
TYPE Original Research

PUBLISHED 03 March 2023

DOI 10.3389/frsc.2023.1129316

OPEN ACCESS

EDITED BY

Zoe Li,

McMaster University, Canada

REVIEWED BY

Albert Jiang,

University of Guelph, Canada

Chunjiang An,

Concordia University, Canada

*CORRESPONDENCE

Julian Scott Yeomans

syeomans@yorku.ca

SPECIALTY SECTION

This article was submitted to

Urban Resource Management,

a section of the journal

Frontiers in Sustainable Cities

RECEIVED 21 December 2022

ACCEPTED 15 February 2023

PUBLISHED 03 March 2023

CITATION

Yeomans JS and Kozlova M (2023) Extending

system dynamics modeling using simulation

decomposition to improve the urban planning

process. Front. Sustain. Cities 5:1129316.

doi: 10.3389/frsc.2023.1129316

COPYRIGHT

© 2023 Yeomans and Kozlova. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Extending system dynamics
modeling using simulation
decomposition to improve the
urban planning process

Julian Scott Yeomans1* and Mariia Kozlova2

1Schulich School of Business, York University, Toronto, ON, Canada, 2LUT Business School,

Lappeenranta-Lahti University of Technology, Lappeenranta, Finland

Urban planning often involves decision-making under highly uncertain

circumstances. System dynamics and multi-agent modeling frameworks are

commonly employed to model the social phenomena in this type of urban

planning. However, because the outputs from these approaches are regularly

characterized as a function of time, the majority of studies in this modeling

domain lack appropriate sensitivity analysis. Consequently, important insights into

model behavior are frequently overlooked. Monte Carlo simulation has been used

to incorporate uncertain features in urban planning with the outputs displayed

as probability distributions. Recently simulation decomposition (SimDec) has

been used to enhance the visualization of the cause-e�ect relationships of

multi-variable combinations of inputs on the corresponding simulated outputs.

SimDec maps each output value of a Monte Carlo simulation on to the

multivariable groups of inputs or scenarios from which it originated. By visually

projecting the subdivided scenarios onto the overall output, SimDec can reveal

previously unidentified influences between the various combinations of inputs

on to the outputs. SimDec can be generalized to any Monte Carlo method

with insignificant computational overhead and is, therefore, extendable to any

simulated urban planning analysis. This study demonstrates the e�cacy of

adapting SimDec for the sensitivity analysis of urban dynamics modeling on a

paradigmatic simplified version of Forrester’s Urban Dynamics - URBAN1 model.

SimDec reveals complexities in model behavior that are not, and can not be,

captured by standard sensitivity analysis methods and highlights, in particular, the

intricate joint e�ect of immigration and outmigration on system development.

KEYWORDS

simulation decomposition, Monte Carlo simulation, system dynamics, multi-agent

modeling, urban planning under uncertainty, decision-making under uncertainty

1. Introduction

Urban planning problems frequently require the need for decision-making in situations

containing considerable sources of uncertainty (Barone et al., 2022; Castellarini, 2022).

Public policies have often failed to achieve their intended results because of the complexity

of both their environment and the actual policy-making process (Saltelli et al., 2004,

2021; Ghaffarzadegan et al., 2011; Hubbard, 2020; Razavi et al., 2021). While new urban

improvement legislation is often debated and enacted with great hype and hope, the

implementation of many programs frequently proves to be ineffective (Saltelli et al., 2004;

Ghaffarzadegan et al., 2011) with the actual results often falling disappointingly short of

prior expectations (Saltelli et al., 2008). Orderly processes in creating human judgment and
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intuition lead people to wrong decisions when faced with complex

and highly interacting systems (Ghaffarzadegan et al., 2011). Public

sentiment trends toward increasing frustration with the planning

process as repeated attacks on the deficiencies inherent within

social programs inevitably leads to ever-worsening symptoms

(Forrester, 1969, 1971; Saltelli et al., 2008; Ghaffarzadegan et al.,

2011; Zhu et al., 2022). Because the dynamic behavior within

complex social systems is not well understood, it is often observed

that government programs cause the polar opposite of their desired

results (Haag et al., 2022; Zhu et al., 2022). Until a much better

public understanding of social systems is attained, any attempts to

develop corrective programs that counteract social predicaments

will continue to be disappointing (Forrester, 1971; Razavi et al.,

2021; Saltelli et al., 2021). Fundamental conditions frequently

underlie the reasons why policy-makers continue to misjudge the

behavior of social systems and the field of system dynamics can

be used to determine how such contrary circumstances can be

circumvented (Saltelli et al., 2008, 2010; Kim et al., 2022).

