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Society will face enormous problems for the forthcoming decades to preserve a safe and healthy living
environment (Nelson et al., 2013; Watson et al., 2020) and to assure sufficient fresh water for all (Wada
et al., 2014; Bierkens and Wada, 2019). The impact of human activities on the climate system is well
established, and unsustainable emissions of greenhouse gasses will continue to be high for the coming
decades (IPCC, 2014). Even under optimistic scenarios, such as limiting warming by the end of the
century to 1.5 or 2.0°C above pre-industrial conditions, climate change impacts will be considerable
(Kraaijenbrink et al., 2017; IPCC, 2018). The warming up of the Earth and shifting patterns of
precipitation and drought have significant impact on natural systems, our agricultural activities, natural
resources, ecology, and the living environment. Some regions are more prone to global change than
others and we must assess that vulnerability to be prepared and to mitigate the negative effects. Next to
the threat of climate change there are health threats like the COVID-19 event that greatly reduced
economic activities and mobility worldwide (Silver, 2020). Similar ecological events are likely to occur
over the next decade due to the high world population numbers, the great mobility of people, the visits
into remote unexplored areas and climate change (Boldog et al., 2020; Ivanov, 2020).

Monitoring our environment using a wide range of remote sensing systems, building up knowledge
about the functioning of “System Earth” and developing models and methods for safeguarding our living
environment becomes increasingly important. Much of what we know about “System Earth” and about
changes at the Earth surface is derived from information acquired by remote sensing systems. A wide
suite of spaceborne sensors in the optical, thermal, and microwave spectrum, systems measuring gravity
fields and atmospheric composition provide that essential information (Belward and Skøien, 2015; Denis
et al., 2017). Manned airborne observations are rare and often experimental and do not contribute to
long-term standardized monitoring of the Earth surface (Tan, 2016). While low spatial resolution Earth
observation using sensors, such as Moderate Resolution Imaging Spectroradiometer and Advanced Very
High Resolution Radiometer of the National Oceanic and Atmospheric Administration, are suitable for
global studies of changes at the Earth surface, historic archives of moderate resolution images such as
National Aeronautics and Space Administration-Landsat (since 1984) and European Space Agency-
Sentinel (since 2015) with optical andmicrowave images are well suited for regional studies, and archives
of high-resolution images of, e.g., OrbView, Ikonos, Pleiades, PlanetLabs are available for local studies
(Zhu & Scott Mackay, 2001; Gorelick et al., 2017; Zhu, 2017). Some of these datasets are freely available,
others are commercial datasets. Examples of successful studies ofmapping Earth surface change are in the
field of deforestation (Kennedy et al., 2012; Kennedy et al., 2018), landslides (Deijns et al., 2020), land
cover (Kaptué Tchuenté et al., 2011; Wulder et al., 2018; Zurqani et al., 2018), glaciers and ice sheets
(Rignot and Thomas, 2002; Anderson, 2011; Mouginot et al., 2017; Zhang et al., 2018; Zhang et al., 2020).

Over recent decades, Unpiloted Airborne Systems (UASs) have developed in a very fast and
extraordinary way and filled the scale gap between spaceborne observations and detailed field, often
point observations. The UASs are adding an sizable amount of local and regional spatio-temporal
knowledge about surface processes and land cover dynamics (González-Jorge et al., 2017; Liew et al.,
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2017; Tatum& Liu, 2017; Tmušić et al., 2020). The UASs acquired
images are typically applied as valuable information at a spatial
scale in between spaceborne imagery andfield observations, and to
study regions with high surface dynamics or to collect images of
inaccessible areas. The use of UASs acquired data for
environmental research has grown enormously over the last
decade as has the number of published papers and special issues
on UASs technology and applications (Colomina and Molina,
2014; González-Jorge et al., 2017; Liew et al., 2017; Sigala and
Langhals, 2020). Various types and categories of UASs systems are
available such as fixed-wing, rotary type, flapping-wing, and
balloon (González-Jorge et al., 2017; Liew et al., 2017). UASs
have important advantages over other types of remote sensing.
UASs are small and easy to transport, images are not affected by
clouds, they are easy to deploy, they can carry various types of
payloads and sensors, theydeliverultra-high-resolution imagery at
centimetre resolution. UASs can normally fly on demand while
spaceborne and airborne image acquisitions require thorough
planning and might be hampered by unfavourable weather
conditions or other campaigns with higher priorities.

