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An optimization algorithm is developed to retrieve the vertical profiles of aerosol
concentration, refractive index and size distribution, spherical particle fraction, as well
as a set of ocean surface reflection properties. The retrieval uses a combined set of lidar
and polarimeter measurements. Our inversion includes using 1) a hybrid radiative transfer
(RT) model that combines the computational strengths of the Markov-chain and adding-
doubling approaches in modeling polarized RT in vertically inhomogeneous and
homogeneous media, respectively; 2) a bio-optical model that represents the water-
leaving radiance as a function of chlorophyll-a concentration for open ocean; 3) the
constraints regarding the smooth variations of several aerosol properties along altitude;
and 4) an optimization scheme. We tested the retrieval using 50 sets of coincident lidar and
polarimetric data acquired by NASA Langley airborne HSRL-2 and GISS RSP respectively
during the ORACLES field campaign. The retrieved vertical profiles of aerosol single
scattering albedo (SSA) and size distribution are compared to the reference data
measured by University of Hawaii’s HiGEAR instrumentation suite. At the vertical
resolution of 315 m, the mean absolute difference (MAD) between retrieved and
HiGEAR derived aerosol SSA is 0.028. And the MADs between retrieved and HiGEAR
effective radius of aerosol size distribution are 0.012 and 0.377 micron for fine and coarse
aerosols, respectively. The retrieved aerosol optical depth (AOD) above aircraft are
compared to NASA Ames 4-STAR measurement. The MADs are found to be 0.010,
0.006, and 0.004 for AOD at 355, 532 and 1,064 nm, respectively.
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INTRODUCTION

Aerosols are tiny particles suspended in the atmosphere. They stem from a variety of natural and
anthropogenic sources and processes, and influence the distribution of radiation by either directly
absorbing, scattering and emitting radiation or indirectly by providing cloud condensation nuclei. In
addition, the concentration and speciation of aerosols in the boundary layer impact air quality and
consequently public health. Characterization of spatial and temporal variations of a few key aerosol
characteristics such as abundance, size, absorption, and composition is critical for quantifying their
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global and regional impact on climate and air quality. However,
the short life cycle of aerosols and high-degree of variability in
their composition and distribution has been a challenge for their
accurate remote sensing. According to the most recent IPCC
report (IPCC, 2013), aerosols remain the largest radiative forcing
uncertainty.

To better anchor aerosol direct and indirect impacts on the
Earth’s energy balance, the Global Climate Observing System
(GCOS, 2011) sets out observational requirements for a few key
aerosol characteristics such as aerosol optical depth (AOD, denoted
by “τ”), single scattering albedo (SSA), extinction profiles and layer
height. For example, the accuracy of AOD at 550 nm is required to
be better than the max of (0.1τ, 0.03) at the horizontal resolution of
5–10 km and a temporal resolution of 4 h. The accuracy of SSA is
required to be better than 0.03. Aerosol extinction profiles are
required to be better than 10% at a horizontal resolution of
200–500 km, a vertical resolution <1 km near the tropopause
and of ∼2 km in the middle stratosphere. The NASA Aerosol
Clouds, and Convection and Precipitation (ACCP) mission that is
currently undergoing formulation (https://vac.gsfc.nasa.gov/accp/
home.htm) is also setting up criteria on a set of geophysical
variables (documented as Milestone SATM, September 16,
2019). For example, the total and planetary boundary layer
(PBL) effective total fine mode AODs are desired to be better
than 0.05τtotal/fine + 0.02. In both column and PBL effective sense,
the accuracy of SSA is desired to be better than 0.03; aerosol
extinction-to-backscatter ratios are required to be better than 25%;
the real part of aerosol refractive index is desired to be better than
0.025; and the nonspherical AOD fractions are desired to be better
than 10%. Aerosol extinction profile is desired to be better than the
max of (0.02 km−1, 20%–40%) at the vertical resolution from 30 to
250 m, depending on specific mission objective.

Capitalizing on the rapid advancement of lidar and
polarimetric remote sensing techniques and the relevant
remote sensing theory over the last few decades, the
combination of these two types of measurement is highly
promising for meeting the requirements described above. As
an active remote sensing technique, lidar sends out laser
pulses into atmosphere and detects the backscattered radiation.
Accounting for speed of light, the time delay in the received
signals determines the distance from the backscatter location, and
the range-resolved profiles of attenuated backscatter (e.g.,
CALIOP (Winker et al., 2007)) or backscatter, extinction and
depolarization (e.g., the measurement by the High Spectral
Resolution Lidar (HSRL, (Hair et al., 2001; Hair et al., 2008;
Rogers et al., 2009) at single or multiple wavelengths resolves
aerosol types and microphysical properties, and consequently
vertically resolved radiative forcing. The determination of
vertically resolved aerosol radiative forcing has direct
implications for the thermodynamic structure of atmosphere
and consequent effects on monsoonal circulations and the
global hydrological cycle. Polarimeters, in contrast, use the
Sun as the radiation source and measure radiometric and
polarimetric signals of sunlight reflection from top-of-
atmosphere (TOA) in multi-spectral/hyper-spectral and multi-
angular dimensions. It enables a moderate-to-high horizontal
resolution aerosol/cloud optical and microphysical products

during daytime. The global coverage of aerosol products
enables its wide applications such as aerosol-cloud interaction
and air quality studies. Like a radiometer, a polarimeter can
provide large swath aerosol/cloud context for TOA flux
assessment. Both theoretical studies and real data analysis have
proved polarimeter’s capability of constraining column effective
aerosol abundance, absorption and microphysical properties
together with surface reflection properties (see for example
[Mishchenko et al., 2011; Hasekamp et al., 2011; Chowdhary
et al., 2012; Knobelspiesse et al., 2012; Dubovik et al., 2019; Remer
et al., 2019; among others]). Compared to lidar, however,
polarimeter carries much less information about the vertical
distributions of aerosols.

It is apparent that lidar and polarimeter have highly
complementary strengths: while lidar resolves details of aerosol
vertical profiles and types, polarimeter provides constraints on
anchoring column-effective aerosol abundance, absorption and
microphysical properties across a large swath. Consequently, a
combination of these two types of measurements enhances the
observational information about aerosol properties. Informing
aerosol retrieval by these two types of measurements, we target a
comprehensive determination of aerosol size, type, abundance
and absorption as well as their vertical variations.

To fully utilize the information contained in lidar and
polarimetric measurements, reliable forward and inversion
models are prerequisite. Some earlier efforts have been made
toward combining lidar and polarimetric/radiometric
measurements to improve the retrieval of aerosol properties.
For example, Knobelspiesse et al. (2011) investigated the
Research Scanning Polarimeter (RSP, Cairns et al., 1999) and
HSRL (Hair et al., 2008) data collected during the field campaign -
Arctic Research of the Composition of the Troposphere from
Aircraft and Satellites (ARCTAS). It is found that the combined
use of the two types of measurement in retrieval reduces the
likelihood of unsuccessful retrievals caused by significantly biased
initial estimate of the aerosol number concentration in optimal
estimate inversion approach. In the case of ground-based
observations, the LIRiC and GARRLiC algorithms have been
developed by Chaikovsky et al. (2016) and by Lopatin et al.
(2013), respectively. The latter is currently a branch of the
Generalized Retrieval of Aerosol and Surface Properties
(GRASP) algorithm (Dubovik et al., 2011; Dubovik et al.,
2014). These two algorithms use joint data from a multi-
wavelength lidar and an AERONET radiometer and derive
two vertical profiles of fine and coarse aerosol components as
well as extra parameters on the column-integrated properties of
aerosols. Particularly, LIRIC derives vertical profiles using the
retrieval results from AERONET but not changing them.
GARRLiC/GRASP, on the other hand, fits simultaneously lidar
and photometer data and derives both enhanced vertical and
columnar aerosol properties. As ongoing efforts, Liu et al., (2016)
and Burton et al., (2019) have been developing an optical estimate
approach to retrieve vertically resolved particle concentrations,
effective radius, and absorption by using both RSP and HSRL
observations acquired during DISCOVER-AQ, TCAP and
ORACLES field missions. Espinosa et al., (2019) used the
GRASP algorithm to simulate the retrieval of attenuated
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backscatter lidar measurements in 532 and 1,064 nm in
combination with a radiometer or polarimeter with 10 angles
spaced over ±57° with 6 wavelengths spanning 0.44–2.2 μm.
Compared to stand alone polarimetric or radiometric retrieval,
an enhanced accuracy in fine mode aerosol SSA was observed
from the combined retrieval. In essence, the combined retrieval
capitalizes on the benefit of backscatter observations that contain
sensitivity to the profiling properties of aerosols and the benefits
of polarimetric observations that contain information about
aerosol loading and absorption.

In this paper, we describe a research algorithm that allows a
combined use of lidar and polarimetric observations for
retrieving vertical profiles of speciated aerosol abundance and
aerosol intrinsic properties such as size distribution, refractive
index, and spherical particle fraction. The algorithm builds upon
our earlier work using only polarimetric observations to retrieve a
column effective set of aerosol properties over ocean (Xu et al.,
2016). The paper is organized as follows. Following an algorithm
overview in General Structure of the Algorithm, we introduce our
1D RT model for polarized RT in a coupled atmosphere-ocean
system in Aerosol Scattering and Ocean Surface Reflection.
Forward Model for Light Propagation in a Coupled
Atmosphere-Ocean System formulates the inversion and error
estimate approach. In Coupled Retrieval of Aerosols and Ocean
Properties, we test the inversion algorithm using 50 sets of
coincident lidar and polarimetric observations made by the
HSRL-2 and RSP instruments aboard the NASA ER-2 during
the NASA’s ORACLES field campaign (Redemann et al., 2021).
These observations cover a moderately high bio-mass burning
and sea salt aerosol loading with column total AOD532-nm

between ∼0.2 and ∼0.3 and an altitude dependent SSA.
Comparisons of the retrieved AOD, SSA, and aerosol size
distribution are made to the reference data measured by 4-
STAR and HiGEAR which are aboard the NASA P-3 aircraft.
A summary is given in Retrieval Implementation and Validation.

