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The variability of organic carbon (OC), elemental carbon (EC), and secondary

organic aerosol (SOA) and their relationship with meteorological parameters

have been studied during foggy and non-foggy days in the peak winter months

(December–January) from 2015 to 2016 in Delhi, India. Di�erent sectoral

locations were chosen based on predominant industrial, tra�c, and residential

activitieswith a background location. The average level ofOC, EC, and SOAwas

found to be 7.47 ± 7.74, 0.69 ± 0.7, and 10.46 ± 10.76 µg/m3, respectively,

during the foggy period and 6.1 ± 6.8, 0.9 ± 1.1, and 9.1 ± 10.6 µg/m3,

respectively, during the non-foggy period in Delhi. A relatively higher SOA

level was observed at industrial and tra�c intersection sites, which indicates

the proximity of the dominant source of OC that play a significant role in SOA

formation. It was also found that SOA production is associated with the OC/EC

ratio and may vary from site to site. Correlation analysis has confirmed that

OC is having a significant strong positive correlation with EC and SOA, while

EC is showing a significant moderate positive correlation with SOA. Ambient

temperature (AT) shows a significant negative moderate correlation with OC

levels and SOA and formation. Due to hydrophilicity (hydrophobicity) of OC

(EC), its average concentration was found high (less) due to its high (less)

scavenging during foggy days in comparison to non-foggy days. The study

further suggests the significant impact of source variability on SOA formation

due to the di�erent nature of sector-wise sites during foggy days in Delhi.
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Introduction

Airborne particulate matter (PM) is composed of a variety of inorganic and

organic species including carbonaceous aerosol. Carbonaceous aerosol is composed

of organic carbon (OC) and elemental carbon (EC); due to radiative properties, EC

is also known as black carbon (BC) (Dutkiewicz et al., 2009). The carbonaceous

aerosol is produced from the incomplete combustion of organic materials such as

coal, petroleum, and biomass (Seinfeld and Pandis, 2006). The OC is directly released

into the atmosphere in the particle phase (primary organic aerosol) or the gas phase.
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OC species in the gas phase frequently undergo oxidation

reactions that lead to the formation of secondary organic aerosol

(SOA) (Odum et al., 1997). Another important component

of carbonaceous aerosol is EC, which is released into the

atmosphere from incomplete combustion of carbonaceous fuels

(Sonwani et al., 2021). Over the last decade, a number of studies

of carbonaceous aerosols have been carried out especially related

to their characterization and source apportionment in India

and the world (Bisht et al., 2015a; Begum, 2017; Saxena et al.,

2020b). Several studies in China identified the composition and

distribution of organic aerosol (OA) and found that the primary

organic aerosol (POA) and secondary organic aerosol (SOA)

contributed 52 and 48% of total OA, respectively, in eastern

China (Han et al., 2016). Huang et al. (2014) conducted a

study over different regions of China and mentioned that the

SOA contributes 44–71% of OA. Residential emissions, biomass

burning, industrial and traffic emissions, and coal combustion

are also considered major sources of OA in Beijing and South

China (Cao et al., 2006; Song et al., 2006). Indian studies also

identified several sources of carbonaceous components such

as industrial and traffic emission sources as important sources

in Delhi (Saxena et al., 2020b; Goel et al., 2021; Sonwani

et al., 2021, 2022); biofuel/biomass burning and fossil fuel

combustion are the important sources of theMumbai (Aggarwal

et al., 2013), while other studies mentioned that fossil fuels

combustion, biomass burning, and vehicular emission sources

are the important sources in Indo-Gangetic plain (one of the

most popular and highly polluted regions in the world) in India

(Rajput et al., 2016; Bikkina et al., 2017; Saxena et al., 2021;

Ravindra et al., 2022).

Organic aerosol (OA), a major fraction of fine particulate

matter, consists of primary organic aerosol (POA) and secondary

organic aerosol (SOA) (Ho et al., 2006). POA is directly emitted

to the atmosphere in condensed particle form (e.g., Schauer

et al., 2001) after which it may partially evaporate depending

on ambient conditions (Subramanian et al., 2007). Atmospheric

oxidation reactions of the volatile organic compounds (VOCs)

with O3, OH, and NO−
3 radicals result in the formation of

semi-volatile VOCs (SVOCs) that are further oxidized to form

SOA in the atmosphere. It was identified that most of the

SOA are formed from isoprene and monoterpenes emitted

from biogenic sources (Kroll et al., 2006). However, some

studies also mentioned that sesquiterpenes, whose emission

rate is only 10–20% of that of monoterpenes, could also be

important contributors to SOA formation (Helmig et al., 2007;

Sonwani et al., 2016). Oxidation of higher alkanes and aromatic

compounds is an important process involved in the formation

of most of the anthropogenic SOA (Kleeman et al., 2007; Chen

et al., 2010).

It was identified that the water-soluble organic carbon

(WSOC) in ambient aerosol is responsible for the formation

of SOA (Seinfeld and Pankow, 2003; Weber et al., 2007).

