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computational measurements
with human perception
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Urban greenery has been shown to impact the quality of life in our

urbanizing societies. While greenery is traditionally mapped top-down, alternative

computational approaches have emerged for mapping greenery from the street

level to mimic human sight. Despite the variety of these novel mapping

approaches, it has remained unclear how well they reflect human perception in

reality. We compared a range of both novel and traditional mapping methods with

the self-reported perception of urban greenery at randomly selected study sites

across Helsinki, the capital of Finland. The mapping methods included both image

segmentation and point cloud-based methods to capture human perspective as

well as traditional approaches taking the top-down perspective, i.e., land cover

and remote sensing-based mapping methods. The results suggest that all the

methods tested are strongly associated with the human perception of greenery at

the street-level. However, mapped greenery values were consistently lower than

the perceived values. Our results support the use of semantic image segmentation

methods over color segmentation methods for greenery extraction to be closer

to human perception. Point cloud-based approaches and top-down methods

can be used as alternatives to image segmentation in case data coverage for the

latter is limited. The results highlight a further research need for a comprehensive

evaluation on how human perspective should be mimicked in di�erent temporal

and spatial conditions.

KEYWORDS

urban greenery, human perception, image segmentation, green view index, point cloud

methods, NDVI, street-level greenery

1. Introduction

In our steadily urbanizing societies (Knudsen et al., 2020), urban greenery provides

people with nearby opportunities to experience nature (WHO Regional Office for Europe,

2017). Greenery has been an intrinsic part of our cities for a long time as it has been

associated with livability and positive health and wellbeing effects (Hartig et al., 2014).

Research evidence indeed links urban greenery to several physical, social, and psychological

benefits (Chiesura, 2004; Sugiyama et al., 2008; Hartig et al., 2014; WHO Regional Office

for Europe, 2016; Nieuwenhuijsen, 2021). Consequently, ensuring urban greenery has been

progressively incorporated into cities’ quality of life programs and policies (Escobedo et al.,

2011).

Urban greenery has been defined and described in a variety of ways (see Hartig et al.,

2014). A conventional approach to observe and quantify urban greenery takes a top-down

perspective by treating greenery as areas and polygons on surfaces (Yang et al., 2009). This
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approach is predominantly based on remote sensing methods,

which apply the sensors of aerial vehicles and satellites (Yang

et al., 2009; Li et al., 2015a). Satellite images can be acquired as

both open and proprietary data (Fong et al., 2018) and remote

sensing methods capture the big picture from large swaths of

land while being easily repeatable (Gupta et al., 2012). However,

this approach streamlines vegetation into two-dimensional biomass

or canopy cover (Yang et al., 2009), which tends to dismiss the

vertical dimension of greenery (Gupta et al., 2012). Therefore, the

surfaces inspected from high above, indicating the broad presence

of greenery, do not directly reflect the ground-level greenery

perceived by people (Yang et al., 2009; Long and Liu, 2017). This

challenge has recently gained considerable research attention and

several novel methods that aim to capture the human perspective

of greenery have been developed (Long and Liu, 2017).

The amount of greenery, which is perceived at the street-level,

can be of great importance for our health and wellbeing (Villeneuve

et al., 2018; Zhang and Dong, 2018; Helbich et al., 2019; Ki and

Lee, 2021; Liu et al., 2021). Ulrich showed already in 1984 that

the amount of visible greenery can be inversely related to the

number of days and the number of painkillers needed for the

recovery after surgery (Ulrich, 1984). Visible greenery can increase

the time spent on recreational outdoor activities (Villeneuve et al.,

2018), reduce weight and mitigate cardiovascular diseases (Leng

et al., 2020). Greenery in urban landscapes can be associated with

reduced negative feelings (Liu et al., 2021) andmore positivemental

health (Helbich et al., 2019). In general, people tend to perceive

scenery with greenery more positively compared to scenery with

less greenery (Aoki, 1976, 1991; Schroeder and Cannon, 1983;

Ohno, 1991). This has resulted in more support for urban greenery

projects in locations visible to the public (Yang et al., 2009). Also,

the benefits measured through green views may differ from the

benefits measured through approximations of general presence of

greenery. Research has found that several health benefits and effects

are related to street-level green views rather than greenery that is

visible via top-down remote sensingmethods (e.g., Villeneuve et al.,

2018; Zhang and Dong, 2018; Helbich et al., 2019; Ki and Lee, 2021;

Liu et al., 2021).

However, an increase of urban greenery can also cause

some negative effects due to introduced allergens and infectious

pathogens, eventual water shortages (Hartig et al., 2014; Lõhmus

and Balbus, 2015; Chen et al., 2020), or the ecological unsuitability

of introduced species that people find attractive (Schroeder and

Cannon, 1983; Chong et al., 2014). Furthermore, aesthetically

appealing green vegetation makes city space more desirable

(Schroeder and Cannon, 1983). This may lead to green

gentrification (Hwang and Sampson, 2014) with increased

real estate prices (Zhang and Dong, 2018; Fu et al., 2019) and

neighborhood income levels (Li et al., 2015a).

The earliest attempts to capture perceived greenery by people

came from Japan. Early research relied on photographs and site

appraisals to evaluate how green scenery appeared to people (e.g.,

Utashiro and Ohsuga, 1974; Aoki, 1976, 1991; Schroeder and

Cannon, 1983; Aoki et al., 1985). An early study by Aoki et al.

(1985: 9) aimed to “establish a method of quantifying the amount

of the green environment that is perceived by respondents.” Aoki

also coined the first term for capturing perceived greenery, calling

it the “greenness visibility ratio” (Aoki, 1987, cit. Chen et al., 2020).

This premise was later honed by Yang et al. (2009) who introduced

the index “Green View,” which estimates the amount of greenery

visible to people on the ground in urban area.