Urban Dynamics remains a classic instance of system dynamics

successfully applied to an important public policy problem

(Ghaffarzadegan et al., 2011; Barone et al., 2022; Castellarini, 2022).

Many social phenomena in this category of urban planning are

modeled within system dynamics and/or multi-agent modeling

frameworks (Saltelli et al., 2008; Razavi et al., 2021; Kim et al.,

2022). These approaches are commonly characterized by outputs

in the form of a function of time. However, because standard

sensitivity analysis techniques require the outputs to be scalar

for the significance measures to be calculated, the majority of

studies in this modeling domain lack sensitivity analysis and,

consequently, important insights into model behavior (Saltelli

et al., 2021; Haag et al., 2022; Kim et al., 2022; Kozlova and

Yeomans, 2022). Monte Carlo simulation methods have been

used in a wide array of urban planning settings to incorporate

the simultaneous impacts and complex interactions of uncertain

features including the time dimension (Ghaffarzadegan et al., 2011;

Barone et al., 2022). Simulation-generated outputs are commonly

displayed as probability distributions rather than scalar point

estimates (Deviatkin et al., 2021). Furthermore, a small version of

a systems dynamics model can help to build and communicate

insights regarding the deeply complex relationships within urban

systems, while preserving many of the central lessons that a

more disaggregated model would contribute (Ghaffarzadegan et al.,

2011).

Recently an exploratory data analysis approach referred to

as Simulation Decomposition (SimDec) has been introduced

that extends Monte Carlo analysis by enhancing the explanatory

power of the cause-effect relationships between multi-variable

combinations of inputs on the corresponding simulated outputs

(Kozlova and Yeomans, 2019, 2022). SimDec partitions sub-

distributions of the Monte Carlo outputs by pre-classifying selected

input variables into user-defined states, grouping combinations of

these states into scenarios, and then collecting simulated outputs

attributable to each multi-variable input scenario. Since it is a

straightforward task to visually project the contribution of the

subdivided scenarios onto the overall output, SimDec can reveal

previously unidentified connections between these multi-variable

combinations of inputs on the outputs. SimDec is generalizable to

any Monte Carlo model with negligible additional computational

overhead and, hence, can be readily used for decision-making

in situations containing considerable sources of uncertainty, such

as multi-dimensional urban planning systems situations possessing

considerable stochastic uncertainty (Kozlova and Yeomans, 2019).

Consequently, this research study illustrates how the SimDec

exploratory analytical approach can be easily incorporated and

extended into the sensitivity assessment process of urban planning

systems analysis.

SimDec, in essence, is an extension of Monte Carlo simulation

that maps user-specified, multi-variable combinations of input

variables onto resulting distributions of output variables (Kozlova

and Yeomans, 2020). This visual analytics approach enables

the consequences of combinations of different initial states to

become visualizable to decision-makers in a straightforward

manner (Kozlova and Yeomans, 2021). As the initial states

represent different risks or different measures, SimDec readily

produces actionable insights that support decision-making. It

is these visual analytics proficiencies that contribute substantial

benefits to SimDec’s practical decision-support capabilities in “real

world” circumstances. While SimDec has never been employed

in urban systems dynamics analysis, the approach has previously

been applied to several environmental systems including CO2-

emission analysis (Deviatkin et al., 2021), carbon capture and

storage investment incentives (Kozlova and Yeomans, 2019),

water pollution from agricultural fertilizer run-off (Raul et al.,

2022), aviation electrification projections (Kozlova et al., 2022),

domino-like cascading effects in systemic risk planning (Kozlova

and Yeomans, 2022), and renewable energy investment strategies

(Kozlova and Yeomans, 2020). An open access prototype of SimDec

software is accessible via Kozlova and Yeomans (2020) (or https://

github.com/gnopik/simdec_excel).