However, a part of water-insoluble OC (WIOC) can also be SOA

(Sonwani and Saxena, 2021). The importance of SOA has

been recognized and modeled extensively during photochemical

events (Schell et al., 2001; Griffin et al., 2002; Pun et al., 2003;

Johnson et al., 2006).

Several studies in the urban area reported SOA with higher

concentration, especially in the winter months (Cao et al., 2003;

Saxena et al., 2020b; Sonwani et al., 2021). A high concentration

of SOA in the atmosphere is responsible for regional air quality,

climate change, and human health (Pöschl, 2005; Chen et al.,

2010; Saxena et al., 2020b). Thus, the monitoring and control

of the SOA are important to the establishment of the air quality

standard for fine PM due to its role in haze formation, visibility

reduction, and negative health effects. SOA also affects climate

forcing directly by altering the scattering properties of the

atmosphere and indirectly by changing cloud properties.

The significance of SOA has been documented and modeled

widely (Griffin et al., 2002; Johnson et al., 2006; Sonwani and

Kulshrestha, 2019; Sonwani et al., 2021). Generally, OC/EC

ratios are in the range of 2–3 for urban sites (Turpin and

Huntzicker, 1995), and OC/EC ratios exceeding 2 represents

SOA formation (Chow et al., 1993); it also represents the

contribution of several sources (Sonwani et al., 2021). A ratio

between 2.5 and 10.5 represents residential coal burning, 7.7

symbolizes biomass burning, 0.8 indicates the predominance of

heavy-duty diesel vehicles, and 2.2 indicates gasoline exhaust

as a major emission source for carbonaceous aerosol (Cheng

et al., 2006; Saarikoski et al., 2008). Another study with a

higher OC/EC ratio such as 5.8 in Lahore (urban location),

Pakistan (Husain et al., 2007) reported the formation of

SOA. However, such high OC/EC ratios cannot be explained

only in terms of increased contribution from SOA, rather

it can also be credited to the majority of biomass burning

sources (Ram and Sarin, 2010). Nevertheless, there are very

few studies that have reported SOA formation during the

foggy/winter season (Chen et al., 2010; Kaul et al., 2011;

Saxena et al., 2020b). Due to meteorological conditions such

as low temperature, high humidity, and stagnant air favors

the formation of condensable water-soluble SOA during foggy

days (Kaul et al., 2011), it was also reported that the fog

enhances the SOA formation, and aqueous phase chemistry in

fog drops is responsible for the SOA formation (Saxena et al.,

2020b). Studies in Indo-Gangetic Plain (IGP) also reported the

enhanced formation of SOA due to aqueous phase chemistry.

Thus, fogs also act as the active at cleansing the atmosphere

of carbonaceous aerosols (Saxena et al., 2020a). The removal

of the carbonaceous aerosol through sedimentation is efficient

with smaller fog droplets as compared to the large droplets

(Kaul et al., 2011). The OC is more effectively removed from

the atmosphere through the wet scavenging process due to

its high hydrophilicity as compared to EC (Sonwani et al.,

2021).

The present study examined the OC and EC in ambient

aerosol samples collected at different locations during the
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foggy and non-foggy periods in the year 2015–2016 in Delhi,

India. The main goal of the present study is to identify the

variability in SOA levels according to changing anthropogenic

sources of carbonaceous aerosol during foggy days. Thus, the

objectives include the source identification by the OC/EC ratio,

estimation of SOA using the EC tracer technique, variability

of carbonaceous fractions during foggy and non-foggy days,

and relationship of SOA production according to the source’s

predominance of carbonaceous fractions.

Methodology

Study area and sampling locations

Delhi, India (28.38◦N, 77.10◦E), constitutes an area of

1,483 km2 with one of the highest polluted regions in the

world. Delhi is also facing a problem of rapid industrial growth

and urbanization resulting in the immigration of people from

different cities in India and daily up and down schedules of the

population from the National Capital Region (NCR) of Delhi

resulting in high traffic density in the city. The city has several

small, medium/large scale industries, several coal-based thermal

power plants with combined capacity of ∼1,560 MW and three

gas-based power plants with a combined capacity of ∼1,938

MW (CEA 2016). According to the Delhi transport department,

the total number of registered vehicles up to June 30, 2014

was 80, 52,508 (Government of Delhi, 2014). Among all the

megacities of the world, Delhi is also identified as the world’s

most polluted city in terms of fine particulate matter (World

Health Organization, 2021). In several research studies, it was

identified that the PM2.5 concentration in the Delhi region

exceeds the National Ambient Air Quality Standard (annual

NAAQS) of 40 µg/m3 (it is four times higher than the WHO’s

standard limit) (Dey et al., 2012; Pal et al., 2018; Sonwani and

Kulshrestha, 2018; Singh et al., 2021; Sonwani et al., 2022).