GENERAL STRUCTURE OF THE
ALGORITHM

The combined lidar and polarimetric retrieval of aerosol loading
and properties consists of three major modules: 1) A static light
scattering dataset for intrinsic aerosol properties including
refractive index and multiple rectangular size bins. The dataset
is pre-calculated and called during the inversion to provide on-
the-fly single scattering properties for spherical and nonspherical
particle properties. These properties include aerosol optical
depth, phase matrix and SSA for radiative transfer modeling;
and extinction, backscatter and depolarization to fit lidar
measurement; 2) A hybrid radiative transfer model that
combines the computational strengths of the Markov-chain
and adding-doubling approaches in modeling polarized RT in
vertically inhomogeneous and homogeneous media, respectively;
and 3) Optimization model. The inversion is assisted by allowing
an imposition of smoothness constraints on the vertical
variations of speciated aerosol refractive index, size parameters
and spherical particle fraction. Following retrieval success and the

output of the optimized solution, ancillary aerosol quantities
including AOD, SSA, particulate lidar ratio, particulate
extinction and backscatter coefficients as well as particulate
depolarization are derived. Error estimate is provided for all
retrieval outcome.

With these algorithm modules, we outlined in Figure 1 the
algorithm flow of combined lidar-polarimeter inversion. Input
into the retrieval consists of 1) lidar signals including extinction,
backscatter, and/or depolarization or a subset of them; and 2)
polarimetric signals including multi-angle and multi-spectral
measurements of radiance and polarimetric components. As
retrieval parameters, the state vector contains the column
volume concentrations of multiple aerosol species and vertical
profiles of 1) speciated aerosol refractive index with its spectral
dependence constrained by a linear model in logarithmic space;
2) speciated log-normal volume weighted size distribution
constrained by median size parameter and standard deviation;
3) species dependent spherical particle volume fraction; and 4)
species column concentrations in vertical layers. Also included in
the retrieval state vector are chlorophyll-a (Chl-a) concentration,
an empirical spectral term that adjusts the water-leaving
radiances to mitigate bio-optical modeling error, and the
wind speed.

Our retrieval starts with an initialized state vector x0. Speciated
aerosol abundance, optical properties and microphysical
properties are used to calculate vertically resolved aerosol
single scattering quantities including 1) AOD, SSA and phase
matrix for radiative transfer modeling and fit polarimetric
measurement of radiance and degree of linear polarizartion
(DOLP); and 2) aerosol extinction coefficient, scattering
coefficient and depolarization ratio for fitting relevant lidar
measurements. To guide the direction of search of solution
through iterations, we run the forward model multiple times
to calculate the Jacobian matrix that contains the derivatives of
radiative and lidar quantities with respect to the aerosol and
ocean surface properties. Moreover, a smoothness matrix is
constructed to improve monotonic convergence of iteration
toward the vicinity of globally optimized solution. A linear
system is then established that includes the difference between
model and observation, the Jacobian matrix, the smoothness
matrix and the a priori. By solving the linear system, a
stepwise increment of solution is determined to adjust the
solution. In an iterative way, retrieval converges to a final
solution.

AEROSOL SCATTERING AND OCEAN
SURFACE REFLECTION

Dependent on the information content offered by specific
combinations of lidar and polarimeter, our algorithm is designed
to be flexible in the aspect of allowing multiple aerosol species to be
retrieved. In this section we will introduce the calculation of aerosol
single scattering quantities as well as ocean surface reflection.

Adopting a log-normal volumetric size distribution
[dv(s)l (r)/d ln r] for all (Ns) aerosol species, we have the
subcolumn volumetric concentrations in lth layer,
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dVl(r)
d ln r

�∑Ns

s�1
C(s)
v,l

dv(s)l (r)
d ln r

, (1)

where the size distribution of the sth species dv(s)l (r)/d ln r is
parameterized by a geometric volume mean radius r(s)m and a
logarithmic standard deviation σ(s)m,l :

dv(s)l (r)
d ln r

� 1���
2π

√
σ(s)m,l

exp⎡⎢⎢⎢⎢⎣ − (ln r − ln r(s)m,l)2
2(σ(s)m,l)2

⎤⎥⎥⎥⎥⎦. (2)

In Eq. 1, C(s)
v,l is the subcolumn volume concentration of the sth

aerosol species in the lth layer and is related to its volume fraction
(f (s)v,l ) and the total column concentration (Ctot, (s)

v ) by C(s)
v,l �

Ctot, (s)
v f (s)v,l .
If we discretize the speciated aerosol size distribution in the lth

layer into Nbin size bins, the volumetric fraction of the ith bin is
equal to f (s)i,l d ln ri (1 ≤ i ≤ Nbin), where f

(s)
i,l is calculated by

f (s)i,l � dv(s)l (ri)
d ln ri

, (3)

where ri stands for the central radius of ith size bin and
dv(s)l (ri)/d ln ri can be evaluated from Eq. 2.

Aerosol Single Scattering Properties for
Radiative Transfer Calculation
In this section, we are going to introduce the calculation of aerosol
single scattering properties including AOD, SSA and phase
matrix elements for radiative transfer modeling.

Accounting for the contribution by both spherical and
spheroid-based nonspherical particles, the volumetric

extinction coefficient K(s)
ext, a,l and scattering coefficient K(s)

sca, a,l
(in the unit of m−1) are calculated by

K(s)
ext,a,l � K(s),sphere

ext,a,l + K(s),spheroid
ext,a,l (4)

for sth aerosol species. In the above equation, the volumetric
extinction component of spherical particles is evaluated by

K(s),sphere
ext,a,l � C(s),sphere

n0 ,a,l
∫rmax

rmin

dn(s)l (r)
d ln r

c(s),sphereext,a,l (m(s)
a,l , r)d ln r

� C(s)
v0 ,a,l

f (s),spherev,l ∫rmax

rmin

dv(s)l (r)
d ln r

1
v(r)c

(s),sphere
ext,a,l (m(s)

a,l , r)d ln r,
(5)

where C(s),sphere
n0 ,a,l

is the aerosol number concentration (m−3),
dn(s)l (r)/d ln r is the number weighted aerosol size distribution
in association with dv(s)l (r)/d ln r, rmin and rmax are the lower and
upper bounds of the size distribution respectively, c(s),sphereext,a,l is
extinction cross section as a function of particle refractive index
m(s)

a,l and radius r, f (s),spherev,l is the volume fraction of spherical
particles, v(r) is the volume of a spherical particle of radius r, and
C(s)
v0 ,a,l

is the aerosol volumetric concentration (in the unit of m3/m3).
It is related to the subcolumn aerosol concentration (C(s)

v,a,l in the
unit of m3/m2) in lth layer by

C(s)
v,a,l � C(s)

v0 ,a,l
ΔHl � Ctot, (s)

v f (s)v,l , (6)

where

f (s)v,l � C(s)
v,l ΔHl

Ctot, (s)
v

� C(s)
v,l ΔHl

∑NLayer

l�1
C(s)
v,l ΔHl

. (7)

FIGURE 1 | Algorithm flowcharts for retrieving aerosol and surface properties from a combined use of lidar and polarimer.
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Calculation of volumetric extinction coefficient of
spheroidal particles in Eq. 4 should account for both size
and aspect ratio distributions of spheroids (Dubovik et al.,
2011). Therefore,

K(s),spheroid
ext,a,l � C(s),spheroid

n0 ,a,l
∫rmax

rmin

dn(s)l (r)
d ln r

c(s),spheroidext,a,l (m(s)
a,l , r)d ln r

� C(s)
v0 ,a,l(1 − f (s),spherev,l ) ∫ηmax

ηmin

∫rmax

rmin

dn(s)l (η)
d ln η

dv(s)l (r)
d ln r

1
v(r)c

(s),spheroid
ext,a,l (m(s)

a,l , r, η)d ln ηd ln r
(8)

where r becomes the volume equivalent spherical particle radius, the
aspect ratio η < 1 for oblate spheroids and η > 1 for prolate
spheroids, and ηmin and ηmax are the lower and upper bounds of
the aspect ratio distribution respectively. Note that we assume
spheroids to have fixed aspect ratio distribution (Legrand et al.,
2014) and dn(s)l (η)/d ln η is independent of aerosol size. Both
dn(s)l (η)/d ln η and dv(s)l (r)/d ln r are normalized to unity in the
presence of non-zero lower bound or non-infinity upper bound in
their integral over r and η, respectively.

For numerical calculation, the aerosol size distribution is
descritized into Nbin rectangular bins so that for spherical particles

K(s),shere
ext,a,l � C(s)

v0 ,a,l
f (s),spherev,l ∑Nbin

i�1

dv(s)l (ri)
d ln r

K(s),sphere
ext,a,l,i (m(s)

a,l , ri), (9)

where the component of sth aerosol species in its ith size bin is

K(s),sphere
ext,a,l,i (m(s)

a,l , ri) � ∫lnri+Δlnri/2

lnri−Δlnri/2

c(s),sphereext,a,l (m(s)
a,l , r)

v(r) dlnr. (10)

For spheroids, we further need to break the integral of
volumetric extinction into NAR bins of aspect ratio so that:

K(s),spheroid
ext,a,l � C(s)

v0 ,a,l(1 − f (s),sherev,l ) ∑Nbin

i�1
K(s),spheroid
ext,a,l,i (m(s)

a,l , ri) dv(s)l (ri)
d ln r

,

(11)

where

K(s),spheroid
ext,a,l,i (m(s)

a,l , ri) � ∑NAR

q�1

dn(s)l (ηq)
d ln η

∫lnηq+Δlnηq/2

lnηq−Δlnηq/2
∫lnri+Δlnri/2

lnri−Δlnri/2

c(s),spheroidext,a,l (m(s)
a,l , r, η)

v(r) dlnrdlnη.

(12)

For simplicity, the layer resolved volumetric extinction
coefficient can be rewritten in the following form,

K(s)
ext,a,l � ∑Nbin

i�1
f (s)i,l [f (s),spherev,l K(s),sphere

ext,a,l,i + (1 − f (s),spherev,l )K(s),spheroid
ext,a,l,i ],

(13)

where K(s),sphere
ext,a,l,i and K(s),spheroid

ext,a,l,i are given in Eqs 10 and 12,
respectively.