While computational methods for modeling and mapping

perceived greenery have been in use since the first works by

Ohno (1991) for over three decades, Li et al. (2015b) were

among the first to advance the computational process by using

automatically extracted Google Street View images instead of self-

taken photographs or manually surveyed environments. They were

also the first to automate the greenery calculation process by using

automatic image segmentation of greenery. After this, many novel

approaches have been introduced: color segmentation of images

(e.g., Long and Liu, 2017; Dong et al., 2018; Larkin and Hystad,

2019; Chen et al., 2020), semantic segmentation of images (e.g.,

Helbich et al., 2019, 2021; Ye et al., 2019; Ki and Lee, 2021;

Kido et al., 2021; Xia et al., 2021), and diverse point cloud-based

approaches (e.g., Susaki and Komiya, 2014; Yu et al., 2016; Susaki

and Kubota, 2017; Labib et al., 2021; Virtanen et al., 2021).

However, there is an obvious lack of knowledge on how the

various methods aiming at quantifying the perceived greenery

manage to mimic the human perception. The attempts to solve

the problem have been limited (e.g., Leslie et al., 2010; Falfán

et al., 2018) and the vantages of different approaches are not yet

fully understood.

The aim of this study is to provide evidence on how well most

common computational methods and spatial data sources capture

and mimic the human perception of street-level greenery. We

compared mapped greenery values with the empirically collected

data of self-reported greenery levels at randomly selected study

sites in Helsinki, the capital of Finland. We focused on methods

that are specifically developed for quantifying perceived street-

level greenery and represent the distinct types of approaches

applied in scholarly literature. Our results will inform the broader

urban planning and research community about the suitability

and advantages of contemporary approaches for quantifying

human perceived greenery in the urban fabric. Finally, we discuss

challenges on capturing human perceived greenery to guide future

research on the topic.

2. Methods for capturing human-scale
greenery

2.1. Surveying perceived greenery

During previous decades, most studies of the perception

of greenery have taken a qualitative approach (Yang et al.,

2009). Visual experiences have been studied both by on-site

evaluations or surveys (Yang et al., 2009) and by laboratory-

based experiments (Aoki, 1991). Common approaches include the

manual segmentation or appraisal of photographs (e.g., Utashiro

and Ohsuga, 1974; Aoki, 1976, 1991; Schroeder and Cannon, 1983;

Aoki et al., 1985,?; Yang et al., 2009; Falfán et al., 2018) and on-

site evaluations regarding the amount of greenery (e.g., Aoki et al.,

1985; Sugiyama et al., 2008; Leslie et al., 2010; Falfán et al., 2018).
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Early examples of the on-site evaluation of visible greenery

include the studies by Utashiro and Ohsuga (1974), Aoki (1976),

Aoki (1991), and Aoki et al. (1985). In those studies, the

participants were asked to evaluate the amount of greenery, which

was then compared to greenery extracted from photographs at

the same locations. Among more recent studies, Sugiyama et al.

(2008), Leslie et al. (2010) used postal surveys to gather responses

about perceived greenery in participants’ neighborhoods. Falfán

et al. (2018) interviewed subjects about street-level greenery and

compared their responses to greenery values extracted from remote

sensing and street view images.

Manual segmentation was the earliest method for greenery

extraction from photographs. While previously used to extract

people’s preferences (Yang et al., 2009), it has now been applied

more as a reference or validation method for other segmentation

techniques (Long and Liu, 2017). The benefits of manual

segmentation of pictures in comparison to on-site evaluation of

greenery is that more locations can be inspected during one

occasion (Aoki, 1991). However, both evaluation methods are

affected by the subjects’ specific characteristics and their cultural

heritage (Aoki, 1999).

Compared to objective methods, subjective measures of

studying greenery often cost more time and funds and are prone

to human induced biases (Gupta et al., 2012). For example,

photographs portray the photographer’s interpretation of a scene

and thus can be somewhat biased (Aoki, 1991). However, subjective

measures can better capture the qualitative aspect of greenery that

could be missed by quantitative approaches (Leslie et al., 2010).

2.2. Mapping perceived greenery

Since the introduction of the big data driven computational

approach by Li et al. (2015b), several indices and methods have

been developed for computing and mapping the amount of

perceived greenery. The underlying premise of these methods is

the quantification of perceived greenery levels from the ground by

using computational methods and vast data sources, as proposed by

Yang et al. (2009), who calculated the share of perceived greenery in

different parts of the city as percentage reaching from zero to one

hundred. Subsequent studies have also adopted a similar range to

describe perceived greenery. The premise indicates that values close

to 0 have no visible greenery, while values near 100 demonstrate

locations where only greenery is visible in all directions.

The variety of terminology applied in the field is large. Specific

indices have been labeled the Green View Index (GVI, Yang et al.,

2009), the Floor Green View Index (FGVI, Yu et al., 2016), the

Standardized Green View Index (SGVI, Kumakoshi et al., 2020),

the Panoramic Green View Index (PGVI, Dong et al., 2018), the

Viewshed Greenery Visibility Index (VGVI, Labib et al., 2021),

the Green Space Ratio (GSR, Susaki and Komiya, 2014), or the

Panoramic View Green View Index (PVGVI, Kido et al., 2021).

Also, researchers have calculated the amount of greenery in the field

of view without using a specific term (e.g., Jiang et al., 2017).

These novel methods can be broadly split into two categories:

(1) image-based methods that rely on the segmentation of the

vegetation elements of images, and (2) point cloud-based methods

that calculate the visibility of greenery from a range of locations

from three-dimensional data gained from LiDAR sensors. Both

types of methods are described below.

2.2.1. Image-based methods
Since the early attempts to quantify perceived greenery with

photography-based methods, images have remained a popular data

source for analyzing greenery levels from a human perspective.

Photographs can be taken by researchers themselves (e.g., Yang

et al., 2009; Falfán et al., 2018) or extracted from novel, iterable

data sources, which represent street-level views and allow users

to gather a large amount of data from cities automatically (Long

and Liu, 2017). Both proprietary (e.g., Google Street View) and

crowd-sourced services (e.g., Mapillary or KartaView) are available.