Thus, Delhi is characterized by several man-made emission

sources such as fossil fuels, vehicular emissions, and agricultural

residue burning (Saxena et al., 2020a; Sonwani et al., 2021). Delhi

experiences three main seasons, viz., summer, monsoon, and

winter. It experiences winter from November to February with

several foggy days. The ambient temperature ranges between 3

and 22◦C, humidity ranges from 53 to 98%, and wind speed

is 2–6 m/s in winter months. UB is the Jawaharlal Nehru

University campus (latitude 28.54◦N and longitude 77.17◦E)

located at the ridge of the Aravalli hills in South Delhi. It

is considered the urban background location in Delhi as it

receives citywide emissions most of the time in a year (Sonwani

et al., 2021). This site comprises academic buildings, staff

quarters, a mini shopping area, and hostels. TI site is a traffic

intersection area (latitude 28.63◦N and longitude 77.09◦E) and

very near to commercial areas such as Mukherjee Nagar and

Kamla Nagar. This site has high congestion at all times because

of a large number of eating points, proximity to the metro

station, and close to the University of Delhi North Campus

area. The ID site is an industrial site (latitude 28.71◦N and

longitude 77.17◦E) located in North-West Delhi and in close

proximity to another industrial area Jahangirpuri. It is also

close to the outer ring road and contains a high traffic volume

(Saxena et al., 2020b). This site is also having a metro station

nearby, a bus depot, some slum areas, and one of the biggest

vegetable markets in Delhi, Azadpur mandi, which makes this

site more congested. The location of these three sites is shown in

Figure 1.

Sample collection, analysis, and quality
control

Fine aerosol samples (PM2.5) were collected on quartz

micro-fiber filters using a low volume sampler (flow rate = 30

LPM) on foggy and non-foggy days during the winter season

in early morning hours, i.e., 04:00–07:00 h on the terrace of

each site’s building in the year 2015–2016 (Saxena et al., 2020b).

The meteorological parameters, viz., ambient temperature (AT),

relative humidity (RH), and wind speed (WS) data were

procured from www.wounderground.com in the Delhi region.

The foggy and non-foggy days were identified with the help of

a weather forecast from the Indian Meteorological Department

(IMD) (http://city.imd.gov.in) website. Before starting sampling,

the filters were baked at 550◦C for 8 h and then stored in

aluminum foils that were also pre-baked. These samples were

kept in airtight boxes in the refrigerator at about 4◦C to prevent

the evaporation of volatile components.

A punch of∼0.5 cm2 area of QFFs was analyzed for OC and

EC fractions by using an OC-EC analyzer (DRI Model, 2001;

Cao et al., 2013). The IMPROVE_A protocol was used for the

analysis of carbon in PM2.5 collected on a quartz fiber filter.

The sample is heated to four temperature plateaus (140, 280,

480, and 580◦C) in pure helium and three temperature plateaus

(580, 740, and 840◦C) in 98% helium and 2% oxygen. During the

analysis, OC is vaporized from a sample in the presence of inert

helium and an oxidizer is used to combust EC. Pyrolyzed carbon

(OP) is formed when reflectance reached its initial intensity and

when O2 is added to the combustion atmosphere at 580◦C.

The relative standard deviation of duplicate samples was in the

range of 10% for organic species, OC and EC. The calibration

of this instrument can be done by different known samples of

CH4. A blank is also analyzed to obtain the correct value of

the samples by subtracting blank values from the samples. The

magnitude of the blank was 1.77 µg/m3 for OC and 0.04 µg/m3

for EC. The analyzer was also calibrated each month by using a

preheated blank quartz fiber filter and standard sucrose solution.

Several studies mention a similar process of quality control for

atmospheric OC and EC determination (Srinivas and Sarin,

2014; Sonwani and Kulshrestha, 2019; Sonwani et al., 2021).
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FIGURE 1

Map showing study sites in Delhi.

Determination of SOA

There is no direct analysis method available to quantify

SOA in total organic mass. So, for this, an indirect method

for SOC estimation is used to take EC as a tracer for POC

into consideration for the evaluation of SOA (Turpin and

Huntzicker, 1995). EC is mainly emitted from combustion

sources along with POC (Cao et al., 2003). The equations used

to estimate SOC are as follows:

[POC] =

[

OC

EC

]

minX ECambient (1)

SOC = OCmeas POC (2)

where [OC/EC]min is the minimum value of OC/EC ratios

observed for the samples. SOA estimation was done by the EC

tracer method. In this case, SOC is multiplied by 1.4 to give SOA.

This method was adopted by Turpin and Huntzicker (1995) and

Kaul et al. (2011).

Results and discussion

Level distribution of carbonaceous
components

Foggy days during the winter season (November–January)

repeatedly affect the pollutants load in northern India (Saxena

et al., 2020b). Descriptive statistics of mass concentration

(average ± SD) of OC, EC, SOA, and OC/EC are shown

in Table 1 for the foggy and non-foggy periods over selected

locations in Delhi, India. Figures 2A,B show day-to-day

variations of the different species during both seasons. The

average level of OC, EC, SOA, and OC/EC was found to be 7.47

± 7.74, 0.69 ± 0.7, 10.46 ± 10.76, and 18.62 ± 20.66 µg/m3,

respectively, during the foggy period and 6.1 ± 6.8, 0.9 ± 1.1,
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TABLE 1 Carbonaceous aerosol fractions during foggy and non-foggy

days at respective sites over Delhi.