Replacing the subscript “ext” by “sca” in above derivations (Eqs.
4–13) gives relevant equations for the volumetric scattering
coefficient:

K(s)
sca,a,l � ∑Nbin

i�1
f (s)i,l [f (s),spherev,l K(s),sphere

sca,a,l,i + (1 − f (s),spherev,l )K(s),spheroid
sca,a,l,i ].

(14)

In a similar way, the phase matrix element Pa,j,k,l of sth aerosol
species in the lth layer is calculated from

P(s)
a, j,k,l �

∑Nbin

i�1
f (s)i,l [f (s),spherev,l K(s),sphere

a, sca, l, i P
(s),sphere
a, j,k,l, i + (1 − f (s),spherev,l )K(s),spheroid

a, sca, l, i P(s),spheroid
a, j,k, l, i ]

∑Nbin

i�1
f (s)i,l [f (s),spherev,l K(s),sphere

a, sca, l, i + (1 − f (s),spherev,l )K(s),spheroid
a, sca, l, i ]

.

(15)

In the numerator of the above equation, we have

K(s),sphere
sca,a,l,i P(s),sphere

a, j,k,l,i � ∫lnri+Δlnri/2

lnri−Δlnri/2

c(s),spheresca,a,l (m(s)
a,l , r)

v(r) P(s),sphere
a, j,k,l (m(s)

a,l , r)dln r,
(16)

K(s),spheroid
sca,a,l,i P(s),spheroid

a, j,k,l, i � ∑NAR

q�1

dn(s)l (ηq)
d ln η

∫lnηq+Δlnηq/2

lnηq−Δlnηq/2
∫lnri+Δlnri/2

lnri−Δlnri/2

c(s),spheroidsca,a,l (m(s)
a,l , r, η)

v(r) P(s),spheroid
a, j,k,l,q (m(s)

a,l , r, η)dlnrdlnη.
(17)

Summing over the contributions from all aerosol species gives
the total volumetric extinction and scattering coefficients in lth
layer,

Kext[sca],a,l �∑Ns

s�1
K(s)
ext[sca],a,l, (18)

where K(s)
ext, a,l and K(s)

sca,a,l are given by Eqs 13 and 14 respectively.
The speciated aerosol SSA in lth layer is calculated as the ratio

of speciated scattering and extinction coefficients by,

ω(s)
0,a,l �

K(s)
sca,a,l

K(s)
ext,a,l

. (19)

Contributed by all aerosol species, the overall SSA contributed
by all aerosol species in lth layer is

ω0,a,l �
∑Ns

s�1
f (s)v,l K

(s)
sca,a,l

∑Ns

s�1
f (s)v,l K

(s)
ext,a,l

, (20)

where f (s)v,l stands for the volume fraction of sth aerosol species in
lth layer, as given by Eq. 7.

The overall aerosol phase matrix elements are evaluated by,

Pa, j,k,l �
∑Ns

s�1
f (s)v,l K

(s)
sca, a, lP

(s)
a, j,k,l

∑Ns

s�1
f (s)v,l K

(s)
sca,a,l

, (21)
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where P(s)
a, j,k,l is given by Eq. 15. The layer aerosol optical depth

(AOD, Δτa,l) is contributed by all aerosol species. Therefore, we
have

Δτa,l �∑Ns

s�1
Δτ(s)a,l . (22)

In the above equation, the AOD for sth aerosol species is

Δτ(s)a,l � C(s)
v, a, lK

(s)
ext,a,l, (23)

where C(s)
v,a,l is the subcolumn volumetric concentration of sth

aerosol species, evaluated by Eq. 6, and K(s)
ext,a,l is column effective

extinction coefficient (in the unit of m−1) of sth aerosol species in
the lth layer, evaluated by Eq. 13.

Aerosol Single Scattering Properties for
Lidar Equation Use
In this section, we are going to introduce the calculation of aerosol
single scattering properties including extinction, backscatter and
depolarization for use in the lidar equation.

The total extinction coefficient for lth layer (αa,l , in the unit of
m−1) is calculated by summing over the contribution from all
aerosol species, namely

αa,l �∑Ns

s�1
α(s)
a,l , (24)

where the speciated aerosol extinction α(s)a,l in a layer of
geometric thickness ΔHl is related to layer resolved aerosol
optical depth by

α(s)
a,l �

Δτ(s)a,l

ΔHl
� C(s)

v,a,lK
(s)
ext,a,l

ΔHl
, (25)

where C(s)
v,a,l and K(s)

ext,a,l are given by Eqs 6 and 7 respectively.
Calculation of the total backscatter βa,l (in the unit of m

−1Sr−1)
also needs to account for the contributions of all aerosol species as
well, namely

βa,l �∑Ns

s�1
β(s)a,l , (26)

where the speciated aerosol backscatter is evaluated by

β(s)a,l � β(s)sca,a,l

P(s)
a,1,1,l(180+)

4π
, (27)

where P(s)
a,1,1,l(180+) is given by Eq. 15 and the aerosol scattering

coefficient (β(s)sca,a,l , in the unit of m−1) in lth layer is evaluated by,

β(s)sca,a,l �
C(s)
v,a,lK

(s)
sca,a,l

ΔHl
, (28)

where K(s)
sca,a,l is given by Eq. 16.

Assuming random orientation of nonspherical particles, the
aerosol linear depolarization ratio of lth layer is calculated as

δa,l(180+) � 1 − Pa,2,2,l(180+)/Pa,1,1,l(180+)
1 + Pa,2,2,l(180+)/Pa,1,1,l(180+), (29)

where the layer resolved phase matrix elements Pa,i,j,l are
evaluated via Eq. 21.

Development of a Lookup Table for Aerosol
Single Scattering Properties
Calculation of aerosol single scattering properties (AOD, SSA,
p) for RT modeling and (αa, βa, δa) for fitting lidar
measurements needs to use the aerosol refractive index as
the input. We adopt the following two parameter constrained
model for refractive index as a function of wavelength
(Dubovik and King, 2000),

mr, l(λ) � mr0, l(λ/λ0)− κr0, l
mi, l(λ) � mi0, l(λ/λ0)−κi0, l (30)

where mr0 and mi0 are the real and imaginary parts of the
refractive index at the reference wavelength λ0, and κr0 and κi0
are used to characterize their spectral dependence.

During the optimization process, the spectrally dependent
refractive index and size distribution of aerosols and the spherical
particle fraction of aerosols are updated dynamically. To avoid
inefficient on-the-fly light scattering computations of aerosol

extinction [scattering] coefficients Ksphere[spheroid]
ext[sca], a,i , and aerosol

phase matrix Psphere[spheroid]
a,j,k,i are precalculated for a set of size bins

and refractive indices and saved in a lookup table. The table is then
linearly interpolated to determine the scattering properties
associated with dynamically updated refractive index during the
retrieval. The bin resolved properties are weighted by size

distribution parameters to determine Ksphere[spheroid]
ext[sca], a,i , Psphere[spheroid]

a,j,k,i

and then (αa, βa, δa) for the whole size distribution (seeAerosol Single
Scattering Properties for Radiative Transfer Calculation and Aerosol
Single Scattering Properties for Lidar Equation Use).

In the generation of the lookup table, the real part of
refractive index is uniformly distributed in linear space
from 1.3 to 1.7 with 22 grids. The imaginary part of
refractive index is uniformly distributed in logarithmic
space from 1 × 10−8 to 3 × 10−4 with five grids and from
5 × 10−4 to 0.5 with 15 grids. The lower and upper bounds for
aerosol size are set as rmin � 5 nm and rmax � 50 μm,
respectively. A total of 50 size bins are equally spaced in
logarithmic space to calculate aerosol light scattering
properties. Mie theory is used to calculate spherical particle
scattering (van de Hulst, 1981). For spheroids, the lower and
upper bounds for aerosol axis ratio to be 0.33 and 3.0
respectively and a total of 25 bins are set for precalculating
spheroidal scattering properties by use of T-matrix method in
combination with geometric optics (Dubovik et al., 2006).

Surface Reflection
The use of bio-optical model to simulate ocean water-leaving
radiance effectively reduces the parameter space and provides
extra constraints in the retrieval of ocean bulk properties. It
has been more and more adopted over the last decade and
justified by many research groups (see for example
[Chowdhary et al., 2012; Xu et al., 2016; Gao et al., 2018;
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Stamnes et al., 2018; among others]). Our ocean surface
reflection model incorporates a polarized specular reflection
term, a Lambertian term for depolarizing ocean foam
reflection and an empirical Lambertian correction term
“Δa” to account for the errors of the single-parameter based
bio-optical model (i.e., departures from the predetermined
functional relationships to Chl-a). The overall bidirectional
ocean surface reflection matrix Rsurf is described by (Xu et al.,
2016),

πRSurf ,λ � fFoamaFoam,λD0 + (1 − fFoam)RW,λ + (1 − fFoam)RBio
WL,λ

+ (1 − fFoam)ΔaWL,λD0,

(31)

where D0 is a zero matrix except D0,11 � 1; aFoam is foam albedo;
fFoam is foam coverage fraction related to wind speed Vwind by
fFoam � 2.95 × 10−6×Vwind

3.52 (Koepke, 1984); RW,λ is the
polarized specular reflection from water surface (Cox and
Munk, 1954a; Cox and Munk, 1954b), and RBio

WL,λ is the
reflection matrix of the ocean-interface system with a
correction of Raman scattering (Lee et al., 2013; Xu et al.,
2016), and “ΔaWL,λ” is the Lambertian correction term. Note
that RBio

WL,λ is a physically based term depending on the Chl-a
concentration [Chl_a]. The last two terms of Eq. 31 constitute
our water-leaving radiance model. With and without assuming
ΔaWL to be 0 the simplified and the empirically adjusted bio-
optical models are formulated, respectively. By setting the Sun at
zenith and viewing angle to be nadir, we can evaluate the
normalized water-leaving radiance from RBio

WL and ΔaWL,

nLwλ � F0,λ
π
(d0
d
)2[RBio

WL,λ,11(θv � 0+; θ0

� 0+; [Chl a]) + ΔaWL,λ], (32)

where d0 is the Earth-Sun distance at which F0 is reported, and d
is the Earth-Sun distance at the time of measurement. Note that
nLw, RW, Rsurf, RBio

WL, aFoam, ΔaWL, and F0 in Eqs 31 and 32 are all
spectrally dependent.

