sustainable) neighborhoods with a
variety of sizes.

Also, to make more tangible the environmental impacts
of building and operating the neighborhood, Social Cost of
Carbon (SCC) was used to convert the annual carbon emissions
into dollar values representing the social, environmental, and
economic damage resulting from CO2 emissions (EPA, 2016).
Among the different models used to calculate SCC, the version
created by US Environmental Protection Agency (EPA) was
chosen to be used here (EPA, 2016). “Appendix F: Social Cost
of Carbon” in Supplementary Material presents the regression
function used to calculate the SCC for each year over the
design period. In this new objective function, the carbon
emissions associated with the construction of the equipment
were also accounted for in addition to the operational emissions.
The construction costs were converted into equivalent carbon
emissions using conversion factors from EIO_LCA database
(Carnegie Mellon University, 2007) for the construction of
utilities: 243 Tons of CO2e was assumed to result from 1 million
2007 USD worth of economic activity.

TEST CASE AND DISCUSSION

Introduction
To showcase the capabilities of the proposed framework in co-
optimization of supply and demand as well as integrated design
of water and energy infrastructure, a case study was conducted
based on that proposed by Best et al. (2015). Best et al. modeled a
160-acre greenfield development in Civic Center, San Francisco,
and simulated the electricity, cooling, and heating demands of
21 building archetypes (presented in Table 1) using EnergyPlus
ver. 8.0.0 (Crawley et al., 2001). Best et al. also modeled 32
CHP engines and 16 chillers as the set of supply equipment. The
same 160-acre development, building archetypes, CHP engines,
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and chillers are considered in this study with the following
modifications: (i) Hourly wastewater treatment demands were
added to the set of energy demands of the buildings, (ii) Thermal
Energy Storage and three wastewater treatment technologies
(namely, FO-RO, FO-MD, and CWWTP) were added to the
original set of supply models, and (iii) the optimization objectives
were changed to GFA-normalized life-cycle cost of equipment
and life-cycle social cost of carbon.

The proposed model was run for two scenarios: (i) In the
first one, the building mix and energy system were designed
and optimized together, while a conventional central wastewater
treatment plant (CWWTP) treated the wastewater from the
buildings, and (ii) in the seconds scenario, the building mix,
energy system, and wastewater treatment system were optimized
and designed concurrently. In the first scenario, the grid was
assumed to supply the electricity required by the CWWTP, and
grid emissions for generating this electricity were attributed to
the CWWTP. The emissions and expenses of the CWWTP were
in turn attributed to the neighborhood in proportion to the ratio
of the “average daily wastewater output of the neighborhood” to
“57 MGD” (i.e., the actual average daily input of the treatment
plant). Since the existing CWWTP serving the location of the
case study, i.e., Southeast Treatment Plant (SF PUC, 2019),
does not produce potable water, it was arbitrarily replaced by
a conventional treatment plant of the same size but capable
of producing potable water—as also explained in Appendix E:
CWWTP Model in Supplementary Material. This modification
was necessary to make the two scenarios comparable. In the
seconds scenario, a combined CCHP-wastewater treatment plant
(CCHP-WWTP) supplied the energy and wastewater treatment
demand of the buildings.

Both scenarios were designed for minimum life cycle cost of
equipment (LCC) and minimum social cost of carbon (SCC).
The LCC optimization objective incorporated the construction
and discounted operation and maintenance costs of only the
CCHP plant for the first scenario, and the entire CCHP-WWTP
for the seconds. The SCC optimization objective considered the
construction and discounted operation costs of carbon emissions
associated with only the CCHP plant for the first scenario, and
the entire CCHP-WWTP for the seconds. Both scenarios were
simulated for 20 year of operation with a 3.5% discount rate.
The neighborhoods generated by the optimization algorithm
were compared in terms of their total (i.e., including those
associated with the CWWTP) life cycle cost of equipment,
operational and construction GHG emissions, types of supply
technologies, and building mix among other metrics. The LCC
and SCC calculations excluded the reuse and redistribution of the
recovered water.