UB TI ID DEL

Foggy

OC 3.54± 2.78 3.71± 5.25 14.75± 4.38 7.47± 7.74

EC 0.55± 0.37 0.18± 0.19 1.5± 0.68 0.69± 0.7

SOA 4.32± 3.95 7.59± 10.09 18.13± 8.77 10.46± 10.76

OC/EC 8.2± 5.46 30.56± 26.83 14.25± 15.37 18.62± 20.66

Non-foggy

OC 3.14± 2.01 4.64± 7.93 12.47± 6.05 6.1± 6.8

EC 0.69± 0.75 0.15± 0.14 1.98± 1.24 0.9± 1.1

SOA 4.28± 2.81 7.68± 13.37 17.84± 6.18 9.1± 10.6

OC/EC 6.32± 4.01 30.76± 26.04 8.07± 5.93 14.84± 18.99

9.1 ± 10.6, and 14.84 ± 18.99 µg/m3, respectively, during the

non-foggy period in Delhi. The relatively lower carbonaceous

concentration may be due to the presence of fog in the winter

season (Saxena et al., 2020b). Among all three selected sites,

the highest level of carbonaceous components was found at

the ID site during foggy days, where OC and EC were found

about two times and SOA was 1.7 times higher than Delhi’s

average. The UB site was identified with lower average OC and

SOA levels and was found about two and 2.4 times lower than

Delhi’s average. Similarly, in the case of the non-foggy period,

carbonaceous components were found to be highest at the ID

site and OC, EC, and SOA were observed to be about two

times higher than Delhi’s average. Moreover, the UB site was

again identified with the lowest OC and SOA concentration and

observed with about two times lower concentration on non-

foggy days. The higher level of the OC in comparison to EC

indicated the more abundance of OC with fog droplets due to

OC’s hydrophilicity and EC’s hydrophobicity. Thus, the average

OC and EC concentrations were found in the order of ID > UB

> TI; whereas for SOA concentration, the observed order was

ID > TI > UB during foggy and non-foggy days. The higher

levels of carbonaceous components at the ID site during both

periods indicated the high combustion and emission activities,

resulting in high levels of ambient carbonaceous components

(Sonwani et al., 2021). Whereas, the low concentration of OC

and SOA at UB indicated less number of immediate sources as

it is a university campus area with limited combustion-related

sources, especially during the sampling period. The observed

SOA levels were found lesser than in the earlier reported studies

in Delhi (Saxena et al., 2020b) and Kanpur (Kaul et al., 2011).

In the case of EC, it was found to be lowest at the TI site with

about four times and six times lower than Delhi’s average during

foggy and non-foggy periods, respectively. The low level of EC

at the traffic site may be representative of freshly emitted EC

from vehicular sources and less abundance of aged EC particles

during both periods. It was also observed that the average levels

of OC/EC ratios were found significantly higher at the TI site

(30.56 ± 26.83 and 30.76 ± 26.04, respectively) as compared to

UB (8.2 ± 5.46 and 6.32 ± 4.01) and ID site (14.25 ± 15.37 and

8.07 ± 5.93) during foggy and non-foggy periods, respectively.

This significantly higher OC/EC ratio at the TI site was due to

the emission released from the several restaurants located very

near to the TI sites and involved with the different cooking

activities, namely, meat roasting, cafeteria frying, fish roasting,

and snack-street boiling. Similar observations were also reported

by different authors characterizing different cooking-related

emissions (Schauer et al., 2002; See and Balasubramanian, 2008;

Li et al., 2015).

Table 2 shows a comparison of particulate bound average

concentrations of OC, EC, and SOA/SOC/WSOC with their

predominant source type at different selected locations in Delhi,

India and in the different regions of the world. Several studies

on carbonaceous aerosol have been performed across the world

but very limited studies were carried out for the determination

of carbonaceous species during foggy days in comparison to

non-foggy days. Some of the recent studies that reported their

OC, EC, and SOA/SOC/WSOC concentrations during foggy

days have been listed along with the other studies that reported

concentrations of such carbonaceous species in PM2.5. Saxena

et al. (2020b) reported OC, EC, and SOA levels as 35.48,

10.34, 17.84 and 54.74, 11.86, and 40.12 µg/m3 at residential

and industrial sites, respectively, during foggy days in Delhi.

Such levels of the carbonaceous species are relatively higher as

compared to our study and that may be due to the selection

of the nearness of sampling location to the source and another

reason is due to the selection of the time period and that is

the time of Diwali (firework) festival and a season of crop

residue burning in nearby states in Delhi. Similarly, Ali et al.