However, crowd-sourced platforms may suffer from issues such

as biased contributor ratios, varied spatial coverage, and use of a

highly diverse set of devices to capture the images (Quinn and

León, 2019; Ma et al., 2020). The use of different devices and

technical parameters may affect the quality of and the perception

of greenery in images. E.g., different focal lengths can distort the

dimensions of greenery in an image (Aoki, 1987). Also, themethods

for stitching images together to compile panoramic images may

vary considerably (e.g., Li et al., 2015a; Dong et al., 2018; Chen

et al., 2019; Helbich et al., 2019; Xia et al., 2021). If technical

parameters have not been documented and published, different

greenery studies may not be comparable (Virtanen et al., 2021).

Segmentation methods to extract greenery ratio from images

also vary considerably. Apart from the subjective evaluation (e.g.,

Aoki et al., 1985) and manual segmentation of greenery discussed

above, contemporary computational methods include two main

approaches: color and semantic segmentation (Long and Liu, 2017).

Color segmentation is an approach that classifies images according

to color values of individual pixels. The presumption of this method

is that various pixel colors represent different color clusters and

objects (Khattab et al., 2014). There are many color spaces available

with varying suitability for specific segmentation tasks (Khattab

et al., 2014). A fundamental concern of the color segmentation is

that colors are shared by many objects and objects can be multi-

colored. E.g., non-vegetated green objects, such as cars, fences or

building facades, can fulfill the parametrical requirements and be

interpreted as green vegetation (Long and Liu, 2017; Tong et al.,

2020; Kido et al., 2021). Similarly, non-green parts of vegetation

that are covered by bark may not be identified as vegetation (Kido

et al., 2021).

Semantic segmentation is an image classification method that

uses machine learning to understand and segment images based on

their content (Xia et al., 2021). The goal of semantic segmentation

is to classify pixels into discrete objects (Xia et al., 2021). A semantic

segmentation model needs to be trained before use with prelabelled

raw training data (Lecun et al., 2015). In the post-training phase,

themodel captures features as topological objects regardless of their

color. Hence, non-green parts of vegetation, such as trunks and

branches, can be successfully classified as vegetation (Long and Liu,

2017; Tong et al., 2020). Machine learning methods have improved

over time and additional training can further enhance their ability
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to capture greenery (Lecun et al., 2015; Xia et al., 2021; Zhang et al.,

2021).

2.2.2. Point cloud-based methods
Point clouds are three-dimensional data sets, which are

collected by the Light Detection and Ranging (LiDAR)method, also

known as laser scanning technology. The structures of vegetation

are identified through the penetration of a laser through the

tree and shrub canopy layer and received echoes (Zieba-Kulawik

et al., 2021). Point cloud-based computational methods are used

to capture greenery either directly from raw data sets (e.g., Susaki

and Komiya, 2014; Susaki and Kubota, 2017) or from data products

derived from raw point clouds (e.g., Yu et al., 2016; Labib et al.,

2021; Virtanen et al., 2021).

In the first pathway, objects are classified into greenery based

on the structure of the point cloud. Point clouds can be collected

by both ground-based (e.g., Susaki and Kubota, 2017) and airborne

(e.g., Susaki and Komiya, 2014) sensors. Ground-based sensors

can better capture vegetation than airborne sensors as occlusion is

limited (Susaki and Kubota, 2017), but the success rate depends on

the point cloud density (Zhen et al., 2016). Airborne sensors have

broader coverage, but building walls, multi-story roofs, and lower

levels of vegetation can cause classification errors (MacFaden et al.,

2012; Susaki and Komiya, 2014). Both ground-based and airborne

sensors have difficulties with new and short vegetation (MacFaden

et al., 2012).

The other pathway is to use point cloud derived products, such

as surface models, and combining them with other data sources.

Labib et al. (2021) inferred the visibility of greenery by combining

a ready-made land use and land cover dataset with point cloud

derived surface and terrain models. Yu et al. (2016) extracted

greenery from Normalized Difference Vegetation Index (NDVI)

and used surface and building models for visibility calculations.

Virtanen et al. (2021) examined the visibility of greenery within

a browser based three-dimensional city model created from aerial

images and point cloud data.

The advantage of any point cloud-based method is the ability

to modify the relative height of the observer, the vertical horizon,

which can be useful in urban landscapes (Yu et al., 2016). Also,

point-cloud derived measures can be used to model greenery

perception of future landscapes by simulating artificial buildings

(Yu et al., 2016). The concerns of using point cloud-based derivates

include information loss when compressing point cloud data to a

flat raster surface (Yang et al., 2020). The results also depend on

the original resolution and accuracy of the datasets in use (Labib

et al., 2021; Virtanen et al., 2021). Furthermore, when combining

point cloud data with remote sensing images, issues related to

varied lighting conditions (MacFaden et al., 2012) or environmental

factors, such as weather and air quality (Yu et al., 2016), can emerge.

3. Materials and methods

3.1. Study area

Our study area was Helsinki, the capital of Finland (Figure 1).

With a population of 658,457 inhabitants, it is the largest city in

Finland and houses 12% of the total population of the country

(Mäki and Sinkko, 2023). Helsinki is a green city from both an aerial

and a street-level perspective. Out of a total land surface area of

214 km2, 111 km2 (52%) is classified as vegetation (Helsinki Region

Environmental Services, 2021). At the street level, the median

Green View Index (GVI) value for Helsinki is 32% (Toikka, 2019),

which is among the higher values when compared to cities in the

world (see Ratti et al., 2020).

We based our choice of study sites on existing street-level

greenery quantification methods with the goal of covering multiple

levels of street-level greenery. As a first and second baseline, we

used the open access street-aggregated greenery dataset for Helsinki

(Toikka et al., 2020), which includes both Green View Index

based on street view images and land cover-based greenery index

for street segments. We used ready-made indices only for the

study site selection and later produced similar indices for greenery

comparison on our own by using the photographs, which were

taken from the study sites (described in more detail in Sections

3.4.1 and 3.4.6). As a third baseline, we used Viewshed Greenness

Visibility Index (VGVI), which we calculated based on point cloud

and land cover data for the same street segments following Labib

et al. (2021) (described in more detail in Section 3.4.3).