Monte Carlo simulation is a well-established technique for

assessing the risk in such dynamic systems (Lehar, 2005; Huang

et al., 2009; Teply and Klinger, 2015) and has been comprehensively

used for assessing impacts in urban dynamics (for example, see:

Barone et al., 2022; Castellarini, 2022). Ghaffarzadegan et al. (2011)

have strongly advocated for the use of intuitive system dynamics

models for policy-making in urban planning and have used the

URBAN1 simulation model of Forrester (1969, 1971) extensively

for this task. Given the fact that SimDec analysis provides a

relatively straightforward extension to Monte Carlo methods, the

complexity of any underlying models is not an impediment to

its adoption. In fact, the more non-linear and/or complex the

underlying models are, the more comprehensive the contributed

SimDec insights have tended to be (Kozlova and Yeomans,

2022). Consequently, the chief goal of this particular study is to

demonstrate the efficacy of adapting SimDec into the sensitivity

analysis of urban system dynamics modeling, via URBAN1, as a

means to advance the overall planning process.

2. The simulation decomposition
approach

The SimDec algorithm is an innovative, visual analytics

approach that extends a Monte Carlo simulation analysis by

exposing hidden interactions and relationships inherent within the

underlying system (Kozlova and Yeomans, 2020). To achieve this

visualization, SimDec decomposes a simulated output distribution

by clustering selected input variables into states, constructing a
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collectively exhaustive list of the multi-variable combinations of

these states, and then projecting the resulting partitions of these

input states onto the output distribution (Kozlova and Yeomans,

2019, 2022; Deviatkin et al., 2021). As a consequence of the

algorithm, one can observe the overall output distribution, as in the

classical Monte Carlo simulation, together with the simultaneous

projections of the various partitions onto this distribution (Kozlova

and Yeomans, 2021, 2022). SimDec eliminates the need for

multiple simulation runs by noting the input variable values that

generate each output of interest during a single simulation run

and by then creating the partitions according to the user-designed

states of input variables. Consequently, the additional overhead

requirements of the algorithm are computationally insignificant

(Kozlova and Yeomans, 2021). The states are displayed by

employing different color gradations during the visual analytics

stage. In particular, the most influential variable partitions are

allocated different base color schemes, while all supplementary

states are color-coded according to different gradations of this basic

color to facilitate the consistency of overriding human perception

and to preserve visual acuity (Kozlova and Yeomans, 2020, 2022).

By visually displaying segmented multivariable groups as partitions

of the output variable, SimDec can intuitively expose various

interactions and non-linearities previously concealed within the

model variables, which frequently leads to the detection of

unforeseen relationships (Kozlova and Yeomans, 2020, 2022).

The algorithmic steps of SimDec are as follows (detailed

explanations can be found in: Deviatkin et al., 2021; Kozlova et al.,

2022), and the flowchart of these steps is presented in Kozlova and

Yeomans (2019):

Step 1: For the decomposition analysis, identify a subset of key

variables from all of the input variables in the model.

Step 2: Establish relevant partitions for each key variable

identified in Step 1 (e.g., pessimistic, most-likely, optimistic; low,

medium, high).

Step 3: Specify appropriate numerical values that designate

the boundaries of each partition. For each variable, the resulting

boundary ranges of the partitions must be mutually exclusive and

collectively exhaustive.

Step 4: Determine every possible combination of partitions for

the key input variables. Each combination of variable partitions

corresponds to a multivariable state (For example, one such 2-

variable state combination of partitions could be: X1 pessimistic

and X2 high).

Step 5: While the simulation runs, record the values of the

input and output variables for each iteration. Then map the inputs

of each iteration to a corresponding state based on the partition

combinations enumerated in Step 4.

Step 6: Construct a probability distribution chart for each

output measured and color-code the figure based upon the

identified states created by the partition combinations.