FORWARD MODEL FOR LIGHT
PROPAGATION IN A COUPLED
ATMOSPHERE-OCEAN SYSTEM

Polarized Radiative Transfer
As illustrated in Figure 2, a coupled atmosphere-surface
model is established for 1D RT modeling, which consists of
an aerosol/air-molecule atmospheric layer and ocean water at
the bottom of the atmosphere. The whole atmosphere is
subdivided into NLayer layers, each bounded by the altitudes
hl and hl+1 (hl < hl+1) and NLayer depends on the vertical
resolution of lidar measurement or the desired resolution for
retrieval products.

As the input to radiative transfer modeling, vertically
resolved AOD, SSA, and phase matrices of aerosols in all

layers are calculated from speciated aerosol refractive index,
size distributions and spherical particle fraction. They are
mixed with molecule scattering to get bulk scattering
properties in all layers. Consequently, the optical thickness
(Δτl), SSA (ω0,l) and phase matrix (Pl) of lth layer contributed
by both aerosols and Rayleigh-scattering molecules are
evaluated by

Δτ1 � Δτa,1 + ΔτR,1, (33)

ω0,l � ΔτR,l + ω0,a,lΔτa,l
ΔτR,l + Δτa,l

, (34)

Pl(Θ) � ΔτR,lPR(Θ) + ω0,a,lΔτa,lPa,l(Θ)
ΔτR,l + ω0,a,lΔτa,l

, (35)

where as a function of scattering angle Θ, PR and Pa,l are the
Rayleigh and aerosol phase matrices, respectively, the aerosol SSA
of lth layer (ω0,a,l) is given by Eq. 20 and the AOD of lth layer
(Δτa,l) is given by Eq. 22.

Knowing the layer optical depth, SSA and phase matrices for
all atmospheric layers, an efficient calculation of reflection and
transmission matrices of the vertically inhomogeneous
atmosphere is implemented by use of the Markov chain
method (Esposito and House, 1978; Esposito 1979; Xu et al.,
2010; Xu et al., 2011; Xu et al., 2012). As an approximation, the
ocean water constituents are assumed to be homogeneously
mixed. Then the doubling method (see for example [Stokes,
1862; van de Hulst, 1963; Hansen, 1971; de Haan et al., 1987;

FIGURE 2 | The coupled atmosphere-ocean system for RT modeling.
The Sun illuminates the top of atmosphere with zenith angle θ0 and azimuthal
angle ϕ0 (ϕ0 is assumed to be zero here). The sensor views the atmosphere at
viewing angle θv and azimuthal angle ϕv. The Markov chain model is used
for computing polarized RT in the atmosphere. The ocean is assumed
optically homogeneous so that the doublingmethod can be applied to achieve
modeling efficiency. Coupling of local radiative fields from ocean and
atmospheric layer is completed by using an “adding” strategy.
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Evans and Stephens, 1991; among others]) is applied for a fast
calculation of the reflection matrices of the ocean bulk. Finally,
the interaction between atmosphere and ocean through multiple
reflection and transmission are coupled via an “adding” approach
(Xu et al., 2016). The output of atmosphere and ocean reflection is
the reflection matrix for the coupled atmosphere-ocean system,
from which the radiance and polarimetric components are
derived to compare to observations. The incorporation of
Markov chain model and doubling methods into a hybrid RT
modeling scheme capitalizes on the strength of these two
methods in modeling RT in vertically inhomogeneous and
homogeneous media, respectively. Moreover, it provides an
efficient Jacobian calculation and an optimization-based
retrieval by saving the local RT fields (reflection and
transmission matrices) for each layer from forward modeling,
which are then reused for subsequent Jacobian evaluations as long
as the aerosol or ocean parameters remain unperturbed. In other
words, only the RT in the layer with perturbed parameters
requires recalculation.

Lidar Equation
The propagation of a light pulse from a single-channel lidar in the
atmosphere is governed by lidar equation (e.g., (Winker et al.,
1996; Vaughan, 2004; Weitkamp, 2005; Burton et al., 2018]):

Pp(z)
gp

� 1
z2
[βm(z) + βa(z)]exp{ − 2∫z

0
[αm(z′) + αa(z′)]dz′},

(36)

where Pp(z) is the calibrated signal at the detector as a function of
the range (distance, z) between the lidar and the target
atmospheric volume, gp is a gain factor which takes into
account detector and receiver optical efficiencies, βa(z) and
βm(z) are backscatter coefficients of aerosols and air molecules
at range z, and αa and αm are the aerosol and molecular extinction
coefficients respectively. The exponential term on the right-hand
side of the above equation represents two-way attenuation of the
lidar signal between the detector and the atmospheric volume.

The multiplication of the exponential term on the right hand
side of Eq. 36 and the term “[βa(z) + βm(z)]” gives attenuated
backscatter. The molecular scattering and extinction coefficients
βm(r) and αm(r) can be accurately determined from measured
atmospheric density or from climatology. What remain to be
resolved are the aerosol extinction and backscatter coefficients.
However, with these two unknowns coupled in the attenuated
backscatter lidar system via Eq. 36, they cannot be separated from
one measured variable on the left-hand-side of the equation. By
adopting the HSRL measurement technique, however, the
received backscatter is split into two channels, one with a very
narrow bandwidth optical absorption filter in the molecular
channel to suppress the aerosol backscatter, whereas another is
a combined channel that detects the intensity contributed by both
aerosol and molecules. In this case, the lidar equation for the
combined signal remains the same as the above equation while for
the molecular channel with narrow bandwidth optical absorption
filter the lidar equation becomes [e.g., Burton et al., 2015],

Pp(z)
gp

� 1
z2
βm(z)exp{ − 2∫z

0
[αm(z′) + αa(z′)]dz′}. (37)

High-spectral-resolution lidars such as NASA Langley’s HSRL-1
and HSRL-2 send a linearly polarized beam into an atmosphere.
The returned lidar signals are measured with linear polarization
analyzers oriented both parallel (||) and perpendicular (⊥) to the
emitted beam. By taking the ratio of light intensities of these two
components, the depolarization ratio of the returned transmitted
signal is derived as:

δ � I⊥
I‖
. (38)

Due to the anisotropy of the air molecules, the depolarization
ratio of the pure molecular atmosphere is nonzero but can be pre-
calculated from climatology. Moreover, the backscatter of a
linearly polarized laser beam from spherical particles is totally
linearly polarized so that (δ � 0). However, the presence of
nonspherical aerosols causes the measured depolarization ratio
to deviate from zero which provides extra constraints on
retrieving non-sphericity of aerosols.

The lidar equation Eq. 37 is single scattering based. It can
break into a discretized form, namely multiplication of local
backscatter at range z with the sum of the contributions of
extinction in all layers above z. The calculation of aerosol
component of layer effective extinction (αa), backscatter (βa)
and depolarization (δa) have been specified in Aerosol Single
Scattering Properties for Lidar Equation Use. In addition, to
combine lidar observations with polarimetric measurements:
one can structure the retrieval to fit either direct lidar
measurements such as total extinction, backscatter and
depolarization, or its aerosol products such as particulate
extinction, backscatter and depolarization ratio. The latter is
adopted in the current retrieval demonstration in Retrieval
Implementation and Validation.

COUPLED RETRIEVAL OF AEROSOLS AND
OCEAN PROPERTIES

State Vector
Our algorithm is developed to be flexible and allow for
multiple (Ns) aerosol species to be retrieved from a
combined use of lidar and polarimetric measurements
depending on the information content of 1) the specific
configuration of lidar measurement capabilities in terms of
providing the whole set or a subset of extinction, backscatter/
attenuated backscatter, and depolarization ratio
measurements, their vertical resolutions and number of
wavelengths; and 2) the number of radiometric and
polarimetric view angles and spectral channels provided by
a polarimeter. The state vector x that includes retrieval
parameters for Ns aerosol species can be expressed as,

x � [x(1); x(2); / ; x(Ns); x(ocean)]
N×1, (39)
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where N is the total number of aerosol and ocean properties to be
retrieved, the subvector x(s) contains aerosol properties for sth
aerosol species. For a total of Naer � 8 aerosol parameters per
species, we have,

x(s)� [C(s)
v ; m(s)

r0
; κ(s)r0

; m(s)
i0 ; κ

(s)
i0 ; r

(s)
m ; σ(s)

m ; f (s),spherev ]
Naer×1, (40)

where for sth aerosol species Cv contains layer specific column
aerosol concentration (m3/m2), (mr0, κr0) and (mi0, κi0) are
layer resolved model parameters that constrain spectrally
dependent real and imaginary parts of aerosol refractive
index, respectively (via Eq. 30); rm and σm contain layer
resolved geometric volume median radius and standard
deviation of volumetric log-normal distribution; fv

sphere

contain the layer resolved volume fraction of spherical
aerosols. As the last component of the state vector in Eq.
39, x(ocean) contains parameters that contribute to ocean
surface reflection. These parameters include a simplified
bio-optical model parameter chlorophyll-a concentration,
wind speed and the empirical terms (Lambertian) that
mitigate the bio-optical modeling errors by adjusting the
spectral water-leaving radiance (see Development of a

Lookup Table for Aerosol Single Scattering Properties).
Retrieval starts with an initial estimate of these parameters,
as specified in Table 1.

Constraints
Imposition of various types of constraints is important for
stabilizing the retrievals and improving accuracy. The
combined lidar-polarimeter inversion approach described here
uses three types of constraints: 1) direct observation signals
provided by lidar and polarimetric remote sensing
measurements (see formulation in Observational Constraints (i
� 1)); 2) a priori constraint for the retrieval parameters (see
formulation in A Priori Constraints (i � 2)); and 3) smoothness
constraint over the variations of certain aerosol properties along
altitude (see formulation in Smoothness Constraints (i � 3)).
Incorporation of all these three types of constraints into our
combined inversion approach is described in Construction of
Overall Equation System.

Imposition of the above three types of constraints
(M � 3) can be formulated in the framework of
statistical inversion of multi-source constraints. Our

TABLE 1 | Parameters in coupled aerosol and surface property retrieval, their initial estimates, and order of difference and Lagrange multipliers for imposing smoothness
constraints.