To generate the study sites, we randomly chose one street

segment centroid from every tenth percentile of each baseline

method. The street view image-based Green View Index varied

from completely non-green to mostly green (range of 0–70), while

the other two baseline methods using the land cover and point

cloud data varied by location from non-green to fully green (range

of 0–100). Due to these ranges of values, we chose 7, 10, and 10 sites

based on GVI, land use, and VGVI values, respectively. The total

number of selected study sites was 27. If the sites happened to be on

private property or were otherwise obstructed, we identified a new

random segment from the same percentile range before starting

the fieldwork.

The aim of the fieldwork was to collect self-declared greenery

values with in situ interviews. During the fieldwork, we deemed

9 of the 27 initial sites to be unusable due to current or recent

road construction, unsafe areas for stopping pedestrians for an

interview, or lack of participants in a reasonable timespan. The

18 successful sites represented 25 of the 27 percentile ranges

of our initial classification. To include all percentile ranges of

the classification, we randomly selected two additional study

sites for interviews to fill the two missing percentile ranges.

Figure 1 presents the final 20 study sites, which represent the 27

initially defined percentile ranges of GVI, land use, and VGVI

greenery values.

3.2. Workflow

Our research aimwas to assess howwell greenery quantification

methods manage to capture the human perception of street-level

greenery, with a focus on methods that are specifically designed

for perceived greenery. To do this, we collected self-declared

greenery values from people in each study site with short on-

site interviews. After conducting the interviews, we calculated

greenery values at the same sites with a set of mapping methods
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FIGURE 1

Study area and sites in Helsinki, Finland. A site number and the mean perceived greenery value from interviews are shown for each site. Photographs

taken by J. Torkko exemplify the sites.

(Table 1). Subsequently, we compared the surveyed and mapped

values of perceived greenery statistically. Our workflow is presented

in Figure 2.

We mapped greenery in our study sites with six methods. Four

of the methods were developed specifically for mapping perceived

greenery values on the street level while the other two represent

top-down methods for capturing the amount of greenery. Methods

for capturing perceived greenery included two image segmentation

and two point cloud-based methods. Image segmentation methods

follow the Green View Index methodology proposed by Yang

et al. (2009). To avoid confusion, we designated them as Color

Green View Index (CGVI) and Semantic Green View Index (SGVI)

according to the segmentation method. Both approaches use six

photographs, which were taken with a 14mm lens with 60-degree

intervals from each study site. Point cloud-based methods to

estimate the visibility of greenery included Viewshed Greenness

Visibility Index (VGVI, Labib et al., 2021) and Green Space Ratio

(GSR, Susaki and Komiya, 2014). Top-down methods used either

Normalized Difference Vegetation Index (NDVI), which is the

most common indicator of quantified greenery (Fong et al., 2018),

or land cover data (LC) based greenery values, which were derived

similarly to Toikka et al. (2020). These were used by calculating

the average NDVI value or share of green land use within fixed

sized buffers. We tested various buffer sizes and for both methods,

we found 50-meter buffers to most accurately capture perceived

greenery. All the tested methods are further described in detail in

Section 3.4.

The set of methods we selected enabled us to provide a

methodological comparison between the recentmethods developed

for capturing perceived greenery and conventional top-down

methods.We collected data that were required to calculate greenery

values by field work or from online sources. All the data used had a

high spatial resolution to prevent resolution induced biases. Where

possible, we used data from the same year and season as the field

study interviews. We prioritized open-source options and did not

use proprietary datasets. All the methods we tested, and the data

requirements, are listed in Table 1.

3.3. Surveying perceived greenery

We collected perceived greenery values for each study site

with in situ interviews by asking randomly selected pedestrians

to voluntarily stop for a short interview regarding a study. The

Frontiers in SustainableCities 05 frontiersin.org

https://doi.org/10.3389/frsc.2023.1160995
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


T
o
rk
k
o
e
t
a
l.

1
0
.3
3
8
9
/frsc

.2
0
2
3
.1
1
6
0
9
9
5

TABLE 1 Methods and data used for mapping perceived greenery.

Method Abbreviation Description References Data required Data description and
usage

Data source

Color Green View

Index

CGVI The ratio of greenery of the total area of a

photograph. Greenery area segmented by

color values.

Yang et al. (2009) Ground level photographs 6 photographs to each 60◦ direction

from all sites. Taken with Olympus

OM-D E-M1 mark I with a 14mm

lens.

Self-taken photographs at the study

sites in June 2021

Semantic Green View

Index

SGVI The ratio of greenery of the total area of a

photograph. Greenery area segmented

semantically.

Green Space Ratio GSR The ratio of the entire viewshed occluded by

vegetation.

Susaki and Komiya (2014) Orthophotographs of

Helsinki

Used for greenery extraction. Data

from 2017 used due to being from

the same year as the point cloud

data.

Helsingin kaupunkiympäristön

toimiala/Kaupunkimittauspalvelut

(2020)∗

Buildings in Helsinki Building polygons. Used to provide

extra information for extracting

areas with no vegetation

Helsingin kaupunkiympäristön

toimiala/Kaupunkimittauspalvelut

(2018)

LiDAR point cloud

datasets in Helsinki

Used to create a Digital Surface

Model (DSM) for VGVI and as the

main dataset for GSR.

Helsingin kaupunkiympäristön

toimiala/Kaupunkimittauspalvelut

(2017)

Viewshed Visibility

Greenness Index

VGVI Amount of greenery pixels within a

viewshed, weighted by distance.

Labib et al. (2021)

Elevation model 2m resolution Digital Elevation

Model. Used as Digital Terrain

Model (DTM). Tiles merged and

interpolated to 5m resolution.

National Land Survey of Finland

(2021a)

Land cover LC Area of greenery within a 50-meter buffer,

on raster-based land use or land cover

datasets.

Toikka et al. (2020) Helsinki region land

cover 2018

Land cover data for the Helsinki

region. From this dataset, the main

class 2 was chosen to represent

vegetation/ greenery.