3. URBAN1: The urban dynamics
model

A seminal work in system dynamics applied to public policy

is Forrester’s Urban Dynamics (1969). The initial urban dynamics

studies focused on many of the problems that plagued (and

continue to plague) American inner cities, including joblessness,

low social mobility, poor schools, and traffic congestion (Forrester,

1969, 1971). The goal of these studies was to understand the

root causes of urban decay, to evaluate existing policy responses,

and to generate discussion regarding what form more successful

policies needed to take. At its core, urban dynamics captures the

interactions between the housing, business, and population sectors

of an urban system. The field of urban dynamics represents a

successful application of classical system dynamics to an area of

important public policy.

At its inception, urban dynamics represented a highly

controversial approach and generated considerable public debate.

Forrester (1971) argued that the use of computerized system

models to inform social policy should supercede the more

normal anecdotal observations arising in public debates, both

for generating insight into the root causes of problems and

for understanding the likely effects of any proposed solutions.

Even small computational models could be used to help build

and communicate insights regarding the complex nature of

systems, while preserving many of the central lessons that more

disaggregated models can bring. Therefore, the system dynamics

community needs to do more to help policymakers incorporate

the use of system dynamics models into the overall policy-

making process.

Given the complexity of many policy environments,

experimentation is essential for the design of effective policies.

Ghaffarzadegan et al. (2011) have advocated for the use of

relatively simple, intuitive urban dynamics models for policy-

making. Ghaffarzadegan et al. (2011) claimed that intuitively

represented computational models are of fundamental importance

for policymakers, because they create a veritable playground in

which decision-makers can experiment with different policy trials

without incurring actual economic and social consequences. They

also propose that an “exhaustive experimentation” be performed

by policymakers. An understanding of the main feedback structure

of a system, as provided by a small system dynamics model, is

essential to effective policy design. Simulation models provide

learning environments where modelers, policymakers, and others

can experiment and learn about the impacts of different policies

without incurring any significant social and economic costs.

By detecting potentially counterintuitive behaviors of strategies

to the policymakers, simulation models can foster consensus

surrounding difficult policy options. Even when different goals

and value systems persist, the outputs from simulations can help

to identify the specific variables and outcomes that are the source

of divergence.

The URBAN1 simulation model is a simplified version of

Forrester (1969, 1971) adapted by Alfeld and Graham (1976). The

major strength of the URBAN1 model is its ability to concisely

capture how the feedback structure of an urban system can

endogenously generate stagnation and then decay. In addition to

providing insight into the causes of urban decay, the URBAN1

model can also help policymakers design policies to improve

decaying cities or prevent stagnation in urban areas that are still

growing. To solve the problem of urban stagnation and decay,

Forrester (1969, 1971) recommended policies that increase business

structures and reduce the stock of available housing, thereby

balancing any change to overall attractiveness. In the URBAN1
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model, such policies can be tested by adding a zoning system to

the model that reserves land for business structures as needed to

support the population. Only by examining such a policy in light

of the full set of relationships between housing, population, and

business structures can policymakers hope to have success (Saltelli

et al., 2020).

The fundamental insight of urban dynamics, preserved

in URBAN1, is that the total attractiveness of an urban

region must be considered relative to the attractiveness of all

surrounding regions (Forrester, 1971). The original, “full” model

was considerably disaggregated and contained at least nine major

stock variables (Alfeld and Graham, 1976). Specifically, housing

and business structures were disaggregated by age, and the

population was disaggregated into managerial-professional, labor,

and underemployed groups. Much of the analysis and some

of the key insights from the original model depended upon

this high level of disaggregation. Nevertheless, the URBAN1

version captures the most essential lessons for policymakers,

and at a level of detail that is more conducive to developing

insight and building intuition regarding the complex nature of

urban systems. Its behavior accurately reflects the experience

of many real-world cities. A second key insight is that the

urban decay phases emanate from natural asymmetries in the

dynamics of business structures and housing. Housing in URBAN1

is assumed to last longer, and to be easier to construct,

in an already built-up city characterized by high population

densities and existing essential urban infrastructure. If the

differences between housing and business structures are eliminated,

urban decay is not a consequence in URBAN1 (although

unemployment still rises). This insight, suggesting urban renewal

policies that shift the bias away from non-job-generating sectors

(e.g., housing) to job-generating sectors, is straightforwardly

observable in URBAN1, but essentially impossible to detect in the

full model.