(2019) identified the OC, EC, and SOA levels in Delhi in PM1.0

mass concentrations and found OC (24.7 ± 9.4), EC (11.7 ±

4.7), and SOC (11.3–16.3) µg/m3 at airport and traffic sites,

i.e., also higher than our studies values due to the fine size

of particulate matter and predominance of traffic and airport-

related emissions. Kaul et al. (2011) identified the OC, EC,

and SOA concentrations in foggy and non-foggy periods in

the Kanpur site with a predominance of industrial, traffic, and

domestic fuel combustion sources. The levels of carbonaceous

species were found significantly higher than in the present study

during foggy and non-foggy periods. These significantly higher

levels of OC, EC, and SOA might be due to the presence of

a variety of emission sources near the sampling location in

Kanpur. Jain et al. (2020) identified Delhi’s annual average levels

of OC and EC as 15.73 ± 12.72 and 7.31 ± 6.17 µg m−3,

respectively, for PM2.5. Jain et al. (2021) also noticed PM2.5

bound OC and EC levels as 15.09 ± 8.72 and 6.54 ± 3.27

µg m−3, respectively, in Varanasi. While in Kolkata, OC and

EC levels were observed as 17.91 ± 9.72 and 9.43 ± 4.11 µg

m−3, respectively. Similarly, other studies also reported the

carbonaceous species in PM2.5 and PM1.0 samples collected at
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FIGURE 2

Time series of the carbonaceous components during (A) foggy days and (B) non-foggy days.

different locations in India and the world as listed in Table 2 (Pio

et al., 2011; Zhang et al., 2011, 2014; Du et al., 2014; Bisht et al.,

2015a; Gao et al., 2016; Sharma et al., 2016).

Time series of carbonaceous
components

Figures 2A,B represent the time series of carbonaceous

components at selected sites over Delhi during foggy days and

non-foggy days, respectively. The time series of OC and SOA

have been presented on the primary y-axis, while EC has been

presented on the secondary y-axis in both the figures. Some of

the samples were discarded due to contamination, and electricity

failure/operational failure of the sampler at the respective sites.

Fog is an effective scavenger of OC and is observed with

varying scavenging efficiencies that range between 5 and 90%

for EC or black carbon (BC) (Gundel et al., 1994; Collett et al.,

2008). Carbonaceous species (OC, EC, and SOA) were found

to be higher in the peak winter period during both foggy and

non-foggy days. Due to a predominant industrial emission,

significantly high OC and SOA levels were observed in the case

of ID sites during both periods. SOA concentrations on both

foggy and non-foggy days were found to be high; however, the

SOA concentrations on foggy days are comparatively higher, on

average, than on non-foggy days. A direct comparison of SOA

concentrations is, however, perhaps not especially revealing,

since fog actively deposits scavenged organic matter as enhanced

dispersion on non-foggy days is estimated to decrease SOA

levels under such atmospheric conditions. A higher OC and

SOA formation was also noticed in the case of the TI site,

especially during the peak winter period, which may be due

to the traffic congestion due to visibility degradation in the

peak winter period (Saxena et al., 2020a; Sonwani et al., 2022).

Similarly, EC levels were also found to be higher on foggy and

non-foggy days both at the ID site. In case of non-foggy days,
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TABLE 2 Statistics for carbonaceous aerosol mass concentrations in PM2.5 measured in the major cities of India and the world (µg/m3).

Location Site type Average concentration References

OC EC SOA

Delhi Urban background 3.54± 2.78

(Foggy)/3.14± 2.01

(Non-foggy)

0.55± 0.37

(Foggy)/0.69± 0.75

(Non-foggy)

4.32± 3.95

(Foggy)/4.28± 2.81

(Non-foggy)

Present study

Traffic 3.71± 5.25

(Foggy)/ 4.64±

7.93 (Non-foggy)

0.18± 0.19

(Foggy)/ 0.15±

0.14 (Non-foggy)

7.59± 10.09

(Foggy)/7.68±

13.37 (Non-foggy)

Industrial 14.75± 4.38

(Foggy)/ 12.47±

6.05 (Non-foggy)

1.5± 0.68 (Foggy)/

1.98± 1.24

(Non-foggy)

18.13± 8.77

(Foggy)/ 17.84±

6.18 (Non-foggy)

Delhi Airport and traffic Average: 24.7± 9.4

(Foggy)

Average: 11.7± 4.7

(Foggy)

SOC: 11.3-16.3 Ali et al., 2019*

Delhi Residential 35.48 (Foggy) 10.34 (Foggy) 17.84 (Foggy) Saxena et al.