Aerosol parameters (layer resolved) Range Initial guess Order of finite
difference for vertical/

spectral
smoothness

constraints (mh)

Lagrange regularization
factor
(γh)

Real part of refractive index - parameter
1 (mr0)

Species 1 [1.33,1.60] 1.45 mh � 1 ch � 10
Species 2 [1.33,1.60] 1.35 mh � 1 ch � 10

Imaginary part of refractive index -
parameter 1 (mi0)

Species 1 [5 × 10−4, 5
× 10−1]

1 × 10−1 mh � 1 ch � 5

Species 2 [5 × 10−8, 5
× 10−2]

1 × 10−5 mh � 1 ch � 5

Real part of refractive - index parameter
2 (κr0)

Species 1 [1 × 10−5, 1×103] 1 × 10−2 mh � 1 ch � 10
Species 2 [1 × 10−5, 1×103] 1 × 10−2 mh � 1 ch � 10

Imaginary part of refractive index -
parameter 2 (κi0)

Species 1 [1 × 10−5, 1×103] 5 × 10−1 mh � 1 ch � 5
Species 2 [1 × 10−5, 1×103] 5 × 10−1 mh � 1 ch � 5

Volumetric median aerosol radius (rm) Species 1 [1 × 10−2, 5
× 10−1]

1 × 10−1 mh � 2 ch � 5 × 10−1

Species 2 [1 × 10−1, 5×10°] 1×10° mh � 2 ch � 5 × 10−1

Standard deviation of size distribution (σm) Species 1 [0.9,1.1]
xσUHSASa,b

UHSAS in-situ
measurementa,b

mh � 2 ch � 5 × 10−1

Species 2 [0.9,1.1]xσAPSc,b APS in-situ measurementc,b mh � 2 ch � 5 × 10−1

Aerosol subcolumn volume concentration
(Cv, μm3/μm2)

Species 1 [1 × 10−8, 5] Associated with AOD � 0.005/
NLayer

mh � 3 ch � 5 × 10−3

Species 2 [1 × 10−8, 5] Associated with AOD � 0.005/
NLayer

mh � 3 ch � 5 × 10−3

Spherical particle fraction (fv
sphere) Species 1 [1 × 10−3, 1×10°] 9 × 10−1 mh � 2 ch � 1 × 10−1

Species 2 [1 × 10−3,1×10°] 9 × 10−1 mh � 2 ch � 1 × 10−1

Surface parameters (ocean)
Adjustment term (ΔaWL(λ), mw/cm2-sr-μm) [1 × 10−5, 5 × 10°] 1 × 10−5 — —

Chlorophyll a concentration ([Chl_a], mg/m3) [1 × 10−2, 6 × 101] 3 × 10−1 — —

Surface wind speed (Vwind, m/sec) [1×10°, 3 × 101] 5 — —

aUHSAS, Ultra-High Sensitivity Aerosol spectrometer; σUHSAS is derived from fitting in-situ size measurement by UHSAS using the log-normal size distribution (Eq. 103).
cAPS, Aerodynamic Particle Sizer (APS-TSI3320); σAPS is derived from fitting in-situ size measurement by APS using the log-normal size distribution (Eq. 103).
bσUHSSA and σAPS are adopted when measured lidar extinction is larger than its uncertainty; otherwise the initial guess of σm is set to 0.2 and its range is relaxed to [0.05, 0.60].
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objective is to solve the following system of equations
(Dubovik, 2004):

fpi � f i(x) + Δfpi , 1≤ i≤M (41)

where fpi denotes the i
th type of constraint, Δfpi is the error with

this type of constraint, and x � xstate as defined in Eq. 39.
Formally, the statistical independence of different sources of
constraints means that the covariance matrix of joint
constraint fp � [fp1; fp2;/; fpM] has the following structure

Cf p �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
C1 0 0 0
0 C2 0 0
/ / 1 /
0 0 CM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (42)

whereCi indicates the covariance matrix of the ith constraint (fpi ).
Following the expressions of fpi and Cfpi

, the probability
distribution function (PDF) of joint data (1 ≤ i ≤ M) can be
derived by multiplying PDFs of data from all M sources of
constraints, namely,

P(f(x)∣∣∣∣fp) �∏M
i�1

P(f i(x)∣∣∣∣fpi ) ∼ exp
⎧⎨⎩

− 1
2
∑M
i�1
[f i(x) − fpi ]T(Ci)−1[f i(x) − fpi ]⎫⎬⎭. (43)

Further introducing the weight matrix (W), the objective cost
function to be minimized has a quadratic form, namely,

Ψtotal(x) �∑M
i�1

ciΨi(x), (44)

where

Ψi(x) � 1
2
[f i(x) − fpi ]TW−1

i [f i(x) − fpi ], (45)

with

Wi � 1
ε2i
Ci, (46)

ci �
ε21
ε2i
, (47)

In the above equations, ε2i is the first diagonal element of Ci

(i.e., ε2i � {Ci}11) and the Lagrange factor ci weights the
contribution of each type of constraint with respective to the
first one (c1 � 1).

Minimization of Ψtotal(x) in Eq. 44 means its
gradient with respect to the solution x approaches zero,
such that

∇Ψtotal(x) �∑M
i�1

ci∇Ψi(x) � 0, (48)

which can be ensured by enforcing the gradient of all components
approach zero, namely

∇Ψi(x) � KT
i W

−1
i (f i(x) − fpi ) � 0, (49)

where Ki is the Jacobian matrix containing the derivatives of the
ith type of constraint with respect to the retrieval parameters. To
approach the solution iteratively, we replace x by x − Δx in Eq. 49
and substitute

f i(x − Δx) � f i(x) − KiΔx, (50)

into it. This results in

∇Ψi(x − Δx) � KT
i W

−1
i (f i(x) − KiΔx − fpi ) � 0, (51)

or equivalently,

(KT
i W

−1
i Ki)Δx � KT

i W
−1
i (f i(x) − fpi ) � ∇Ψi(x). (52)

The Jacobian matrix Ki in Eqs 49–52 consists of the derivative of
the mth observational or a priori data with respect to the nth
unknown,

Ki,(m,n) � zfi,m
zxn

. (53)

More explicit evaluation of f i(x), fpi and K andWmatrices
for all types of constraints is discussed in the following
subsections.

Observational Constraints (i � 1)
Without the loss of generality, we assume a polarimeter
measures multi-angular radiance (L) across multiple
spectral channels. Neglecting the contribution from circular
polarization, the polarimetric components Q/L and U/L can be
combined into DOLP via DOLP � (Q2 + U2)1/2/L. Lidar
observations include extinction (α), backscatter or
attenuated backscatter (β) and depolarization ratio (δ).
Arranging all types of observations into a single column
vector we have

fpi�1(x) � (fp1,L; fp1,DOLP; fp1,α; fp1,β; fp1,δ) � [y1; y2;/; yNf], (54)

where the total number of signals Nf � NL + NDOLP + Nα + Nβ +
Nδ, where Nx is the number of “x” type of signals.

The aerosol and ocean properties in the state vector are
adjusted so that the model prediction of these types of signals
f1(x) � [f1, L; f1, DOLP; f1,α; f1,β; f1,δ] fit the observational
constraints fp1(x). The calculation of f1(x) is introduced in
Forward Model for Light Propagation in a Coupled
Atmosphere-Ocean System. The Jacobian matrix K1 consists of
first order partial derivatives with respect to all elements in the
state vector x, namely,

K1 � [KL KDOLP Kα Kβ Kδ ]T, (55)

where KL, KDOLP, Kα, Kβ, and Kδ are the Jacobian matrices
containing derivatives of L, DOLP, α, β and δ with respect to
aerosol parameters xj (1 ≤ j ≤ N), respectively. Accounting for all
N parameters in the state vector (see Eq. 39), KL can be expanded
into the following matrix form:
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KL �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zL1

zx1

zL1
zx2
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zL1

zxN
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zxN
/ / 1 /
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zx2
/

zLNL

zxN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (56)

where NL depends on the number of views angles (Nview) and the
number of channels (Nλ, L) of a polarimeter. Assuming the same
number of view angles for all spectral bands, then we have NL �
Nλ,L × Nview. Replacing “L” in the above equation by DOLP gives
the Jacobian matrix KDOLP and in this case the total number of
DOLP signals depends on the number of polarimetric bands
(Nλ,DOLP) so that NDOLP � Nλ,DOLP × Nview. Calculation of the
derivatives in Eq. 56 can proceed numerically by use of finite
difference method, or analytically (and more efficiently) if the RT
model is linearized.

The Jacobian matrix for extinction coefficient equals to

Kα �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Kα,l�1 0 / 0 0
0 Kα,l�2 / 0 0
« « 1 « «
0 0 / Kα,l�NLayer 0
0 0 / 0 0Ocean

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (57)

where NLayer is the number of layers in which lidar signals are
resolved. Assuming extinction α is provided at Mα wavelengths,
the layer resolved Jacobian matrix (Kα,l) for extinction coefficient
equals to,

Kα,l �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (58)

The Jacobian matrix for backscatter coefficient and attenuated
backscatter coefficients is evaluated by,

Kβ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Kβ,l�1 0 / 0
0 Kβ,l�2 / 0
/ / 1 /
0 0 / Kβ,l�NLayer

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (59)

and

Kβ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Kβ,l�1 0 / 0
Kβ,l�1 Kβ,l�2 / 0
/ / 1 /

Kβ,l�1 Kβ,l�2 / Kβ,l�NLayer

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (60)

respectively. Assuming β is provided atMβ wavelengths, the layer
resolved Jacobian matrix for backscatter coefficient (Kβ,l) can be
expanded into the following specific form,

Kβ,l �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (61)

where β � βl,a if we use the derived product of particulate
backscatter for the lth layer from lidar measurement, and β �
βl,att if we used direct measured attenuated backscatter signals,
where βl,att is the product of the backscatter (contributed by both
molecules and aerosols) and the two-way transmission of the
atmospheric volume between the lidar and the backscatter
volume in question (see Eq. 36).