Helsinki Region Environmental

Services (2021)

Normalized Difference

Vegetation Index

NDVI Infrared and red ratio that used to monitor

vegetation biomass. Now average value

within a 50-meter buffer.

Tucker (1979) Near-infrared

orthophotographs

0.5m resolution orthophotographs.

Taken during 2020 summer

(National Land Survey of Finland,

2021b). Three bands: near-infrared,

red, and green.

National Land Survey of Finland

(2021b)

∗The City of Helsinki Urban Environment Division/City survey services.
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FIGURE 2

The workflow of the study. Light gray boxes mark the names of relevant subchapters, green boxes the workflow phases, input data and methods, and

blue boxes the output of respective phases. The methods and their abbreviations are described in Table 1. MAE stands for Mean Absolute Error and

RMSE stands for Root Mean Squared Error.

interviews were conducted from 8 to 19 June, 2021, each of them

between 2:30 pm and 8:15 pm. During the interview days, the

weather was sunny or partially cloudy, with the temperature being

near 20◦ Celsius (68◦ Fahrenheit). Before starting the interviews at

each site, we took photographs of the sites to enable the calculation

of greenery values with segmentation methods.

For each participant, we first explained the purpose of the

interview. The interviewees were then asked to evaluate the amount

of greenery visible in their surrounding scenery. We used a scale

from 0 (meaning no visible greenery) to 100 (only greenery is

visible). We asked the interviewees to concentrate on natural

greenery, i.e., to exclude green-colored cars, buildings, and other

artificial objects. The mean value of the self-declared values from

each site was then assigned as a perceived greenery value for each

study site.

In total, 412 participants were interviewed at the study sites.

The average number of participants was 20.6 per site, ranging

between 18 and 25. We conducted most interviews in Finnish, but

some interviews were done in English. Genders of the participants

were assumed. The sample included 216 presumed females and 196

presumed males.

3.4. Mapping greenery

3.4.1. Color Green View Index
To calculate the Color Green View Index (CGCI), we used the

Treepedia Python library (Mittrees, 2018). As the original library

was created for the now deprecated Python 2.7, we used a Python

3 fork instead (Chan, 2020; Kumakoshi et al., 2020). The script
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identifies green pixels and classifies them as green vegetation. It

delivers a percentage value for greenery in an image, following

Yang et al. (2009). We used the average score of six images in each

direction to calculate the CGVI value of each study site.

3.4.2. Semantic Green View Index
For Semantic Green View Index (SGVI), we processed the

images using a Bilateral Segmentation Network (Yu et al.,

2021), which is a semantic segmentation method based on

a fully convolutional neural network. We chose this method

because it has been tested with the Cityscapes Dataset (see:

Yu et al., 2021), a large, annotated dataset meant especially for

training semantic segmentation algorithms for urban views (Cordts

et al., 2016). We used a recent implementation of the Bilateral

Segmentation Network that included a Cityscapes pre-trained

model (MaybeShewill-CV, 2021). Following Kido et al. (2021), we

chose classes vegetation and terrain to represent green vegetation

in the classification. Then we ran our images from the study sites

with this implementation of the segmentation network. The final

greenery score was calculated in a similar manner to CGVI, by

assessing the number of respective pixels from six images for each

study site.

3.4.3. Viewshed Greenness Visibility Index
We calculated the Viewshed Greenness Visibility Index (VGVI)

by following the original script by Jonnyhuck (2020). The script

requires three main datasets: Digital Terrain Model, Digital

Surface Model, and a binary greenery surface. We used the

Digital Terrain Model developed by the National Land Survey of

Finland (2021a) and merged and rescaled it to a 5m resolution.

We created a new Digital Surface Model from the LiDAR

dataset of the City of Helsinki (Helsingin kaupunkiympäristön

toimiala/Kaupunkimittauspalvelut, 2017), using the las2dem tool

(Rapidlasso GmbH, 2021). We created the binary greenery surface

from a land cover dataset of 2018 (Helsinki Region Environmental

Services, 2021), in which the main class 2 marks greenery. After

collecting all the data required, we ran the script with an 800m

maximum viewshed parameter. Finally, we sampled the return

raster values to the study sites.

3.4.4. Green Space Ratio
For Green Space Ratio (Susaki and Komiya, 2014), we followed

the approach set up by the original authors. However, to ensure

a working script, some adjustments and compromises were

required. First, we joined a 1m resolution grid with the point

cloud data of Helsinki from 2017 (Helsingin kaupunkiympäristön

toimiala/Kaupunkimittauspalvelut, 2017). Second, we followed

Susaki and Kubota (2017) and used principal component analysis

to find the normal vector for the points of each cell. Due to the

differences in the point clouds used in this study and the original

one, we had to choose a different Root Mean Square Error (RMSE)

value than in the original paper. Thus, RMSE of 0.1 meter instead

of 1 meter was used to distinguish buildings. The equation used for

RMSE is as follows:

RMSE =

√

∑n
i=1 (Predictioni − Actuali)

2

n

In which Predictioni-Actuali is the distance between a point i

and a normal plane and n is the total number of points within

that segment.

Similarly to Susaki and Komiya (2014), we also

used airborne images (Helsingin kaupunkiympäristön

toimiala/Kaupunkimittauspalvelut, 2020) to further classify

the cells. The RGB band of the images was converted to Hue-

Saturation-Value and the segmentation thresholds were adapted

from the original paper. Despite the changes to RMSE and the

use of airborne images, building walls and edges were poorly

distinguished from vegetation. We suspected this to be caused

by the higher density of points in the point cloud we used

compared to the one in the original study. The problem could be

related to the classification errors presented by MacFaden et al.

(2012). To compensate, we used building polygons (Helsingin

kaupunkiympäristön toimiala/Kaupunkimittauspalvelut, 2018)

with a 3m buffer as an additional support and created a greenery

grid. Finally, we calculated the occlusion by greenery from each

position by mimicking the approach used by Susaki and Komiya

(2014).