(2020b)

Delhi Industrial 54.74 (Foggy) 11.86 (Foggy) 40.12 (Foggy)

Kanpur Mix of industries,

traffic and domestic

fuel combustion

40.92± 20.59

(Foggy)/37.37±

17.87 (Non-foggy)

6.13± 6.03

(Foggy)/9.18± 5.29

(Non-foggy)

29.44± 8.90

(Foggy)/16.03±

8.29 (Non-foggy)

Kaul et al., 2011*

Kanpur Traffic, Industrial,

and biomass

burning

41.3± 21.7

(Foggy)/64.5± 36.6

3.6± 3.0

(Foggy)/8.2± 4.7

(Non-foggy)

WSOC: 34.2± 17.8

(Foggy)/28.8± 18.4

(Non-foggy)

Rajput et al. (2016)*

Delhi Traffic 15.4± 12.7 5.2± 3.2 SOC: 7.3± 8.6 Shivani et al. (2019)

Haryana Residential 12.1± 10.5 3.2± 2.2 SOC: 7.2± 8.0

Delhi Traffic and

residential

37.73± 14.32 7.79± 3.73 NA Bisht et al. (2015a)

Delhi 15.7± 12.7 7.31± 6.17 SOC: 3.46–11.84 Jain et al. (2020)

Delhi Traffic and

residential

19.9± 14.3 10.4± 8.0 NA Sharma et al. (2016)

Varanasi Traffic and

residential

15.1± 8.7 6.5± 3.3 NA Jain et al. (2021)

Kolkata Traffic and

residential

17.9± 9.7 9.4± 4.1

Shanghai Residential 8.6± 6.2 2.4± 1.3 SOC: 3.9± 4.2 Zhang et al., 2014

Hong Kong Suburban-coastal 4.5 1.3 NA Gao et al., 2016

Beijing Residential and

commercial

15.7 5.2 WSOC: 6.77 Du et al., 2014

Nanjing Suburban-

Industrial

27.8 9.3 14.77–18.18 Zhang et al., 2011

Birmingham Traffic 3.5± 2.8 2.2± 1.5 NA Pio et al., 2011

Oporto Urban background 8.5± 7.9 3.2± 2.3

Coimbra Urban background 5.0± 3.9 1.4± 1.2

Madrid Industrial 3.8± 1.3 3.8± 1.2

*PM1.0 sample.

OC at ID and TI sites was found higher in comparison to

OC at the UB site. Moreover, SOA formation was significantly

higher at industrial and traffic sites in comparison to the UB

site. The higher SOA formation at ID and TI sites indicated

toward the immediate source of OC that is further responsible

for the anthropogenic origin of SOC formation and play a
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significant role in anthropogenic pollutants for SOA formation

in the urban area (Lee et al., 2010). In comparison to OC

and SOA, EC remains less affected during foggy days, as

freshly emitted EC particles (hydrophobic) remain unaffected

by fog, hence less scavenged by fog droplets, whereas aged EC

particles (hydrophilic) are easily scavenged from the atmosphere

during foggy days. In the present study, EC particles effectively

scavenged through the fog at ID followed by UB in comparison

to the TI site. It indicates the abundance of EC particles at

the ID site and the predominance of aged particles at the UB

site (as the site is located at the urban background location

and behaves like a sink of the city). The low EC concentration

during foggy and non-foggy days at the TI site represents the

predominance of freshly released EC particles (hydrophobic)

through vehicular emission.

Correlation analysis

Correlation analysis is performed between OC, EC, and SOA

concentrations (µg/m3) and meteorological parameters, i.e., AT

(ambient temperature), RH (relative humidity), and WS (wind

speed) in Delhi (Supplementary Table 1). Pearson’s correlation

coefficient (r) assumes an inherent linear relationship in the data

(Jain et al., 2017) and the correlation ranges from strong (1.00–

0.50) to moderate (0.49–0.30) to weak (0.29–0.00) (Xie et al.,

2015). As per correlation analysis, OC is having a significant

strong positive correlation with EC and SOA, while EC is

showing a significant moderate positive correlation with SOA.

Moreover, OC shows a significant negative moderate correlation

with AT. OC and EC’s strong positive correlation indicates

that both are emitted from a common source. The selected

sites, TI and ID, have immediate combustion sources like

industries and vehicles which are strong sources of OC and

EC; however, UB is an urban background site and acts as a

sink of emissions coming from combustible sources that again

confirms the presence of OC and EC. Moreover, OC was also

found to be strongly positively correlated with SOA, and EC was

found to be significantly moderately positively correlated with

SOA. Primary OC is the main precursor of SOA and actively

participates in the formation of SOA. OC species in the gas phase

often undergo oxidation reactions that lead to the formation

of secondary organic aerosol (SOA) (Odum et al., 1997). The

pre-existing seed aerosols are responsible for the formation of

SOA under the influence of homogeneous or heterogeneous

nucleation (Sonwani and Kulshrestha, 2019). Moreover, since

OC and EC are significantly strongly positively correlated,

therefore, EC also has some minor role in the formation of

SOA (Bhowmik et al., 2021). The significant moderate negative

correlation of OCwith AT justifies the fact that with a decrease in

temperature, OC concentrations will increase. Generally, during

winters (selected period of study), lower temperatures favor the

low mixing heights of carbonaceous aerosols resulting in their

higher deposition in less air mass. Lower temperatures also favor

more SOA due to the shifting of gas-to-particles conversion

toward the particle phase in the atmosphere (Sonwani and

Kulshrestha, 2019; Sonwani and Saxena, 2021). Moreover, EC

is having a negative weak correlation with AT. In addition to

that, SOA is showing a significant negative moderate correlation

with ATwhich favors the fact that during low temperatures, SOA

formation will be more (Rengarajan et al., 2007).