UASs have an increasing endurance and increasing payload
capacity, overflights can easily be repeated at a frequency desired
and the requirements for a skilled pilot are diminished because of
the development of auto-flight modes and autonomous flying.
UASs had to be manually controlled by human operators until
10 years ago but developments have rapidly progressed toward
various degrees of autonomous flying using pre-designed or
standard flight plans. Even small drones are now often
equipped with a Differential Global Position System and some
have Inertial Measurement Units facilitating the geocoding of the
images and of the flight tracks.

Advances intechnologyandavailabilityhaveboostedthenumber
of applications in many sectors but especially in regions with local
and regional dynamic features. Just a few innovative and successful
examples of UAS-based monitoring are glacier monitoring for ice
flow and mass wasting (Immerzeel et al., 2014; Kraaijenbrink et al.,
2016), landslide dynamics monitoring and surface deformation
(McKean, 2004; Niethammer et al., 2012; Lucieer et al., 2014;
Giordan et al., 2020; Karantanellis et al., 2020), dune dynamics
(Ruessink et al., 2018), flood risk mapping (Hashemi-Beni et al.,
2018),night-timelightmonitoringasproxyforeconomicactivity(Li
et al., 2020), public health care andhealth-related services (Amukele
et al., 2015; Scalea, 2020), and post-disaster damage assessment
(Kerle et al., 2019; Liao et al., 2020).

Several important challenges for the successful and responsible
scientific use of UASs are listed below. The list is by no means
comprehensive and not meant to exclude other topics, it serves as
a discussion on the ways ahead regarding the technical
developments of UASs and the applied use of UAS collected data.

Payloads. Most conventional payloads on UASs are RGB
(Red, Green, Blue) cameras. Over recent years many other
types of sensors were mounted such as color infrared cameras,
thermal cameras (Messina & Modica, 2020), Light Detection and
Ranging systems (Wallace et al., 2014; Wallace et al., 2016) and
even imaging spectrometers (Aasen et al., 2018). Non-imaging
sensors such as temperature sensors, air pressure or gas sensors
(Pering et al., 2020) are also used on UAS platforms. Multi-

sensors as payload on UASs are currently developed and
evaluated for use. As technology advances, more and more
sensors types aboard UASs will become available giving
challenges for power supply, stability, and data processing.

Environmental applications. For many years, UASs have been
widely used in scientific studies and for standard surveying.
Emphasis is still put on a limited number of applications such
as those mentioned above and for precision agriculture, crop
biomass development, food and water security, vegetation
mapping (forest, grassland, wetlands, riparian), coastal
systems, topographic survey, geomorphology, archaeology,
health-related services, snow and ice dynamics, and landslide
monitoring. There are, however, a huge range of applications that
remain under explored. A focus for the new Frontiers in Remote
Sensing journal will be to be as inclusive as possible and promote
the use of UASs in a wide variety of environmental fields.

Generation of high accuracy elevation models. Key products
of UAS-acquired images and Light Detection and Ranging sets
are digital elevation models (DEMs) and DEM-derived products.
Such products are valuable for flood-risk assessment (Hashemi-
Beni et al., 2018), surface deformation studies and landslide
monitoring (Lucieer et al., 2014; Turner et al., 2015), glacier-
and ice sheet dynamics (Immerzeel et al., 2014; Kraaijenbrink,
2018). It is a challenge to generate high quality DEMs, to optimise
algorithms such as “structure from motion” (Smith et al., 2015;
James et al., 2019) and to assess the quality of these products.
Papers addressing these topics and applications of DEMs and
DEM-products are invited.