3.4.5. Normalized Di�erence Vegetation Index
We created a Normalized Difference Vegetation Index (NDVI)

for each study site by calculating the average NDVI value within

a set of buffer zones: 30, 50, 100, and 300m range. For that, we

used 0.5m high resolution color-infrared orthophotos from the

summer 2020 (National Land Survey of Finland, 2021b). NDVI was

calculated based on the following equation:

NDVI =
NIR− Red

NIR+ Red

The NDVI raster data was afterwards normalized to 0–100 scale

for better comparability with other greenery methods according to

the following equation:

Zi =
xi −min(x)

max(x)−min(x)
∗ 100

In which Zi is the normalized NDVI cell, xmarks all the NDVI

values within the data, and xi is the original NDVI cell. After

calculating the average NDVI values within each buffer value, we

compared them to the perceived greenery values from the sites. The

50m buffer had the highest correlation coefficient with perceived

greenery and was therefore chosen for the statistical comparison.

3.4.6. Land cover
We created the land cover (LC) value for each study site by

calculating the proportion of area classified as vegetation from

the total area within the same set of buffer zones similarly to

NDVI. This is also similar to the approach used by Toikka et al.

(2020) in Helsinki. We tested several buffer sizes for correlation
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with perceived greenery values and the greenery within a 50m

buffer zone was found to have the highest correlation coefficient.

Therefore, we picked it to represent the Land Cover greenery

value for each study site (2020). The binary vegetation and non-

vegetation data were created from a land cover dataset available

from theHelsinki Region Environmental Services (2021). Polygons,

which belonged to the main class 2 in the dataset, were assigned

to vegetation and the rest of the polygons to the non-vegetation

category similarly to the calculation of VGVI.

3.5. Statistical analysis

We compared mapped and perceived values of greenery results

using three main methods: correlation analysis with Pearson

r, mean absolute error (MAE), and Root Mean Square Error

(RMSE). Correlation analysis has been extensively used to compare

perceived greenery mapping methods (e.g., Falfán et al., 2018;

Helbich et al., 2019; Larkin andHystad, 2019; Tong et al., 2020). It is

also a common method for matching modeled results to surveyed

results (Kobayashi and Salam, 2000). Following the conventional

example of Schober et al. (2018), we determined that correlation

coefficient r ≥ 0.9 indicates a very strong relationship and 0.7 ≤ r

≤ 0.89 a strong relationship.

Mean absolute error marks the average error between amapped

and the perceived value, gained from the interviews. We calculated

mean absolute error with the following equation based onWillmott

and Matsuura (2005):

MAE = n

n
∑

i=1

|ei|

In which ei is the error (variance) between the model derived value

and the perceived value.

Root Mean Square Error is the square root of the average

squared error between the mapped and the perceived greenery

values. It prioritizes outlier errors over smaller ones and is a better

option when the errors follow Gaussian distribution (Chai and

Draxler, 2014). We presented the equation for RMSE earlier with

the Green Space Ratio.

We chose both error assessment methods to provide additional

clarity to the results. The advantage of the error assessment

methods is that they aim to determine the differences between two

variables, instead of trying to fit one variable to another (Kobayashi

and Salam, 2000). Both MAE and RMSE are dimensioned,

providing results in the same units as the studied variable (Willmott

and Matsuura, 2005). As RMSE is more sensitive to the magnitude

of error and always larger than MAE, their differences can indicate

major deviations or unequal distribution in magnitude.

4. Results

4.1. Perceived and mapped greenery

The perceived in situ greenery values of the study sites

gained from the interviews were negatively skewed (−0.86).

Mean perceived greenery value for all sites combined was x

= 60.91 with a standard deviation of 19.69. Minimum and

maximum mean values for all sites were 16.15 and 85.6,

respectively. Standard deviation of mean perceived greenery

values varied across the study sites, ranging from 8.44 to 21.47.

Supplementary Table 1 and Supplementary Figure 1 present the

descriptive statistics and spatial distribution of perceived greenery

for all respondents, respectively.

Among the mapping methods we tested, Normalized

Difference Vegetation Index had the highest (NDVI, x = 56.04)

and Color Green View Index the lowest mean value (CGVI, x =

38.07). The mean greenery values for the other methods were the

following: Viewshed Greenness Visibility Index (VGVI): x= 55.51,

Semantic Green View Index (SGVI): x = 51.50, Green Space Ratio

(GSR): x = 43.88, and Land Cover (LC): x = 43.77. Further, NDVI

had a lower standard deviation than the other methods (VGVI: σ

= 29.12, LC: σ = 28.41, SGVI: σ = 26.20, CGVI: σ = 23.23, GSR: σ

= 21.96, NDVI: σ = 10.17) and its distribution is visibly different

from the others (Figure 3).

Viewshed Greenness Visibility Index, Normalized Difference

Vegetation Index, and Semantic Green View Index showed

negatively skewed greenery value distribution over all study

sites while Color Green View Index and Land Cover values

were positively skewed. Green Space Ratio had a nearly normal

distribution. Supplementary Table 2 presents the full descriptive

statistics of mapping methods and Figure 4 shows the spatial

distribution of both perceived and mapped greenery values. Site

specific values for both the methods tested, and perceived greenery

can be found in Supplementary Table 3.

4.2. The comparison of methods

The perceived greenery values (both mean and median

statistics, p < 0.05) as reported by the participants were on average

greater than the mapped greenery values. Perceived greenery had a

greater negative skewness than the mapped methods, as seen from

Figure 3. Thus, we can deduce that there is an underestimation of

perceived greenery by mapping methods. The correlation between

perceived and mapped values of greenery is presented in Figure 5.

The overall pattern shows a very strong or strong positive linear

relationship between perceived and mapped greenery: r ranged

from 0.93 for NDVI to 0.863 for Green Space Ratio (SGVI: r =

0.928, CGVI: r = 0.893, LC: r = 0.891, VGVI: r = 0.874). All

correlations were statistically significant (p < 0.05).