SOA formation and OC/EC ratios during
foggy and non-foggy days

Secondary organic aerosol (SOA) is a significant component

of atmospheric fine particulate matter and formed through

reactions in atmospheric waters (i.e., clouds, fogs, and aerosol

water) (Aiken et al., 2008), and responsible for the adverse

impacts on both climate and human health (Seinfeld and

Pandis, 1998). Formally, SOA forms through the partitioning of

semi-volatile compounds of gas-phase photochemical reactions

relating to volatile organic compounds (VOCs) and atmospheric

oxidants (Seinfeld and Pankow, 2003). Thus, the partitioning

theory is an essential tool for SOA modeling (Donahue et al.,

2006). In the winter months, the shifting of gas to particle

toward the particle phase is one of the significant factors for the

formation of SOA that ultimately increase the organic aerosol

in the winter season. It was reported that a large fraction of

the OC concentration is estimated to be secondary in origin

(Cabada et al., 2004; Bisht et al., 2015b). The EC tracer method

is one of the well-known SOA measurement tools that are

now widely used in carbonaceous aerosol-related studies. The

primary OC/EC ratio estimated by the EC tracer method is

subject to uncertainties due to the influence of several emission

sources with variable meteorological factors that ultimately

effects themeasurement of accurate SOC and SOA levels. Several

studies recently suggested that multiphase chemistry can play

an important role in understanding the SOA formation, and

the SOA formation mechanism has been explained through wet

aerosol and in fogs and clouds (Carlton et al., 2008; Virtanen

et al., 2010). Multiphase chemistry involves chemical reactions,

transportation, and transformations between gaseous, liquid,

and solid matter. Such processes are important for climate and

Earth science research as well as for life and health sciences

(Poschl and Shiraiwa, 2015). The SOA formation and evolution

is a complex multiphase process, involving a series of chemical

reactions and mass transport in the gas phase, at the gas–

particle interface, and in the particle phase. In the atmosphere,

a mixture of organic aerosol with some inorganic salts or acids

and water may follow complex, non-ideal behavior including

liquid–liquid or liquid–solid phase separation identified in some

thermodynamic models and also demonstrated in laboratory

and field studies (Pöhlker et al., 2012; Shiraiwa et al., 2013;

Ganbavale et al., 2015). Several studies also mentioned that
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the oxidation of α-pinene and isoprene play an important role

in the formation of the SOA particles formed that are liquid

at high RH and amorphous semisolid or glassy at low RH

and ambient temperature (Renbaum-Wolff et al., 2013; Song

et al., 2015). A large number of primary particles from a

variety of anthropogenic sources (e.g., fly ash, metal, primary

organic matter, and soot particles) are the major aerosols in

winter hazes (Chen et al., 2017; Wang et al., 2019). Rapid

production of secondary aerosols (e.g., sulfates, nitrates, and

secondary organics) via heterogeneous reactions under high

relative humidity (RH) mainly elevates haze levels and causes

regional hazes (Wang et al., 2016; Murphy et al., 2017; Li

et al., 2019; Xing et al., 2019). In the early winter season

(October–mid-November), crop residue burning activities are

very common and release a huge amount of air pollutants that

undergo long-range transport and disturb Delhi’s air quality

significantly (Saxena et al., 2021). Firework activity-related

festival, “Diwali,” is associated with the early winter months

that create air pollution load in the Delhi region (Sarkar et al.,

2010; Saxena et al., 2020a,b). Other studies, also reported that

the regional haze and SOA levels are also enhanced by long-

range transport of emissions from distant locations (Zhang et al.,

2020, 2021). The dissolution of soluble organic gases into the

fog droplets results in oxidation and yields low volatile products

that remain along with the particles released by evaporating

fog droplets. The mechanism of SOA production is still poorly

understood partly due to the complex nature of multiphase

processes likely involved in SOA production (Virtanen et al.,

2010); while in the case of surface-based fogs, significant

scavenging and removal of organic aerosol also occur as droplets

that are deposited to surfaces Turpin and Huntzicker (1995).

In addition, recent studies during winter months mentioned

the anthropogenic emission’s dominant role in SOA formation

during foggy days (Kaul et al., 2011; Chakraborty et al., 2016;

Satish et al., 2017; Saxena et al., 2020b) and observed that the

SOA formation is also affected by several factors such as AT,

RH, fog, and organic aerosol loading (Frank et al., 1998; Sonwani

et al., 2021).