This paper employs the publicly available URBAN1 simulation

model, taken from Ghaffarzadegan et al. (2011). The mechanics of

the model and its visualization in the standard system dynamics

stock-and-flow framework can be found in their article or its online

version can be accessed via the link https://insightmaker.com/

insight/7uuxZvbJRGoutDJEpTZyaL/Urban-Dynamics. However,

even this simplified version contains 20 scalar input variables, with

an additional eight variables represented as functions of the other

inputs (e.g., ‘Effect of land availability on New Construction’), and

it is further possible to fine-tune the parameters. The technical

details of the model inputs are presented in Table 1. The initial

values of input variables correspond to those in Ghaffarzadegan

et al. (2011). These values do not represent any specific geographic

area, but constitute a generic hypothetical urban system designed

for the purpose of studying urban decay.

Such richness in the mix of input parameters creates endless

combinatorial possibilities for examining different trials and/or

scenarios. Faced with so many possibilities, the natural questions

to address in order to better inform policy-making are: (i) Which

input variables are most influential; (ii) Which policy scenarios

need to be considered; and, (iii) Which combinations of which

factors can change the situation for better or worse? The subsequent

section will show how SimDec can be employed in conjunction

TABLE 1 The technical details of input parameters of the URBAN1 system

dynamics model.

# Variable Type Initial/
default
value

1 Business structures Stock 1,000

2 Population Stock 50,000

3 Housing Stock 14,000

4 Normal business structure growth

rate

Fixed

coefficient

0.07

5 Exogenous effect of labor on

business construction

Fixed

coefficient

1.478

6 Normal business demolition rate Fixed

coefficient

0.025

7 Exogenous jobs Flow 0

8 Jobs per business structure Fixed

coefficient

18

9 Labor participation rate Fixed

coefficient

0.35

10 Normal immigration rate Fixed

coefficient

0.1

11 Exogenous effect of availability on

immigration

Fixed

coefficient

0.4

12 Outmigration rate Fixed

coefficient

0.07

13 Death rate Fixed

coefficient

0.015

14 Birth rate Fixed

coefficient

0.03

15 People per household Fixed 4

16 Normal housing construction rate Fixed

coefficient

0.07

17 Normal housing demolition rate Fixed

coefficient

0.015

18 Land area Fixed 10,000

19 Land per house Fixed

coefficient

0.1

20 Land per business Fixed

coefficient

0.2

Coe�cients as a function of land fraction occupied

21 Effect of land availability on new

construction

Function [0, 1]

22 Effect of region attractiveness on

business construction

Function [1, 1.45]

23 Effect of land availability on

housing construction

Function [0, 1.5]

24 Effect of region attractiveness on

housing construction

Function [0.4, 1.5]

Coe�cients as a function of labor force to job ratio

25 Effect of labor availability on

business construction

Function [0.2, 2]

(Continued)
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TABLE 1 (Continued)

# Variable Type Initial/
default
value

26 Effect of job availability on

immigration

Function [0.1, 2]

Coe�cients as a function of household to housing ratio

27 Effect of housing availability on

immigration

Function [0.4, 1.4]

28 Effect of housing availability on

housing construction

Function [0.2, 2]

with the URBAN1 simulation model to examine these types

of questions.

4. Simulation and simulation
decomposition of the URBAN1 model

As a means to extend the scope of an urban planning process,

this section demonstrates the efficacy of employing SimDec when

conducting a sensitivity analysis on the URBAN1 system dynamics

simulation model. Faced with some of the underlying complexity

of URBAN1, in order to appropriately scope this study, all

base case input values correspond to those taken directly from

Ghaffarzadegan et al. (2011). Normally the six main outcomes for

the model are: (i) Population, (ii) Housing-capacity, (iii) Jobs, (iv)

Land-fraction-occupied, (v) Households-to-housing ratio, and (vi)