Also, the correlation between individual greenery mapping

methods was strong or very strong (Figure 6). The highest

correlation appeared between NDVI and Land Cover (r = 0.97),

which both calculated the average greenery value within circular

buffers. Similarly, two image segmentation methods, Color and

Semantic Green View Index, had a very strong correlation (r

= 0.96). The correlation between two point cloud-based indices

tested, Viewshed Greenness Visibility Index and Green Space Ratio,

was somewhat weaker (r = 0.81). Very strong relationships also

appeared between the pairs of some other methods, e.g., NDVI

and GSR (r = 0.94), GSR and LC (r = 0.92), and NDVI and

SGVI (r = 0.90).
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FIGURE 3

The distribution of reported (perceived) and mapped greenery values. Data is displayed in quartiles. Mean and median values are indicated by a white

triangle and a centerline, respectively. Small white circles show the individual values.

Mean Average Error and Root Mean Square Error scores

between the surveyed and mapped greenery values indicated

major error deviations between the mapping methods (Table 2).

NDVI showed the smallest and Color Green View Index the

largest deviation from the perceived greenery values. Noticeable

differences between MAE and RMSE for some of the methods

occurred, suggesting that the range of error deviations for some of

the methods was larger. This is apparent for Viewshed Greenness

Visibility Index, but it is also noticeable for GSR, SGVI, and

LC. For CGVI and NDVI, the smaller difference between MAE

and RMSE indicates that their errors are more equally divided

in magnitude.

5. Discussion

5.1. The functionality of the indices

In this study, we compared self-reported human perception

of urban greenery with traditional and novel greenery
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FIGURE 4

Mapped greenery values for the study sites. Vertical bar hue is weighted on the value with higher values having darker green hues and vice versa.

Perceived greenery is highlighted in red for comparison.

quantification methods to understand the ability of those

methods to capture and mimic human perceptions. Our results

show that all the tested mapping methods had a strong or

very strong correlation with the perceived greenery values

reported by participants, indicating their suitability to be

used as a proxy for human perception of street-level greenery

in Helsinki.

Urban greenery provides a wide array of socio-ecological

services, which are positively associated with health and wellbeing

benefits for people (Hartig et al., 2014; Nieuwenhuijsen, 2021).
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FIGURE 5

Scatterplots of mapped and perceived values of greenery on X and Y axes, respectively. Green line indicates the regression line. The correlation

coe�cient is provided within the plots.
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FIGURE 6

Correlation matrix between the mapped and perceived values of greenery. Darker colors indicate stronger correlation.

TABLE 2 Error deviation comparison between the mapped and perceived values of greenery by mapping method.

Method Mean Average Error
(MAE)

Root Mean Square Error
(RMSE)

MAE/RMSE

Color Green View Index (CGVI) 23.02 25.04 0.92

Semantic Green View Index (SGVI) 12.15 14.17 0.86

Viewshed Greenness Visibility Index (VGVI) 12.29 15.83 0.78

Green Space Ratio (GSR) 17.03 20.19 0.84

Normalized Difference Vegetation Index (NDVI) 12.82 13.98 0.92

Land Cover (LC) 19.20 21.95 0.87

The MAE scores are always lower than RMSE due to the calculation method.

As manual methods for documenting human perceptions of their

surrounding greenery and its importance can be applied only in

limited spatial and temporal scope, more robust methods that are

based on available spatial data and can ensure scalability are needed.

According to Ohno (1991), the greenery perceived by humans on

the ground does not just include the view in front of a person, but

the whole surrounding scene. The methods tested by this study,

based on high-resolution spatial data, successfully mimic the 360-

degree perception of greenery, as shown by the linear relationship

with the perceived values.

Our results suggest that deriving theGreenView Index from the

semantic, object-based segmentation of street view images provides

a better alternative for human perceived greenery mapping than

the color-based (pixel-based) image segmentation approach. The

reasons include the sensitivity to lighting conditions of color-based

segmentation, as dimmer or brightly lit greenery often remains

unquantified (Pietikainen et al., 1996; Batlle et al., 2000). The same

challenge is less pronounced in case of the semantic segmentation

approach. Other reasons for the lower performance of color-based

approach include the misclassification of green paint as greenery

and the inability to distinguish non-green vegetation or non-green

parts of vegetation from the images (Li et al., 2015b; Kido et al.,

2021). Therefore, color-based approach is the most suitable for

the Green View Index mapping from those images, which are

taken during the vegetation season (Li et al., 2015b; Larkin and

Hystad, 2019), in cases when the seasonal variety of the Green

View Index is not in focus. In our study, all images were taken

during the vegetation season in June, similarly to the interviews of

greenery perception, which means the results describe particularly

this season.

Among the point cloud-based methods tested, the Viewshed

Greenness Visibility Index performed better for mapping perceived

greenery than the Green Space Ratio. While both methods among

all the methods tested had the weakest correlation with perceived

greenery gained from the interviews, the error comparison results

for the Viewshed Greenness Visibility Index were similar to the

Semantic Green View Index. Therefore, the Viewshed Greenness

Visibility Index could be especially useful in locations for which
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ground level images are not available. Poorer correlation between

the two point cloud-based methods tested and the other greenery

measures may suggest that point cloud-based methods catch

greenery differently compared to the other methods. However, this

aspect was not separately tested in this study and would require

further investigation in the future.

We also tested two top-down methods, the Normalized

Difference Vegetation Index and green land cover, which both

provided reliable results for mapping perceived greenery within

a 50m buffer area in Helsinki. The Normalized Difference

Vegetation Index derived from 0.5m resolution orthophotographs

showed slightly better performance than green land cover in both

correlation analysis with perceived greenery and error assessment.

Even though these methods represent a birds-eye view approach

for viewing scenery, they can be used to supplement ground

level approaches to capture greenery perception by humans, or

even be combined into a single value (see Larkin and Hystad,

2019). However, other research has found a clearer disconnection

between the top-down and street-level assessment of greenery (e.g.,

Leslie et al., 2010; Larkin and Hystad, 2019; Kumakoshi et al.,

2020; Tong et al., 2020). The explanation for this may lie in the

study area vegetation: for example, cities having green walls or

otherwise vertical greenery, might have high street view greenness,

which is difficult to map top-down. This suggests that contextual

information is valuable when choosing the mapping methods.