The Jacobian matrix for depolarization ratio (δ) equals to

Kδ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Kδ,l�1 0 / 0
0 Kδ,l�2 / 0
/ / 1 /
0 0 / Kδ,l�NLayer

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (62)

Assuming extinction δ is provided atMδ wavelengths, the layer
resolved Jacobian matrix for depolarization ratio (Kδ,l)
equals to

Kδ,l �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (63)

where δl is contributed by both molecules and aerosols in lth layer
and is equal to particulate depolarization ratio (δ � δl,a) if the
derived aerosol depolarization ratio is used directly.

The overall covariance matrix incorporates the submatrices
from all types of signals, namely,

W1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
WL 0 0 0 0
0 WDOLP 0 0 0
0 0 Wα 0 0
0 0 0 Wβ 0
0 0 0 0 Wδ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (64)

If absolute measurement uncertainty is used and correlation
among signals are neglected, thenWx is a diagonal matrix. Taking
jth signal (xj) with relative uncertainty σ j as an example, we have
Wx, jj � σ2j . If relative uncertainty (εj) is used, then we haveWx, jj �
ε2j x

2
j . Under certain circumstances signals may differ in

magnitude. To balance their contributions to the cost function
which reflects the quality of fitting, observations are often
transferred to logarithmic space for fitting. In this case, we
have Wx, jj � ε2j .
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A Priori Constraints (i � 2)
Starting from Eq. 41, the a priori constraint can be explicitly
expressed as (Dubovik, 2004),

fpi�2 � xa priori � x + Δxa priori. (65)

Moreover, Ki�2 � I (identity matrix) and Wi�2 � (1/ε2ap11 )Cap in
Eqs 49–52. In explicit form, Wi�2 is constructed from estimated
range of each parameter relative to the first one (Dubovik and
King, 2000),

Wi�2 � Wa

�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 / 0

0
(x2,max − x2,min)2(x1,max − x1,min)2 / 0

/ / 1 /

0 0 /
(xN,max − xN,min)2(x1,max − x1,min)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(66)

where [xi,min, xi,max] are the lower and upper bounds of ith
retrieval parameters, respectively. For retrieving combined RSP
and HSRL-2 observations, their estimates are specified in Table 1.

Smoothness Constraints (i � 3)
The third type of constraint reflects the smooth variation of a
certain type of parameter as a function of altitude. we have

fp3 � 0p � Si�3, mx + Δp
g , (67)

where Si�3,m is the differentiation matrix of mth order for third
type of constraint and the delta term Δp

g accounts for the
uncertainties associated with the assumption of smooth
variation of an aerosol parameter to the mth order. The error
of such an assumption is accounted via the cost function
component given in Eq. 75 later.

When a retrieval parameter varies smoothly as a function
of some variable (e.g., altitude) z, it is assumed to be
locally approximated by a smooth function g(z), such as a
constant, a line, a parabola, etc. With a polynomial form, the
mth derivative approaches zero (Dubovik et al., 2011), such
that,

{Si,m(z)z � dmg(z)
dzm

� 0 0
⎧⎪⎨⎪⎩

gm�1(z) � const
gm�2(z) � Az + B
gm�3(z) � Az2 + Bz + C

. (68)

For a discretized grid of the variable z, the explicit form of Si,mz, is,

Si,m(zj)zj �
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dg
dz

≈
Δ1g
Δ1(z) �

g(zj+1) − g(zj)
Δ1(zj) , for m � 1

dmg
dzm

≈
Δmg
Δm(z) �

Δm− 1g(zj+1)/Δm−1(zj+1) − Δm− 1g(zj)/Δm−1(zj)[Δm−1(zj) + Δm−1(zj+1)]/2 , for m≥ 2

.

(69)

Taking the orders of difference m � 1 and 2 as examples, we
have

⎧⎨⎩ Δm�1(zj) � zj+1 − zj
Δm�2(zj) � [Δ1(zj) + Δ1(zj+1)]/2 . (70)

Application of the above equation to L discretized grids rj
(namely, 1 ≤ j ≤ L) leads to

f i(x) � Si,mx, (71)

so that by invoking Eq. 53,

Ki � Si,m, (72)

where the matrix Si,m is evaluated by,

Si,m�1 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Δ1(1) − 1

Δ1(1) 0 / 0

0
1

Δ1(2) − 1
Δ1(2) / 0

0 0 / 1 0

0 0 /
1

Δ1(L − 1) − 1
Δ1(L − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(73)

and

Si,m � 2 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
Δ1(1)[Δ1(1) + Δ1(2)]

−2
Δ1(1)Δ1(2)

2
Δ1(2)[Δ1(1) + Δ1(2)] 0 0 / 0

0
2

Δ1(2)[Δ1(2) + Δ1(3)]
−2

Δ1(2)Δ1(3)
2

Δ1(3)[Δ1(2) + Δ1(3)] / 0

/ / / / / 1 /

0 0 /
2

Δ1(L − 1)[Δ1(L − 1) + Δ1(L)]
−2

Δ1(L − 1)Δ1(L) /
2

Δ1(L)[Δ1(L − 1) + Δ1(L)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(74)

The same principle applied to higher orders of difference (m > 2)
ensures a smooth curve with dmg(z)/dzm � 0. Substitution of Eqs
71 and 72 and fpi � 0p into Eq. 45 gives,

Ψi(x) � 1
2
xTSTi,mW

−1
i,mSi,mx, (75)

where the weighting matrix W has the following diagonal terms,

{Wi,m}jj � 1

Δm(zj), (76)

and Δm(zj) is specified in Eq. 70 for m � 1 and 2, and can be
generalized to an arbitrary higher order.

Substitution of Eqs 71 and 72 and fpi � 0p into Eq. 52 gives

(STi,mW−1
i,mSi,m)Δx � STi,mW

−1
i.m(Si,mx). (77)

Further defining

Ωi � STi,mW
−1
i,mSi,m, (78)

we have

ΩiΔx � Ωix. (79)

Construction of Overall Equation System
Accounting for the above three types of constraints, the solution
to the non-linear minimization of Eq. 44 can be approached
iteratively. At iteration q, the solution is updated as,

xq+1 � xq − Δxq, (80)
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where Δxq is obtained by accounting for all three types of
constraints derived in Observational Constraints (i � 1), A
Priori Constraints (i � 2), and Smoothness Constraints (i � 3),

Aq × Δxq � ∇Ψtotal(xq). (81)

As the explicit form, we have

Aq � KT
1,qW

−1
1 K1,q + cΩ + caW

−1
a , (82)

∇Ψtotal(xq) � KT
1,qW

−1
1 [f1(xq) − fp1] + cΩxq + caW

−1
a(xq − xa priori), (83)

where “cΩ” incorporates vertical and spectral smoothness
constraints, namely,

cΩ � [ chΩh 0
0 0ocean

], (84)

where the smoothness matrix chΩh acts on the vertical variations
of aerosol parameters; and the multipliers γh control the strength
of the constraints. The explicit forms of chΩh are given by.

chΩh �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ch,n�1Ωn�1 0 / 0
0 ch,n�2Ωn�2 / 0
/ / 1 /
0 0 / ch,Naer

ΩNaer

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (85)

where the diagonal terms correspond to the constraints imposed
on the Naer aerosol parameters.

Convergence Criteria
Ideally, a retrieval is deemed successful when the minimization of
the cost function is achieved in such a way that ensures

Ψtotal ≤ (Nf + Nc + Na* − Na)ε2f , (86)

where Nf is the number of observations, Nc is the number of
constraints imposed on retrieval (including vertical
smoothness constraints), Na is the number of retrieval
parameters, and Na* is the number of a priori estimates of
parameters; ε2f is the expected variance due to measurement
errors. In practice, forward RT modeling error and other
unmodeled effects can impede the cost function being
satisfied by the form of Eq. 86. Taking such a practical
situation into account, the retrieval is also terminated when
the relative difference of fitting residuals with solutions from
two successive iterations drops below a user-specified
threshold value, ε2c , namely,∣∣∣∣∣Ψtotal(xq+1) − Ψtotal(xq)∣∣∣∣∣

Ψtotal(xq) ≤ ε2c . (87)

Determination of Lagrange Multipliers
The Lagrange multipliers reflect the strength of smoothness
constraints for a given parameter to be retrieved. Each
multiplier is defined as,

ci � ε2i�1/ε2i , (88)

where ε2i are the first diagonal elements of the covariance matrices
corresponding to ith type of constraints. To estimate ε2i for a given
parameter to be retrieved (f � x) which is a function of z, the most
unsmooth known solution f us(z) over the target domain is used
as suggested by Dubovik and King (2000) namely,

ε2 � ∫zmax

zmin

(dm[f us(z)]
dmz

)2

dz, (89)

where zmin and zmax specify the lower and upper bound of z. For
ci�3 is evaluated using most unsmooth known solution of
parameter x over the target domain. In the current study, the
vertical variations of extinction and backscatter from lidar
measurements are referred to initialize the Lagrange
multipliers for profiled aerosol properties.

Indeed, the Lagrange multipliers for practical implementation
has to be modified to account for possible redundancy of the
measured and a priori data and to reduce the weight of a priori
constraints during an optimization process (Xu et al., 2019):

cFinali � Nf

Ni

~ε2f
ε2f
ci, (90)

where

~ε2f (xq) ≈ Ψtotal(xq)(Nf + Nc + Nap − Na)ε2f . (91)

For retrieving a combined set of RSP and HSRL-2 observations,
first estimates of Lagrange parameters ci are specified in
Table 1 and then scaled by the ratio of the cost functions
associated with the updated and the previous iterative
solutions during optimization. Typically, retrieval takes 8-
10 iterations to meet the convergence criteria specified
Convergence Criteria.