Labor-force-to-job ratio. The first three are so-called stock variables

(or integrals) of the corresponding flows over time. The last three

are ratios reflecting the state of the system—ratios exceeding the

value of one represent a deficit, while values lower than one indicate

unused abundance. All six variables are time-dependent and are

usually displayed graphically as functions of time to illustrate the

dynamics of the system. For the purposes of sensitivity analysis,

however, the outcomes need to be scalar (Saltelli et al., 2004; Razavi

et al., 2021). Therefore, in order to both focus on the final state

of the system and to avoid potential ambiguity due to possible

oscillations, the actual outputs used in this study correspond to

the average variable values over the last four periods of the model

(years 97–100). In order to highlight the contributions that the

SimDec approach brings to sensitivity analysis, for brevity, only the

Population and Labor-force-to-job ratio outcomes are analyzed.

The URBAN1 model is initially run without any policy

interventions and simply checked to display its behavioral

characteristics under different assumptions. For this illustration,

variation in the following three input variables is considered: (i)

Initial-Business-Structures, (ii) Initial-Population, and (iii) Initial-

Housing. For each of the variables, Table 2 provides the underlying

parameter values, their corresponding distributional assumptions,

and the numerical partitioning of the input distributions into

user-specified states.

The URBAN1 model is simulated 10,000 times and the

resulting distribution of Population at the end of the timespan is

presented in Figure 1. Ten thousand iterations are deemed more

TABLE 2 Input parameters configuration for the base case sensitivity

analysis.

Input
variable

Base
case
value

Monte
Carlo
simulation

Simulation
decomposition

partition

Distribution State 1 State 2

Initial-

business-

structures

1,000 Uniform,±50% Low [500,

1,000)

High [1,000,

1,500]

Initial-

population

50,000 Uniform,±50% Low [25,000,

50,000)

High [50,000,

75,000]

Initial-

housing

14,000 Uniform,±50% Low [7,000,

14,000)

High [14,000,

21,000]

than sufficient to both capture the strength of the effects even

numerically (Marzban and Lahmer, 2016) and, for the purposes

of visualization, to provide a smooth and detailed histogram well

suited for the purposes of visually examining the behavior of

the effects (Kozlova and Yeomans, 2021). This initial simulation

experiment could be viewed as a general study of the dynamics

of urban populations in different cities. A “classic” Monte Carlo

simulation would produce an output distribution possessing the

overall shape as shown in Figure 1, but displayed using only a

single color. However, in a SimDec analysis, the overall distribution

is further broken down, or decomposed, into non-overlapping

scenarios of input variable combinations that are stacked on top

of each other in the figure. The visualized interpretation of the

SimDec breakdown into attributes of the entire output dataset

can be clarified using the histogram’s legend. The legend assigns

color-shaded gradations to specific state combinations of the input

variables, while also identifying each combination by assigning

corresponding scenario indices to them. Specifically, with three

variables each partitioned into two states, there are eight possible

combinations of the input variable states in total. Each of these

eight combinations is considered a scenario and designated as

Sc1, Sc2, . . . , Sc8, respectively. For example, the sixth scenario,

Sc6, corresponds to instances in which the simulated input values

of Initial-Housing variable fall into the high partition range, the

values of the Initial-Population variable are generated in their low

partition range, and the value of Initial-Business-Structures is in the

high partition range. Furthermore, to convey additional analytical

information, the (i) minimum, (ii) mean, and (iii) maximum

values of the output are computed for each scenario. Clearly, the

minimum and maximum values correspond to the extreme edges

of each scenario’s colored distribution on the horizontal axis within

the histogram and provide a numerically convenient, ancillary

interpretation to the figure.

A general pattern that emerges from the visual decomposition

of Figure 1 is that lower initial states—especially low Housing

values-lead to a much more aggressive growth in the Population.

However, those same lower states (Sc1 and Sc2) can actually lead

to a decay of the system with very low probabilities of occurrence

(namely, the 1% tail omitted from the graph). Conversely, the

higher initial states of the system generally lead to a lower, but more

stable, total population.