The excess electricity generated during each hour was
assumed to be sold back to the grid at 80% of the purchase
price at that hour which was extracted from CAISO for year
2018 (California ISO, 2019). The hourly ambient temperature
for the case study was extracted from TMY3 dataset for the
San Francisco International Airport (Wilcox and Marion, 2008).
Further, the grid emissions for each hour were extracted from
Beyond Efficiency (Beyond Efficiency, 2017) for year 2016.

Results and Analysis
The two scenarios, namely scenario 1 (conventional design) and
scenario 2 (integrated design), were simulated each using an
Intel Xeon E5-2640v4 processor (10-core Broadwell, 2.40 GHz)
with 800 MBs of effective memory use over 145 mins of CPU
wall-clock time. The map method from Scoop library (Hold-
Geoffroy et al., 2014) was used to parallelize the map calls to
Genetic Algorithm (GA) methods from Deap library (Fortin
et al., 2012). The advantage of using a GA for solving this problem
is that it does not require assignment of weights to either of
the two objective functions, and instead enables simultaneous
optimization of both objectives (Deb et al., 2002). The GA
algorithm, NSGA-II, used the following optimization parameters
based on the recommendations of Best et al. (2015):

Number of generations = 1,000; Population = 200; Mutation
Probability = 0.05; Similarity Parameter = 2.5; Crossover
Probability= 0.75.

Substituting series data processing with parallelized Numpy
(Oliphant, 2006) operations, reducing the number of objective
functions from three to two, and other minor technical
upgrades cut the optimization runtime by 97% compared to
the optimization with the same configurations done using
the original framework in Best et al. (2015). Of the 200,000
neighborhoods produced by the GA algorithm for each
scenario, 93,210 for scenario 1 and 87,644 for scenario 2
had admissible total GFA (i.e., less than 3,237,485 m2) and
site GFA (i.e., less than 647,497 m2). These neighborhoods
are called the “admissible neighborhoods” from this
point on.

Figure 4 shows the two GFA-normalized objective functions
of the optimization, social cost of carbon vs. life-cycle cost,
for all the admissible neighborhoods with SCC values less
than 0.10 k$/m2, i.e., the 99.8th and 99.7th percentile of SCC
across all neighborhoods in the first and the seconds scenario,
respectively. Earlier generations of neighborhoods produced by
the GA are plotted using symbols that are more transparent
than the later ones. One outstanding observation from Figure 4

is that the optimization algorithm has successfully identified
paths to designing neighborhoods with minimum LCC and SCC
over consecutive generations: the dots (neighborhoods) closer
to the origin (which has the ideal lowest SCC and LCC, i.e.,
0 kg of lifetime CO2 emissions and $0 of life-cycle cost) are
more opaque (belong to later generations) than the dots farther
away from the origin. Figure 4 also offers an insight on the
comparison between the two scenarios: the blue dots in the
figure are generally located lower than their adjacent red dots.
This implies that the integrated design scenario, scenario 2,
has resulted in neighborhoods with generally lower SCC than
those of conventional design, scenario 1, for the same values
of LCC.

Figure 5 shows the approximate Pareto fronts of the two
scenarios for the objective functions, life-cycle cost and life-cycle
social cost of carbon, highlighted in yellow. In the Pareto optimal
solutions, the SCC values of the integrated approach seem to
be about 1/3 the SCC values of the segregated approach, while
the LCC values of these solutions are similar between the two
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FIGURE 4 | Life-cycle social cost of carbon vs. life-cycle cost of equipment for the individual neighborhoods (single dots on the plot), with SCCs less than 0.1 k$/m2,

generated by the optimization algorithm for the analyzed scenarios. Neighborhoods generated in later generations by the Genetic Algorithm are shown more opaque

than the earlier generations (Red dots: conventional design, blue dots: integrated design).

scenarios. These two observations about the Pareto fronts comply
with the general trends deduced in the previous paragraph.