Image acquisition and processing protocols and standards.
There are hardly any standard protocols for planning UAS surveys,
for the proper use of ground control points and Global Navigation
Satellite System, for platform and camera/sensor choice, for
processing of UAS-acquired data (georeferencing, DEM
generation (James et al., 2019), radiometric, and atmospheric
corrections) and for image information extraction, sensor
calibration and error characterization and accuracy assessment
(Singh and Frazier, 2018; Tmušić et al., 2020). It is a challenge and a
requirement for the development of successful UAS data
application to define and build such protocols.

Autonomous flying. The use of UASs has developed from fully
manual operator-controlled flying to auto-pilot flights.
Developments are rapidly proceeding toward fully autonomous
operating and flying UASs automatically carrying out their data and
image collection and uploading the data to a server. This comes with
technical and legal challenges that need to be solved (Sigala and
Langhals, 2020). So far, autonomous flying is being tested for a
limited number of applications, such as precision agriculture. Other
interesting developments are toward self-calibration during the
flight giving various aerodynamic and topographic conditions
(Laupré & Skaloud, 2020) which will be beneficiary for platform
stability and flight accuracy. Next, autonomous mobile ground
control point systems are becoming available to optimise UAS
data collection and improve georeferencing (Han et al., 2020). Fully
automated operating UASs for a range of applications are soon
available and will become rapidly operational.

UAS data analysis using machine learning.Machine learning
and advanced “Big Data” analysis methods have developed
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considerably over recent years. Methods such as Random Forests,
Support Vector Machines, Convolution Neural Networks will
contribute largely to the high-speed and possible automated
analysis of the huge amount of drone data that can be
collected during just a few field surveys (Khan and Al-Mulla,
2019; Liao et al., 2020).

Quality assurance of products. The production of high quality
UAS-products starts, as stated above, by well-followed image
acquisition protocols in the field, a well organised flight plan and
mission, good georeferencing using Differential Global Position
System or Ground Control/Reference Points and an image
geometry model. Where necessary, radiometric calibration
must be applied by, for example, sensor calibration or
atmospheric transmission models. The next processing step is
to convert the data/images into high quality products such as
image mosaics, DEMs, quantitative biomass maps, classified land
cover maps etc. Reliable reference data collected in the field is
often necessary to assess the quality of the products (Tmušić et al.,
2020). A well-described proposal for data quality procedures and
protocols is given by Tmušić et al. (2020) but needs to be further
developed. This will be another challenge for the UAS user
community.

Legislation and regulation.UASscome inmany formsranging
from small toys to military drones. They have great potential for
scientific applications,however theunbridledgrowthofUASsboth
commercially and scientifically pose a challenge for legislation and
regulation (Jackman, 2020). While in the early days of UASs there
werehardly any rules, thathas changed rapidlyover the lastdecade.
Flights are now often restricted to specific maximum flight height,
depending on the type of operation, size, andweight of the aircraft,
and pilot and company licensing (Tmušić et al., 2020), and

prohibited in some locations. The European Commission is
striving toward harmonizing the rules which is an important
step in the right direction (European Commission, 2019).
Workable regulations for all UAS users will be another
challenge for the UAS community.

The aim of the Unpiloted Aerial Systems (UASs and UAVs)
specialty section within Frontiers in Remote Sensing is to provide
a platform for publishing scientific papers on new developments
of UAS technology, on a wide variety of environmental
applications, on image and data acquisition procedures, on
methods and algorithms for pre-processing and on
information extraction approaches from UAS datasets, on data
and image quality control standards and procedures.
Occasionally, papers on regulations and legislation will be
published. These published scientific papers with methods,
techniques, standards, applications, and protocols will yield a
solid scientific and practical basis to monitor and understand our
living environment, which helps to preserve and manage our
resources.
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