Following on from the Population decomposition, it would

be similarly interesting to evaluate the state of the urban

Frontiers in SustainableCities 05 frontiersin.org

https://doi.org/10.3389/frsc.2023.1129316
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Yeomans and Kozlova 10.3389/frsc.2023.1129316

FIGURE 1

Simulation decomposition of population (average of years 97–100) by initial-housing, initial-population, and initial-business-structures. For

illustrative convenience, the figure displays only 99% of data, because the remaining 1% of a tail belonging to Sc1 and Sc2 have very low minimum

values. For details on input parameters refer to Table 2.

system assessed on an employment basis. Figure 2 provides

a decomposition of the Labor-Force-to-Jobs ratio at the end

of the timespan (average of years 97–100) using the same

input factors as above. Ratio values higher than one (the

major part of the histogram of Figure 2 to the right from 1

on the X-axis) represent situations in which the labor force

exceeds the number of available jobs (i.e., unemployment). The

entire portion of histogram displayed (showing 98% of the

data) shows values exceeding one, thereby indicating that all

scenarios lead to some degree of unemployment. Furthermore,

the maximum values of each respective scenario are all equally

high (1.20). This finding implies that no matter what initial

parameters the system starts from, the rules of dynamics

dictate that, in the worst case, the system can end with same

bad unemployment outcome. Moreover, only certain low-state

scenarios (Sc1–Sc3) can actually produce any employment ratios

lower than 1. These low-state outliers are analogous to the ones

in Figure 1 in which the system deteriorates into a condition of

relative decline.

In general, Figure 1 is indicative of a situation where the model

outcome (in this case Population) depends significantly on the

combination of input factors (or scenarios). This condition is

visualizable in SimDec when the scenarios appear shifted against

each other with relatively distinct vertical color delineations along

the horizontal axis. Figure 2 portrays an alternative visualization

in which the outcome (in this case the Labor-Force-to-Jobs Ratio)

does not significantly depend on the specific scenarios (in essence,

the colored scenarios are stacked relatively proportionately one on

top of the other).

Because all social systems are faced with inherent uncertainty,

understanding how this uncertainty can actually impact the system

is of critical importance prior to the introduction of any policies.

While in this subsequent analysis the input assumptions on the

initial size of the system are fixed, the systems risks will be evaluated

with respect to variation in the flows of people. Table 3 provides the

underlying input parameter values for the rates of (i) Immigration

and (ii) Outmigration, plus their corresponding distributional

assumptions and state partitionings.

As in the initial case, the URBAN1 model is simulated 10,000

times and the resulting distribution of Population is shown in

Figure 3. The distribution of the resulting Population tends to

possess numerous distinct centers of gravity. Due to the nature of

the very large distributional spike on the left, most of the remaining

histogram data appears to have been compressed along the X-

axis. To counteract the relative visual appearance of this distortion,

two additional separate sub-sections have been added that actually

display 31 and 43% of the overall graph data, respectively. These

supplementary figures illustrate the very high degree of non-

linearity contained within the system model. One cluster clearly

occurs around 0 (implying a total collapse of the Population system)
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FIGURE 2

Simulation decomposition of labor-force-to-jobs ratio (average of years 97–100) by initial-housing, initial-population and initial-business-structures.

For illustrative convenience only 98% of data is presented, because 2% of tail belonging to Sc1, Sc2, and Sc3 have low minimum values. For details on

input parameters refer to Table 2.

TABLE 3 Input parameters configuration for the uncertainty e�ects estimation.

Input variable Base case Monte Carlo simulation Simulation decomposition partition

Distribution-uniform State 1 low State 2 medium State 3 high

Immigration rate 0.10 [5, 20%] [5, 10%) [10, 15%) [15, 20%]

Outmigration rate 0.07 [5, 20%] [5, 10%) [10, 15%) [15, 20%]

and three larger peak accumulations occur within the range of

150,000 and 250,000 people.

To better interpret the causes of this non-linear complexity,

the model is re-simulated and decomposed twice more: each time

holding one variable at its base case value while simulating values of

the other variable over its distributional range. The pair of single-

variable decompositions for these two additional simulation runs

are presented in Figures 4, 5.