To get a better understanding of the distribution of
performance metrics across the designs produced by the
two scenarios, standard deviation (SD), mean (average), 25th
percentile, 50th percentile (median), and 75th percentile of
LCC, SCC, annual aggregated energy demand, and annual
wastewater treatment demand for all the neighborhoods resulting
from the two design scenarios were calculated—Table 5 shows
the results. The annual aggregated energy demand for each
neighborhood was calculated by summing the total electricity
and heating demand of the buildings and supply equipment
(including chillers and treatment systems) over 8,760 h of the
year. In this table, “CCHP | CWWTP” denotes scenario 1, and
“CCHP+WWT” denotes scenario 2. The numbers in Table 5 are
unitless since the values of each metric for each variable, e.g.,
25th percentile of LCC, for both scenarios are normalized by the
value of the scenario 1. This facilitates comparing the statistical
metrics of the seconds scenario against those of the first scenario
by converting the metrics of the first scenario into unity.

The results in Table 5 show that integrated design of energy
and wastewater treatment systems has resulted in lower life-cycle
carbon emissions and cost as well as lower annual energy and
wastewater treatment demands compared to a separate approach
to the design of these two infrastructure systems. The difference
in life-cycle social cost of carbon is the most noticeable, with
scenario 2 having a mean value 56% lower than scenario 1. The
reduction in mean values of annual demands from scenario 1
to 2 is ca. 40%. Comparing the SDs of the two scenarios also
offers another observation: the optimal neighborhoods produced
by the GA under scenario 2 are closer (more uniform) in

terms of the four parameters inspected in Table 5. This can
imply the existence of some neighborhoods with dominant genes
(i.e., configurations resulting in very low SCC and LCC) in the
population of scenario 2 which have been identified by the GA
and sustained across multiple generations of the analysis.

To further inspect the differences between the designs
resulting from the two scenarios, K-Means Clustering (KMC)
was used to create clusters of similar individuals among
the admissible neighborhoods based on eleven features: the
seven building-type ratios (i.e., GFA associated with each
building type divided by the total GFA of the neighborhood),
GFA-normalized LCC and SCC, and GFA-normalized
annual energy and wastewater treatment demands. The
features were standardized before clustering, and K-Means
Clustering method from Scikit-Learn library (Pedregosa
et al., 2011) was used to conduct the clustering with the
following variables:

Initialization_method: “k-means++”; max_iterations: 300;
n_init: 10; random_state: 42; tol: 0.0001.

Euclidean distance was selected as the measure of proximity
for clustering. The number of clusters was varied between 8
and 40 to find the highest average Silhouette Score (Rousseeuw,
1987) and lowest cost function across all clusters: for both
scenarios, the highest Silhouette scores (0.53 for scenario 1, and
0.32 for scenario 2) were obtained for 10 clusters. However,
the cost function (i.e., sum of squared distances to centroids)
for the 10-cluster configuration was high −233,834 (2.51 per
individual) and 257,098 (2.93 per individual) for scenarios 1 and
2, respectively—and the clusters were unevenly populated. To
solve this issue, the number of clusters was set to 26 (scenario
1) and 40 (scenario 2) which had yielded other local optima of
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FIGURE 5 | The approximate Pareto fronts of the life-cycle social cost of carbon vs. life-cycle cost of equipment for (A) scenario 1 and (B) scenario 2.

the Silhouette Score among the tested number of clusters. These
new cluster counts resulted in acceptably reduced cost functions
of 105,064 (i.e., 1.1 per each neighborhood) for scenario 1 and
107,026 (i.e., 1.2 per each neighborhood) for scenario 2 with
Silhouette scores of 0.36 and 0.31, respectively.

After the KMC algorithm converged, clusters with less than
500 members were removed to prune out the outliers, and the
remaining centroids (19 centroids for scenario 1, and 27 for
scenario 2) were plotted in Figure 6. Each cluster centroid in
this figure is shown as a continuous, unicolor line across the

eleven variables along the x-axis, and the thickness of each line
is proportional to the number of neighborhoods represented by
that centroid. SCC, LCC, and the annual energy and wastewater
demands for both scenarios in Figure 6 are normalized by the
maximum values of each variable from both scenarios, and are
presented in percent.

Figure 6 shows that the building mix and normalized annual
energy and wastewater demand for the most populous clusters
of optimal neighborhoods for both design approaches cover
roughly the same ranges of values. However, the most populated
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TABLE 5 | Statistical comparison between the results of scenario 1 (segregated) and scenario 2 (integrated).