Retrieval Error Estimate
Random errors (Δyobsrand) and systematic errors (Δysyst) are two
major error types. The former is contributed by measurements
while the latter is contributed by both measurement (Δyobssyst) and
forward model (Δymodel). Following Dubovik’s error estimate
methodology [2004], we also consider a priori smoothness
constraints regarding the vertical distribution of aerosol
parameters, and a priori estimate of the solution in retrieval
error estimate. The overall covariance matrix for error estimate
for combined lidar-polarimeter inversion is expressed as,

CΔx,syst � Δxsyst(Δxsyst)T + CΔx, rand, (92)

where Δxsyst is approximated by

Δxsyst � A−1∇Ψ, (93)

and covariance matrix of the retrieval solution contributed by the
random error is evaluated by

CΔx, rand � A−1ε2rand, (94)

where εrand is the random noise, A is computed at the retrieved
solution x via Eq. 82 and ∇Ψ is given by
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∇Ψ � JTW−1
f Δysyst + cΩxtrue + caW

−1
a (xtrue − xp), (95)

where the total systematic error is expressed as

(Δysyst)2 � (Δyobssyst)2 + (Δymodel)2. (96)

By performing the above error analysis, it is assumed that the
modeling error and the systematic errors of an instrument in Eq.
28 are well characterized. Indeed, their quantification is rather
difficult due to the complexity of error analysis for a sensor that
consists of multiple optical units as well as the under-
characterization of multiple sources of modeling errors.

For practicality, Δxsyst is calculated by assuming

Δysyst � f1(xretrieved) − f *1. (97)

so that Eq. 93 becomes

Δxsyst � A−1[KT
1W

−1
1 [f1(xretrieved) − f *1] + cΩxtrue

+ caW
−1
a (xtrue − xa priori)]. (98)

As the retrieved solution is the closest estimate of the “true”
solution xtrue, we assume xtrue � xretrieved. When a priori xa priori is
unavailable, we further assume xa priori � xtrue. Under these
assumptions, the last term on the right-hand-side of Eq. 95
disappears (namely caW

−1
a (xtrue − xa priori) � 0). Note that Eq.

94 treats measurement errors as random. Indeed, these errors are
already contained in the observation f *1 used by Eq. 98. Therefore,
by implementing Eqs 92, 94 and 98, it is possible that errors are
double-counted in the case that they bias the solution in the same
direction as the modeling errors, resulting in a conservative error
estimate.

To estimate errors for functions of the retrieved parameters
(namely y � f(x), and y can be vertical layer resolved SSA and
AOD, vertical layer resolved extinction and scattering
coefficients, accumulated AOD from the TOA, effective radius,
etc.), the chain rule is applied so that we have the following matrix
form,

Δy �
��������
KT

yCΔxKy

√
, (99)

where Ky denotes the Jacobian array containing derivatives of y
with respect to all retrieved parameters x that are relevant to the
calculation of y.

Summing over the contribution by both systematic and
random errors, the overall error is estimated by taking the
diagonal term of the retrieval error covariance matrix, namely

Δxj �
������
(CΔx)jj
√

, (100)

where CΔx is given in Eq. 92.
Our error estimates involve the use of Jacobians and assume 1)

the retrieved solution is representative of the solution space; and
2) retrieval errors are linearly proportional to the measurement
errors. These assumptions can be problematic in situations where
the model and/or observation errors are large. Moreover, the
observation covariance matrix assumes no correlations among
errors of observational signals so that its off-diagonal terms are

zero in Eq. 57. In practice, however, observation errors can highly
correlated between neighboring spectral bands and/or angular
measurements. In addition, the a priori covariance matrix also
assumes no error dependency between state vector elements so
that its off-diagonal terms in Eq. 66 are zero. These are potential
error sources of our error estimate model.

RETRIEVAL IMPLEMENTATION AND
VALIDATION

Observations From HSRL-2 and RSP
Following the algorithm formulation in the previous sections, the
retrieval approach is applied to combined sets of polarimetric and
lidar observations acquired by RSP andHSRL-2 on September 12,
2016 during the ORACLES field campaign. The polarimeter
signals include radiance and DOLP and the lidar signals
include particulate extinction coefficient, backscatter, and
depolarization ratio.

During the ORACLES mission, RSP and HSRL-2 were aboard
NASA’s ER-2 aircraft flying at an altitude of 20 km. NASA’s P-3
Orion aircraft flew underneath the ER-2 at up to 6 km in altitude.
It carried a set of instrumentation, including the Hawaii Group
for Environmental Aerosol Research (HiGEAR, (McNaughton
et al., 2009)) aerosol in situ sampling instruments and NASA
Ames Spectrometer for Sky-Scanning, Sun-Tracking
Atmospheric Research (4-STAR, (Dunagan et al., 2013)) that
combines airborne Sun tracking and sky scanning with grating
spectroscopy to improve knowledge of atmospheric constituents.
HiGEAR’s suite of in situ sampling instruments measure
absorption and scattering coefficients under dry conditions,
which can be used to derive aerosol SSA. 4-STAR measures
accumulated AOD.

We selected the scenes that met the following criteria: 1)
collocated measurements by RSP and HSRL-2 onboard NASA’s
ER-2 high altitude aircraft are available; 2) collocated AOD, SSA,
and aerosol size distribution data for retrieval validation provided
by 4-STAR and HiGEAR are available; and 3) the measurements
were made at cloud-free condition, as identified from HSRL-2’s
backscatter measurements. Figure 3 provides a curtain of HSRL-
2 aerosol backscatter at 532 nm along the ER-2 flight on
September 12, 2016. This is the typical aerosol scene from the
ORACLES campaign over the southeast Atlantic Ocean. A layer
of elevated smoke aerosol was originated from biomass burning
and transported to the ocean. After mixing with marine sea salt
aerosol (dark red in the lidar curtain) from the top of the
boundary layer, the mixture complexity provides us an ideal
scene to test our algorithm. As indicated by the white line in the
upper right part of the figure, the lidar and polarimeter data
meeting these criteria were acquired from 14:25 to 14:34 UTC.
During this timeframe, the solar zenith angle is around 52°, and
the ER-2 aircraft flew a distance about 100 km from (-18.73°N,
8.72°E) to (-19.39°N, 9.39°E). A total of 50 sets of observations
with collocated measurements by HSRL-2 and RSP data were
collected to test the combined retrieval. Moreover, 4-STAR
measurements of accumulated AODs at different altitudes
under 6 km (as traversed by the P-3) and SSA derived from
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HiGEAR products of absorption and scattering coefficients, and
number weighted aerosol size distribution are available in this
time frame, as indicated in Figure 4. They are used for retrieval
validation.

The RSP instrument measures the radiance and polarimetric
components Q and U in nine wavelength bands from UV
(410 nm) to short-wave infrared (2,250 nm) (Cairns et al.,
1999). If RSP’s measurements are collocated with HSRL-2’s
(lat, lon) within 1 km horizontal distance, then its angular
data are used for combined retrieval. For the 50 sets of
observations under test, a total of 152 view angles from –39°

to 25° around nadir in the wavelengths 410, 470, 550, 670, and
865 nm are used. Note that due to the yaw of the ER-2 aircraft and
high altitude, RSP’s view angular range is reduced to [−39°, 25°]
around nadir. These measurements are within ±35° around the
principal plane. The relative uncertainty is 2% for intensity and
the absolute uncertainty 0.002 for DOLP. HSRL-2 is the second
generation NASA Langley airborne High Spectral Resolution
Lidar (Hair et al., 2008). It uses the HSRL technique (Shipley
et al., 1983) to independently measure aerosol backscatter and
extinction at 355 and 532 nm. While HSRL-2 products of
particulate extinction, backscatter, depolarization ratio are
reported at 15 m vertical resolution, the true resolution is
315 m for extinction (αa) and 15 m for backscatter (βa) and
depolarization (δa) in the ORACLES campaign (Burton et al.,
2018). The lidar signals that we used in this study include aerosol
extinction, backscatter, and depolarization ratio. In the HSRL-2
product, the aerosol extinction at 355 and 532 nm wavelengths
are under the name “355_ext” and “532_ext”, respectively. To
preserve the independence of extinction data used for retrieval,
we access αa at 315 m resolution. The aerosol backscatter data at
355, 532, and 1,064 nm wavelength are under the name
“355_bsc_Sa”, “532_bsc_Sa”, and “1,064_bsc_Sa”, respectively
in the HSRL-2 product. Their reported values are averaged at
the same resolution as extinction for lidar ratio (“Sa”) calculation.
The depolarization ratios at the three lidar wavelengths are under

the name “355_aer_dep”, “532_aer_dep”, and “1,064_aer_dep”
for the three wavelengths in the product. In computing the error
covariance matrix, an uncertainty of 17 Mm−1, 5%, and 10% are
assumed for αa, βa, and δa, respectively. Within the 315 m layer,
optical homogeneity is assumed. Such a layer is further divided
into sublayers to ensure the radiative transfer modeling accuracy.

As the assumption, two aerosol species are retrieved from the
combined use of HSRL-2 and RSP observations. Each species is
characterized by an independent and layer resolved set of
refractive index, log-normal volumetric size distribution, and
spherical particle fraction. These quantities are initialized with
values in Table 1 before retrieval starts. As informed by the range
of the imaginary part of the refractive index in Table 1, weakly to
strongly absorbing fine mode aerosols, and non-absorbing to
moderately absorbing coarse mode aerosols are assumed in
retrieval. Moreover, the initial guess of the standard deviation
of fine and coarse aerosol size distribution are informed by
UHSAS measurements.

Retrieval Validation Against 4-STAR and
HiGEAR Measurements
As the first check, a retrieval is performed using RSP and HSRL-2
collocated measurement at 14:25:10 UTC, namely the first case
among the total 50 sets of collocated observations. Figure 5
displays the whole set of retrieved aerosol geophysical parameters
as a function of altitude. These parameters include aerosol
refractive index, volume concentration, geometric volume
mean radius and logarithmic standard deviation of aerosol size
distributions, and spherical particle fraction. These quantities are
displayed in different panels. From the ranges of the retrieved real
and imaginary parts of refractive index, the two aerosol species
pre-assumed in our retrieval can be distinguished as smoke and
sea salt particles.

Following the transportation of biomass burning smoke
particles for a long distance (e.g., >800 km) from the

FIGURE 3 |HSRL-2 aerosol backscatter at 532 nm along ER-2 flight on September 12, 2016. The white piece of line marks the temporal window from 14:25 to 14:
34UTC when the HSRL-2 and RSP collocated measurements were made. The ER-2 aircraft flew a distance ∼100 km from (−18.73°N, 8.72°E) to (−19.39°N, 9.39°E)
within this temporal window. A total of 50 sets of observations are identified to test the combined retrieval with a simultaneous use of RSP and HSRL-2 data.
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FIGURE 4 | Collocation of HSRL-2, 4-STAR, and the HiGEAR suite of instrumentation in taking measurements. The column aerosol optical depth accumulated
from the position of the ER-2 aircraft to the location of P-3 aircraft calculated from HSRL-2 is used to validate the retrieval and to compare to the 4-STAR reference data.
The aerosol SSA derived from extinction and scattering coefficients measured by HiGEAR suite of instrumentation is used to validate the retrieved SSA. HiGEAR also
provides fine and coarse mode aerosol size distributions measured by UHSAS and APS instruments at dry condition, which are compared to the retrieved size
distributions at ambient condition. Approximately at the altitude from 3 to 6 km, P-3 followed the trajectory of ER-2.