The individual effect of these two inputs leads to a range

of outcome values that is comparable in scale (essentially all

Population values fall between the range of 0 and 260,000

people). However, in Figure 5, it can be observed that the

distribution is divided into three distinctly-separated scenarios

possessing almost vertical delineation thresholds along the

horizontal axis. Consequently, the visualization from Figures 4, 5

indicates that Outmigration impacts the Population distribution

more significantly than Immigration. This observation is

actually attributable to the fact that within the URBAN1 model

dynamics, the Immigration rate is a consequence of several

feedback loops, housing availability, and job availability. This

particular linkage to other model components leads to the

less pronounced effect of the Immigration rate on Population.

Both Figures 4, 5 possess a complex distributional shape that is

representative of the functional interlinking dynamics within the

system. Thus, the rather complicated interaction of these two

inputs shown in Figure 3 should not be considered a surprise.

Together, Figures 3–5 constitute a solid basis for studying and

understanding the uncertainty dynamics inherent in this complex

urban system.

This section has demonstrated how a SimDec can be used to

effectively conduct a comprehensive sensitivity analysis of an urban

systems dynamics model. SimDec has been used to explore the
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FIGURE 3

Simulation decomposition of population (average of years 97–100) by outmigration and immigration rates. For details on input parameters refer to

Table 3.

underlying behavior of the model and can be used to develop the

inherent design of the model. It can be used to expose the effects

of multi-agent interventions in the model and to comprehensively

garner a fundamental understanding of the impacts of uncertainty

on the overall process. Conversely, the more common type of

time-series graphical analysis using a single or limited number

of scenarios could only ever present a crude simplification of

the model’s behavior range and would, therefore, lead to very

poorly-informed, falsely over-confident decisions (Pianosi et al.,

2016; Saltelli et al., 2020). While the SimDec approach has only

been used to analyze the system impacts of a smaller subset

of input variables and output measures of the URBAN1 model

in this section, in order to conduct a complete and exhaustive

sensitivity analysis, all parameters would need to be incorporated

into the analysis. Such an exhaustive study would simply involve

an extension of the SimDec analysis approach demonstrated here,

by incorporating more of the input and output variables of

the model.

5. Conclusions

In this paper, urban policymakers are encouraged to

incorporate the systematic SimDec approach to conduct detailed

sensitivity analyses of the most critical system variables, while

simultaneously examining the whole spectrum of model impacts. It

has been described how computational system modeling can prove

crucial for effective urban policy formulation as this approach
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FIGURE 4

Simulation decomposition of population (average of years 97–100) by immigration rates when outmigration rate is fixed.

FIGURE 5

Simulation decomposition of population (average of years 97–100) by outmigration rates when immigration rate is fixed.

frequently provides a broader understanding of the likely impacts

of proposed solutions and can contribute a wider gamut of insights

into the underlying root causes of many potential issues.

It has been shown how the innovative SimDec analytical

approach can be extended into the analysis of urban planning and

can be effectively used to visually conduct a sensitivity analysis

of an urban systems model. SimDec can be used to balance the

interplay of the uncertain and the actionable in the sensitivity

analysis of urban planning. The case example facilitated a visual

analytical representation of urban sensitivity analysis. SimDec

helped by systematically examining planned policy outcomes while

conveniently visually displaying the enabling/constraining factors

that need to be accounted for in effective urban policy design.

Specifically, the sequence of SimDec visualizations demonstrated

that Outmigration affects the Population more than Immigration,

due to the resulting interplay of numerous feedback loops, housing

availability, and job availability. The complicated interactions

revealed between these two input variables contributes a significant
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component to comprehending the fundamental aspects of the

system dynamics in this complex urban model.

The underlying nature of these factors becomes readily

apparent when revealed in the visual analysis performed with

SimDec. Urban planners could subsequently establish final policy

conclusions by exploring the interlinked dynamics within the

key variables used in the systems analysis. Consequently, based

upon the outcomes illustrated by the example, one could strongly

advocate for the usage of SimDec in the sensitivity analysis of

urban systems, in general, due to: (i) its exceptional capacity

to reveal concealed interdependencies when evaluating complex

computer models; (ii) its facility for communicating numerous

potentially unseen perceptions to policy-makers; (iii) its overall

superior visualizable analytic proficiencies, and; (iv) its significantly

lower computational complexities.
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