Scenario Variable SD Mean 25th 50th (Med) 75th

1
LCC (

$

m2

$

m2

)
1.00 1.00 1.00 1.00 1.00

2 0.65 0.89 0.87 0.80 0.61

1
SCC (

$

m2

$

m2

)
1.00 1.00 1.00 1.00 1.00

2 0.60 0.44 0.29 0.25 0.22

1
Annual E Demand (

MWh

m2
MWh

m2

)
1.00 1.00 1.00 1.00 1.00

2 0.38 0.63 0.85 0.92 0.61

1
Annual WW Demand (

m3
m2
m3
m2

)
1.00 1.00 1.00 1.00 1.00

2 0.40 0.72 0.92 0.80 0.61

The cell colors in the table range from sharp red for a normalized value of 1 to sharp green for a normalized value of 0.

FIGURE 6 | Traces of the cluster features—i.e., building area percentages for Residential, Office, Commercial, Industrial, Hospitality, Medical, and Educational

buildings (Table 1 shows the building types belonging to each of these building-uses), normalized LCC and SCC, normalized annual energy (Anl_E), and wastewater

treatment demand (Anl_WW)—across the centroids of the clustered neighborhoods for (A) scenario 1 and (B) scenario 2. Each centroid is shown as a unicolor line

connecting eleven points across the seven building-uses and the four metrics.

clusters in scenario 2 have lower GFA-normalized SCC and
LCC than those of scenario 1, corroborating the statistical
data from Table 5. Also implied by the low standard deviation
values of scenario 2 in Table 5, the most populous centroids
of scenario 2 in Figure 6 are spread over smaller ranges of

the eleven parameters plotted in the figure. The GFA ratios
of individual building types show that (i) the percentage of
residential buildings ranges from 0 to 60% for both scenarios,
(ii) the office buildings range from 30 to 95% in scenario 1
and from 15 to 100% in scenario 2 with a high concentration
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around 80 to 100%, (iii) industrial and educational buildings are
mostly negligible in scenario 1, while they range from 0 to 10% in
scenario 2, and (iv) hospitality and medical buildings are mostly
negligible in scenario 1 with two exceptional clusters showing
∼30 and ∼60% hospitality and medical type-ratios, while they
range from 0 to 20% in scenario 2. These ranges show that the
integrated design has resulted in a more diverse building mix
among the optimal designs.

Figure 6 offers another interesting observation: the building
mix in the majority of optimal neighborhoods from both
scenarios have a low share of residential buildings, a medium
to high share of office buildings, low shares of educational
and industrial buildings (in scenario 2), and trivial shares of
commercial, hospitality, and medical buildings. This mix of
building types seems to provide the lowest LCC and SCC per
unit area among all possible building mixes inspected by the
optimization algorithm and is hence predominant among the
optimal building mixes for both scenarios.

The types of selected supply equipment -were also analyzed
for the admissible neighborhoods from both scenarios to identify
the connections between the choices of supply equipment choices
and metrics of life-cycle performance. Figure 7 shows for the
two scenarios the normalized SCC against the types of CHP
engines selected in neighborhoods with SCCs less than 0.1
k$/m2, i.e., the 99.8th percentile of the first scenario and 99.7th
percentile of the seconds. In both cases, the neighborhoods with
smallest SCCs use biomass/biogas, or fuel-cell CHP engines,
which is consistent with the fact that the operation of these
engines is deemed carbon-neutral since they are assumed to
use renewable fuels (Best et al., 2015). The Pareto optimal
solutions marked in Figure 5 are expected to be among
these neighborhoods with carbon-neutral CHP engines, since
the Pareto optimal solutions also have very low SCC values
compared to the rest of the solutions. The neighborhoods
designed with carbon-neutral CHP engines in scenario 1 seem
to have a lower SCC compared to neighborhoods using the
same engines in scenario 2. Further, since a large portion
of the CHP engines selected in both scenarios for the local
energy system are those with negligible operating emissions,
supplying the wastewater treatment equipment with the local
energy system in the integrated scenario would expectedly
result in a much smaller life-cycle emission (SCC) compared
to supplying the treatment equipment with the electric grid in
the segregated scenario. These observations justify the lower
SCC values of scenario 2 compared to scenario 1. Figure 7 also
shows that the Genetic Algorithm has favored gas engines (i.e.,
gas turbines, microturbines, reciprocating engines, and steam
turbines) much less than the carbon-neutral CHP engines in
both scenarios given the significantly higher emission rates of the
gas engines.