5.2. Questions of quantifying perceived
greenery

In our comparison of mapping and surveying methods of

perceived greenery, we found that the mapping methods tested

often underestimate the amount of greenery as reported by

people. Previous research has also reported similar findings of

underestimation (e.g., Leslie et al., 2010; Falfán et al., 2018). The

objective presence of greenery might be amplified by human

perception. Future research could overcome this issue by finding a

coefficient or function, which brings mapped greenery values closer

to the perceived ones.

Image-based, point cloud-based, and top-down methods

for mapping greenery differ from their needs for data and

computational power, and hence from their suitability to be scaled

up for larger studies. As each type of the methods represent

the space and greenery by different means, their data and

resolution requirements are not directly comparable. However, we

acknowledge that the quality of a single dataset may affect the

capability of the respective method to reflect human perceived

greenery. Approaches based on point cloud and its derivates are

especially data-hungry and computationally demanding, and often

require a multitude of data sources for proper utilization. For

Green View Indices, street view images are usually proprietary data

accompanied by acquisition costs (e.g., Google, 2023). Open-source

alternatives can be considered, but they often lack the qualities

of monetary options (Alvarez Leon and Quinn, 2019; Ma et al.,

2020). Thus, without the necessary funds or data infrastructure,

methods developed specifically for capturing perceived greenery

can be hard to implement compared to the methods that use

more established public or private data sources. However, data

collection and processing for these new methods can be automated

with limited human intervention, especially when comparing with

manual data collection methods or surveying perceived greenery

with an in-person approach (see also Li et al., 2015b).

Although all the methods tested provided a reliable indication

of human perceived greenery, methodological advances could

improve their performance. For example, creating dedicated

training datasets for greenery extraction from specific geographic

areas could increase the accuracy of semantic segmentation models

(Yin and Wang, 2016; Ye et al., 2019). Ensuring dense point

cloud datasets, solving frequent methodological issues such as

detecting short vegetation (MacFaden et al., 2012), and increasing

the computational power of related greenery extraction methods

could result in more accurate resolution and mapping results.

Furthermore, point cloud-based methods could detect specific

typology of vegetation or assess various viewshed aspects (Yin and

Wang, 2016; Fu et al., 2019; Helbich et al., 2019; Liu et al., 2021). It is

even possible to model the perceived greenery of future landscapes

(Yu et al., 2016; Kido et al., 2021).

Research on perceived greenery would also benefit from

a deeper attention to seasonality and lighting conditions (Li

et al., 2015b; Larkin and Hystad, 2019). In many parts of

the world, deciduous trees have green leaves only during the

warm/humid season. Nevertheless, greenery perception studies

have predominately focused on the vegetation season, leaving

seasonal variation in the perception mostly understudied.

Considering seasonal and diurnal rhythms in lighting conditions

increases the complexity of understanding human perception

of greenery (see also Leng et al., 2020). However, these rhythms

should not be neglected as the cyclic character of nature has a

strong effect on human behavior and greenery-related wellbeing

(Villeneuve et al., 2018; Leng et al., 2020). Future research could

address more the impacts of seasonality on people’s perceptions

of greenery and how well different mapping methods are able to

capture greenery perceptions during the leafless period of the year.

These aspects are currently poorly understood.

Hence, quantifying perceived greenery into a single index or

value might oversimplify how people perceive greenery and its

qualities (see Leslie et al., 2010). People distinguish visually many

aspects of vegetation, which may create specific benefits for their

wellbeing, depending on their sociocultural background, previous

knowledge, and individual values (Aoki, 1999; Tyrväinen et al.,

2003; Liu et al., 2021). Furthermore, perceived greenery may be a

better proxy for certain types of behavior such as physical activity

than mapped greenery measures (Leslie et al., 2010). Advancing

greenery perception methods with the functionality to detect

perceived biodiversity, its components and meanings for people

would provide important insights for sociological, psychological,

and health-related research.

Our research has some limitations. The photographs used

in the calculation of image-based Green View Indices share

some overlap areas due to the focal length used. The calculation

method of the point cloud-based Green Space Ratio needed

modifications from the original version (see Susaki and Komiya,

2014) because of the different density of the original datasets, which
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reduced the comparability of our results with studies using the

method in its original form. Using NDVI average value within a

buffer area required normalization, which led to a low standard

deviation, a centralized distribution, and hence affected the error

comparison. Future research could consider the underestimation

bias of perceived greenery by greenery perception methods to

reach a more balanced set of study sites. Furthermore, comparative

studies from different regions and different times may produce

different results, as seen from Falfán et al. (2018). Comparative

studies on perceived and mapped greenery would also benefit

from a more sophisticated approach to individual perceptions,

previous knowledge and experiences, and the sociodemographic

background of participants as these might determine the pathways

how people perceive greenery.

6. Conclusions

Our study contributes to the use of novel computational

methods of quantifying urban perceived greenery. There has been

a critical gap in understanding how people perceive greenery and

how the approaches used for mapping capture it. We attempted to

bridge this gap for the benefit of urban greenery studies. Our results

indicate that all the methods tested have a strong relationship with

people’s perception, which suggests them to be viable alternatives

for mapping perceived greenery. The most suitable method for

mapping perceived greenery thus often depends on other factors,

such as data or computational constraints. However, our findings

support previous research by showing that the calculated values

mostly underestimate the extent of how people perceive greenery

on the ground level. The study also shows that high-resolution

top-down methods using limited buffer size can sometimes

capture people’s perception on-par with methods that use the

street-level perspective. Perspective-related aspects become more

important in the presence of vertical greenery. Future research

on the computational methods for perceived greenery could

disentangle the seasonal and diurnal variation in the perceptions

of greenery, the biodiversity-related and behavioral aspects of

perceived greenery, as well as mapping the eventual health and

wellbeing impacts that greenery perception can have on urban

population groups.
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