In the present study, the average OC/EC ratio of Delhi

during foggy days was comparatively higher with an average

value ± standard deviation of 18.62 ± 20.66 to its value on

non-foggy days with an average value ± standard deviation of

14.84 ± 18.99. As fog is most often present during the early

morning hours; the enhanced OC/EC ratio during this time

period on foggy days could be an indication of aqueous phase

SOA production (Kaul et al., 2011). Another explanation for

this observation could be an increased occurrence of biomass

burning at night. The study occurred during winter when

overnight heating by fires is likely to be important. In the case of

SOA formation, it was found to be higher with a concentration

of 10.46 ± 10.76 µg/m3 on foggy days in comparison to non-

foggy days with a concentration of 9.1± 10.6 µg/m3 over Delhi.

The relationship between SOA and OC/EC ratio is shown in

Figure 3 and it represents the scatter plot between the SOA and

OC/EC ratio during foggy and non-foggy days. Fig 3a shows

the OC/EC and SOA relationship at all three sites during foggy

days. It was observed that the TI site showed a moderate positive

correlation (R = 0.57), whereas ID and UB sites showed a poor

correlation with R = 0.08 and R = 0.19, respectively, between

SOA and OC/EC ratio during foggy days. Similarly, during non-

foggy days, SOA andOC/EC ratios were observed withmoderate

positive correlation (R= 0.62) at the TI site and poor correlation

at ID (R = 0.17) and UB sites (R = 0.34). Thus, the most

significant relationship between SOA and OC/EC ratios was

observed at the TI site on both days.

On comparing the OC/EC ratio at different sites, the

highest average level was observed in decreasing order of TI

>ID>UB during foggy and non-foggy days. It represents that

the comparatively higher amount of freshly emitted OC and

EC particles at TI and ID sites in comparison to UB sites were

observed with mixed primary as well secondary OC and EC

particles. Aged OC and EC particles are also the characteristic

features of the site located at a downstream location (Sonwani

and Kulshrestha, 2019). It was also observed that a higher

average value of OC/EC ratio (≥10) was found to be 68% at

the TI site, 57% at the ID site, and 38% at the UB site during

foggy days. Similarly, in the case of non-foggy days, a higher

OC/EC ratio was 73% at the TI site, 17% at the ID site, and

6% at the UB site. The higher OC/EC ratio during foggy and

non-foggy days represents the biomass burning activities on

winter nights. Apart from traffic emission at the TI site, the high

percentage of samples with a higher OC/EC ratio also indicated

the contribution from residential heating, as this site is very

close to the residential and commercial area. Previous studies

also mentioned that a high OC/EC ratio indicates a higher

contribution of OC, indicating lower traffic emissions or a higher

non-traffic contribution (e.g., biomass burning) at the same time

as a low OC/EC ratio indicates a high contribution from traffic

emissions (Pant et al., 2017). The result shows that there is no

significant difference in the SOA formation between foggy and

non-foggy days. However, there was a significant difference in

SOA formation between different sites, where, the ID site was

predominantly contributing to SOA formation over Delhi and

followed by TI andUB sites during both days. In addition, recent

studies in wintertime also mentioned biomass burning emission

as a dominant contributor to the SOA formation during winter

months (Chakraborty et al., 2016; Saxena et al., 2020a).

Conclusion

The present study hypothesized that the fog episodes in

Delhi were associated with enhanced production of SOA. The

findings of the study may be summarized as follows:

• The enhanced SOA production in Delhi is due to aqueous

phase chemistry, hence high SOA production was observed
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FIGURE 3

Relationship of SOA and OC/EC ratio during (A) foggy days and (B) non-foggy days.

during foggy days as compared to the non-foggy period.

Results also indicate the higher SOA formation at industrial

and traffic intersection sites in comparison to the urban

background site in Delhi.

• The higher levels of carbonaceous components at the ID

site during both periods indicated the high carbonaceous

aerosol emissions due to industrial activities. The ID site

was also identified with high SOA production under the

influence of high OC at the industrial site.

• Correlation observations found that SOA was strongly

positively correlated with OC and moderately positively

correlated with EC. The lower temperature also favors

SOA formation due to the shifting of gas-to-particles

conversion toward the particle phase. However, relative

humidity had no detectable influence on SOA production.

AT was observed with a significant moderate negative

correlation with OC and a negative weak correlation with

EC. Scatter plots between SOA and OC/EC ratio indicated

that the TI site was observed with a moderate positive

correlation, while ID and UB sites were observed with a

poor correlation on foggy and non-foggy days both.

• Thus, the results mentioned that the SOA production may

be associated with the OC/EC ratio during foggy and non-

foggy days. However, it may vary from site to site, and

their levels are influenced by the immediate carbonaceous

aerosol emission sources.

• The high average OC concentration during foggy days

is due to its hydrophilicity, due to which OC aerosol is

easily scavenged from the atmosphere during foggy days;

however, due to the hydrophobicity, EC is less effectively

scavenged with fog and was observed with relatively less

average concentration during foggy days in comparison to

non-foggy days.

• Thus, the understanding of the atmospheric chemistry of

carbonaceous aerosol during foggy days is important to

develop effective air quality management and technological

advancements in the region.
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