Figure 8 also shows the normalized SCC vs. the types
of chillers chosen for those neighborhoods in the analyzed
scenarios which had SCCs less than 0.1 k$/m2. Low-emission
neighborhoods have been possible to create using all types of the
available chillers.

Figure 9 shows the wastewater treatment (WWT) systems
selected by the optimization algorithm for scenario 2. FO-MD

has resulted in more low-emission neighborhoods than the other
WWT system. Before, Figure 7 indicated that biomass engines
were popular with low-emission neighborhoods. Most of the
available biomass engines in the simulation framework have
power-to-heat ratios lower than 0.42, which means they generate
more heat than electricity in response to the energy demand.
Part of the reason for popularity of FO-MD among the low-
emission neighborhoods seems to be that this treatment system
can “recycle” the excess heat generated by the carbon-neutral
biomass engines selected for these neighborhoods. This excess
heat can also be used for dewatering the solid residue from the
treatment process (Scherson and Criddle, 2014) (discussed in
more detail in Section Conclusions and Future Work).

Figure 6 suggests a relationship between the oscillations in
ratios of different building types with the values of SCC, LCC, and
the annual demands. In a final analysis, the Pearson correlation
matrices between the eleven variables plotted in Figure 6 were
computed to inspect the linear relationships between these
variables. Figure 10 shows the resulting correlation matrices
for both scenarios. Normalized LCC and SCC are not strongly
related to any other variables than each other, while normalized
annual energy and wastewater demand seem to be negatively
correlated with the ratio of office buildings in the neighborhoods.
The latter is rooted in the low energy- and water-use intensities of
the office buildings. The normalized annual demands also show
a strong direct linear relationship with each other, meaning that
neighborhoods with high annual wastewater treatment demands
tend to have high annual energy demands and vice versa. Further,
annual energy demand seems to be directly proportional to
the percentage of medical buildings. This is caused by the
high energy-use intensity of the medical buildings. The annual
wastewater demand in scenario 2 also shows a strong collinearity
with the percentage of residential buildings, which is caused
by the high water-use intensity of these building types. Among
the building type ratios, percentages of hospitality and medical
buildings in both cases and commercial buildings in scenario
2 are negatively collinear with that of office buildings. The
optimization algorithm seems to have strongly preferred office
buildings in reverse proportion to the residentials, especially in
the integrated design scenario.

CONCLUSIONS AND FUTURE WORK

This paper studies the advantages of integrated design and
optimization of the wastewater treatment and energy systems
at the district scale over the segregated design of these
infrastructure systems in terms of environmental and economic
sustainability metrics. The supply and demand of the integrated
water-energy system are also concurrently considered and
optimized. Annual hourly wastewater treatment demands from
several building archetypes as well as advanced membrane-
based and conventional central wastewater treatment systems
are modeled to cover both the decentralized (integrated) and
centralized (conventional) wastewater treatment configurations.
An optimization framework is proposed for the integrated
design of water and energy infrastructure and a case study
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FIGURE 7 | Social cost of carbon vs. CHP type for (A) scenario 1 and (B) scenario 2, across all individual neighborhoods with SCCs less than 0.1 k$/m2. Each

neighborhood is represented by a single dot in the plot.

in San Francisco is adopted to compare the outcomes of
the conventional (segregated) vs. the integrated approach to
the design.

The results of the case study show consistently lower
normalized social cost of carbon, life-cycle cost of equipment,
annual energy demand, and annual wastewater treatment
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FIGURE 8 | Social cost of carbon vs. Chiller type for (A) scenario 1 and (B) scenario 2, across all individual neighborhoods with SCCs less than 0.1 k$/m2. Each

neighborhood is represented by a single dot in the plot.

demand across the neighborhoods designed using the integrated
vs. segregated approach, with the median values of these
metrics for the seconds scenario being, respectively, 75, 20,
8, and 20% lower than those of the first scenario. These

advantages of the integrated scenario can be attributed first
to simultaneous optimization of the wastewater treatment and
energy system in this scenario, and also to supplying the
treatment system with the low to no-emission CHP engines
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FIGURE 9 | Social cost of carbon vs. WWT type for scenario 2 across all individual neighborhoods with SCCs less than 0.10 k$/m2, i.e., the 99.7th percentile of SCC.

Each neighborhood is represented by a single dot in the plot.

of the local energy system vs. supplying the treatment system
with the electric grid in the segregated scenario. The results
also showcase the economic and environmental viability of
advanced wastewater treatment systems despite higher capital
costs compared to conventional systems, when these advanced
treatment processes are (i) optimized at the same time as the
energy systems, (ii) physically and operationally integrated with
the energy systems, and (iii) analyzed over the life-cycle of
the neighborhood.

The results also show that the building mixes of the
neighborhoods generated under the two scenarios have
similarities. This indicates that the districts designed for
segregated water and energy systems can adopt integrated
infrastructure with minimal modifications and without altering
the building mix of the district. The considerable savings in
emission and costs achieved by taking an integrated approach
to the design of the water and energy infrastructure indicate the
potential for integrating more infrastructure systems during the
early-stage design of neighborhoods using approaches similar
to that taken in this study. It is expected that the gains in
sustainability of the integrated vs. the conventional design of
infrastructure will become yet more significant as more systems,
over longer analysis periods, and larger spatial scopes are
designed concurrently.

Future extensions of this research can address three general
topics: the wastewater treatment model, the building and
energy system models, and the optimization algorithm. Below
are some of the potential future studies on the wastewater
treatment model:

1. This study implicitly addresses handling of retentate from
the treatment process; however, given its large environmental

impacts, this topic merits in-depth analysis in future studies.
In theory, Anaerobic Digestion (AD) combined with syngas
processing of biosolids and/or short-cut nitrogen-removal
systems could be used to minimize residuals and produce
up to 0.35 kWh of energy per 1 m3 of wastewater treated
(Scherson et al., 2013; Scherson and Criddle, 2014). AD
can also be combined with emerging anaerobic secondary
treatment systems, like the SAF-MBR with air-stripper
(Stanford University, 2021), to maximize methane recovery
and increase net energy production from retentate (Scherson
and Criddle, 2014). CHP engine can directly use the biogas
and syngas from such processes to generate heat and electricity
(Scherson and Criddle, 2014). This also motivates studies
comparing centralized vs. decentralized treatment of retentate,
where part or all of the treated water from decentralized
treatment could be used for irrigation.

2. The excess heat from the CHP engine in this work is used
for heating the wastewater when FO-MD was selected as the
treatment system. This waste heat could also be used to dry
the biosolids left from the treatment process after mechanical
dewatering, as suggested by Scherson and Criddle (2014).
Dewatering of the biosolids enables their gasification and
production of ash, dramatically reducing solids for disposal
and generating additional energy in the form of syngas.

3. To avoid overcomplicating the analysis, the scope of this
paper excludes the reuse and redistribution of the treated
wastewater. When distributed, the potable water recovered by
the system proposed in this research can improve the water
security (Cook and Bakker, 2012; World Economic Forum
Water Initiative, 2012; Garrick and Hall, 2014), resilience, and
sustainability of the urban areas. This also merits in-depth
follow-up studies.
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FIGURE 10 | Correlation matrix for building area percentages (symbols from Table 1), normalized LCC and SCC, normalized annual energy (Anl_E) and wastewater

treatment demand (Anl_WW) across the admissible neighborhoods from (A) scenario 1 and (B) scenario 2.
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4. Future studies can investigate the sustainability and resilience
impacts of setting different qualities—e.g., suitable for
irrigation, or banking in reservoirs—for the effluent of the
treatment process. Same can be done for the retentate of the
treatment process. For example, the nitrogen-rich retentate of
the treatment can be used for landscaping to help preserve
water resources.

5. This paper simplifies modeling of water demand profiles by
assuming that daily profiles are constant for every day of a
month. This enabled constructing hourly demand profiles for
all the 21 building types in the same climatic region and over
the entire year, as the existing literature did not allow for
making more detailed demand profiles. Future studies should
examine the updated literature for modeling variable daily
profiles for each day of a month.

6. The integration across the water and energy system proposed
in this work can be tailored for applying to a range of
different time scales, e.g., by using monthly rather than hourly
models, or geographic scales, e.g., by focusing on regions
rather than districts. Results of studies on these different scales
can provide valuable insights for different stakeholders who
require different levels of granularity in modeling and analysis.
Adapting the proposed framework to these different scales is
also a worthwhile extension of this work.

The list below describes interesting future studies on the
building and energy system models:

1. A limited, yet diverse, set of supply equipment were selected
andmodeled in this study: more treatment systems and energy
systems, including all-electric technologies, can be introduced
into the supply equipment mix in future efforts to make this
framework applicable to a wider variety of cases.

2. Network configuration largely determines the loss and
performance of the heating, cooling, and wastewater treatment
infrastructure (Best et al., 2019)—future efforts should
introduce network optimization into the proposed framework.
This addition, nonetheless, increases the complexity of the
optimization problem by several orders of magnitude, and
this might require alternative optimization algorithms, more
memory, and more computational power compared to
this study.

3. This paper treats the input parameters of the supply and
demand models as deterministic variables, whereas the
uncertainties in these parameters can have tangible effects
on the results of the analysis obtained using the proposed
method. Uncertainty analysis of the proposed framework
merits extensive future study.

The following detail potential future studies on the
optimization algorithm:

1. Improving the optimization algorithm has a great potential
for further studies (e.g., Rezazadeh Kalehbasti et al., 2021).
For instance, in this study no constraints were applied to the

optimization problem other than to the gross-floor-area of the
neighborhoods. Future studies can impose constraints on the
ranges of building type ratios as well as the permitted types
of CHP engines, chillers, and treatment systems to inform the
optimization algorithm to obtain optimal neighborhoods with
specific mixes of buildings and supply equipment.

For the case study examined in this manuscript, the
optimization algorithm found many optimal solutions with
building type mixes dominated by office buildings. The COVID-
19 global pandemic has shown that the usage of different building
types can vary, sometimes drastically, because of unforeseen
conditions. This suggests the need for studies that consider other
“black swan” events (Taleb, 2007) to understand how they can
change the optimal design and performance of cities by imposing
constraints on the components, e.g., the building mix, of the
urban neighborhoods.
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APPENDIX

List of symbols and abbreviations.

Subscript Definition

w Water

d Daily

c Per capita

a Average

h Hourly

ww Wastewater

cap Capacity

Variable Definition Unit

Qd
w Average daily indoor water use m3/h

GFA Total gross floor area of the building m2

Qc
w Average daily indoor water use per capita m3/h/person

RESa Average number of residents per unit area person/m2

Qa
w Average daily indoor water use per unit area of

building

m3/h/m2

Qh, m
ww Wastewater outflow at hour h during month m m3/h

Ch Coefficient for converting the average daily

water use to water use at hour h

Cm Coefficient for converting the average daily

water use to water use at month m

TES Energy stored in the TES at time t kW

1t Time interval (1 h)

Hin
TES,t Net heat flow into the TES tank at time-step t kW

TESCap Capacity of the TES MWh

Parameter Definition

kv Temporal loss factor

Abbreviation Definition

CCHP Combined cooling, heating, and power

(Continued)

Continued

Subscript Definition

LCC Life-cycle cost

GHG Greenhouse gas emissions

CHP Combined heating and power

FO Forward osmosis

RO Reverse osmosis

MD Membrane distillation

FO-RO Forward osmosis-reverse osmosis

FO-MD Forward osmosis-membrane distillation

Res Residential

Off Office

Com Commercial

Ind Industrial

Hos Hospitality

Med Medical

Edu Educational

CTP central treatment plant

CWWTP Central wastewater treatment plant

TES Sensible thermal energy storage

USD US dollar

SCC Social cost of carbon

EPA Environmental protection agency

CCHP-

WWTP

CCHP-wastewater treatment plant

GA Genetic algorithm

SD standard deviation

WWT Wastewater treatment

KMC K-Means clustering

Anl_E Annual energy

Anl_WW Annual wastewater treatment demand

AD Anaerobic digestion
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