FIGURE 5 | Demonstration of aerosol geophysical property retrieval using a combined set of lidar (HSRL-2) and polarimeter (RSP) observations acquired at
14:25:10UTC on September 12, 2016 during the ORACLES field campaign. Upper left panel: real part of aerosol refractive index; Upper middle panel: imaginary part of
aerosol refractive index; Upper middle right panel: volume concentration (unit: m3/m3); Bottom left panel: geometric volume mean radius (unit: μm) as a function of
altitude; Bottom middle panel: logarithmic standard deviation of aerosol size distribution; Bottom right panel: spherical particle fraction. The horizontal bars in all
panels indicate the retrieval errors. To estimate the retrieval uncertainties, we use the relative uncertainty 2% for RSP’s intensity measurement and the absolute
uncertainty 0.002 for DOLP measurement, and use the uncertainties 17 Mm−1, 5%, and 10% for HSRL-2’s particulate extinction, backscatter and depolarization,
respectively.
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continent, the volumetric concentration plot shows the co-
existence of smoke and sea salt particles in two regions,
namely from 0 to 1 km and from 2.5 to 5.2 km. Moreover, the
sea salt particles present a larger size than that of smoke particles.
The spherical particle fraction for smoke and sea salt particles are
∼0.8 and >0.9, respectively, at the altitude close to the sea surface
(with an retrieval uncertainty between 0.1 and 0.2). Increased
nonspherical particle fraction for the sea salt particles is observed
at a higher altitude from 2.5 to 5.2 km. This could be caused by
crystallization as temperature, and relative humidity decreases at
higher altitude. We have also noticed that the geometric mean
radius of smoke particles is slightly lower in the boundary layer
than in the free troposphere. In the context of the ORACLES
campaign, the smoke particles in and above the boundary layer
can be different in terms of their ages, transport, and
microphysical properties. The smoke particles may be
entrained into the PBL via large-scale re-circulation
(Redemann et al., 2021) instead of directly sinking into PBL
through subsidence as previously thought. Thus, the smoke
aerosol properties in the PBL may be affected by their
interactions with clouds or new particle formation processes.
This is a likely cause of observing smaller smoke particles in the
PBL than at high altitudes from the case study in Figure 5.

Calculated from the speciated aerosol abundance and intrinsic
quantities displayed in Figures 5 and 6A displays the retrieved
profiles of accumulated AOD (left panel) and SSA (right panel) at
532 nm (black curves), with comparison to the collocated
HiGEAR measurement (red dot) at the altitude around 3 km.
The retrieved AOD in the left panel of Figure 6A is accumulated
AOD from TOA to different altitudes with 315 m resolution.
Fairly consistent agreement between retrieved values and
reference data derived from 4-STAR and HiGEAR
measurements can be observed. The difference is within the
estimated retrieval error for SSA and accumulated AOD. In
Figure 6B, the retrieved fine mode (left panel) and coarse
mode (right) aerosol size distributions (black curves) are
compared to the in-situ HiGEAR measurement averaged
within a vertical bin of 315 m (red curves). To compare to the
number weighted aerosol size distribution measured by UHSAS
and APS, the retrieved volumetric size distribution Eq. 2 needs a
conversion. Specifically, the retrieved r(s)m and σ(s)m are converted
to the geometric number mean radius r(s)g and the standard
deviation for sth aerosol species σ(s)g by use of the following
relationship (Grainger, 2017):

r(s)g � r(s)m e−3[σ(s)m ]2 , (101)

σ(s)
g � σ(s)

m . (102)

On such a basis, the retrieved number weighted size distribution
is calculated as

dn(s)(r)
dln r

� 1���
2π

√
σ(s)
g

exp⎡⎢⎢⎢⎢⎣ − (ln r − ln r(s)g )2
2(σ(s)

g )2 ⎤⎥⎥⎥⎥⎦. (103)

While UHSAS reports number concentrations of aerosols at their
geometric diameters, APS reports the concentration at
aerodynamic diameters of aerosols. Therefore, the APS

aerodynamic particle diameter (dae) needs to be converted to
the geometric diameter d. This is done via d � dae×(χ/ρp)0.5, where
ρp is aerosol density and χ is the dynamic shape parameter.
Assuming all aerosols measured by APS are sea salt particles, we
adopt χ � 1.08 and ρp � 1.8 g/cm−3 (Froyd et al., 2019). Then the
conversion is determined as d � dae/1.29. By performing such a
conversion, we neglect the impact of highly irregular particles on
χ and assume equivalent spherical diameter for “d” which may
cause bias to the estimate of χ (Reid et al., 2003). In addition,
UHSAS and APS measure the number concentrations of fine and
coarse mode particles in the ranges of geometric radius [0.03, 0.5]
and aerodynamic radius [0.22, 8.1] μm, respectively. Apparently,
the two instruments have an overlapped measurement range of
geometric radius from 0.2 to 0.5 μm. Nevertheless, this range is
accounted in determining r(s)g and σ(s)g for both fine and coarse
aerosols. With these preconditions and conversions, Figure 6B
compared the retrieved particle size distribution to HiGEAR’s in-
situ measurement. While the difference is basically within the
retrieval error estimated using the methodology described in
Retrieval Error Estimate, the coarse mode aerosol size
distribution is subjected to larger retrieval errors than the fine
mode aerosol size distribution.

Along with the results demonstrated in Figures 5, 6, and 7A
demonstrates the retrieval fit to HSRL-2’s measurements of
vertical extinction coefficient, scattering coefficients, and
depolarization ratio of aerosols. The vertical mean of
absolute fitting error of particulate extinction coefficient is
found to be 7.6 and 8.9 Mm−1 for 355 and 532 nm,
respectively, for altitudes below 5.2 km, and the vertical
mean of absolute fitting error of particulate backscatter is
0.16, 0.07 and 0.14 Mm−1Sr−1 for 355, 532 and 1,064 nm,
respectively. Noticeably, the fit to the particulate backscatter
of 1,064 nm at ∼1.4 km altitude has a relatively larger error.
Indeed, to derive vertically resolved backscatter at 1,064 nm one
needs to know the extinction at the same wavelength. Since
HSRL-2 does not measure extinction at 1,064 nm directly, it is
estimated from an assumed relationship with the measured lidar
ratio at 532 nm. Though provided as a best guess, such an
estimate may cause extra uncertainty to the 1,064 nm
backscatter, which is beyond our 5% error estimate for
particulate backscatter at all wavelengths. The comparison of
the depolarization ratio fit to the measurements was
demonstrated in the bottom panels of Figure 7A. In the
altitude range from 2.5 to 5.2 km, the fitting at the 532 nm
wavelength is noticeable to be beyond the measurement error.
Considering that the depolarization is highly relevant to aerosol
non-sphericities, such a deviation may be caused by the
modeling errors with the pre-assumed aspect ratio
distribution of spheroidal particles (Legrand et al., 2014). In
Figure 7B, we compare the fit of aerosol lidar ratio (Sa � αa/βa)
to the measurements. Plotted as the horizontal error bars, the
measurement uncertainty with aerosol lidar ratio (ΔSa) is
derived from the uncertainties of extinction (σαa � 17 Mm−1)
and backscatter coefficients (εβa � 5%) via error propagation
ΔSa � αa/βa

��������������
(σαa/αa)2 + (εβa)2
√

. In the altitude ranges from 0 to
1 km and from 2.5 to 5.2 km where most aerosols are
distributed, the fitting errors are observed to be less than 20
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Sr, or less than 20% in relative sense viewing the measured lidar
ratio is larger than 100 in 355 and 532 nm. Such a difference is
within the measurement uncertainties of the lidar ratio
indicated by the horizontal error bars.

The retrieved BRF and DOLP are compared to the measured
data by RSP in Figure 8. The spectral mean of fitting error for
BRF and DOLP is less than ∼2% and 0.003 respectively in the four
bands centered at 410, 470, 670, and 865 nm. By contrast, the
fitting error at 550 nm is relatively larger (∼4.5% for BRF and
∼0.007 for DOLP), which could be caused by the approximation
in estimating the ozone absorption to be ∼0.03 in optical depth at
550 nm for radiance calculation, and/or due to the residue error
of instrument calibration. Moreover, the fitting errors have
certain angular dependence: relatively larger fitting errors can
be observed when the polarimeter’s view angle gets more and
more off nadir. This could be caused by the inhomogeneity in the
spatial distribution of aerosols in the measurement zone, as seen
from the lidar curtain in Figure 3.

Following the case study demonstrated through Figures 5–8,
Figure 9 gives a systematic comparison of AOD and SSA at
532 nm from all 50 sets of retrievals to the measurements by 4-
STAR and HiGEAR instruments. Starting from the maximum
flight altitude (6 km) of P-3 aircraft, which carries 4-STAR and

HiGEAR, the accumulated AODmeasured by 4-STAR is sampled
at a resolution of 315 m. Plotted in red dots, comparison of
retrieval to 4-STAR reference data shows the MAD to be around
0.006, which is within the AOD retrieval errors for all cases. The
determinant of regression is about 0.99. As another measure of
the quality of retrieved resolution in fitting observation, we also
compare retrieved AOD to HSRL-2 AOD calculated from its
extinction measurements. As indicated with the blue squares,
most data fall very close to the 1:1 line - indicating a high quality
of the agreement. Also, at the vertical resolution of 315 m, the
right panel of Figure 9 shows the MAD of SSA retrievals is 0.028.
Overall, the retrieved SSAs are slightly larger than HiGEAR
reference data derived from its measurement of absorption
and scattering coefficients. This could be due to the retrieved
aerosol properties from RSP and HSRL-2’s observations are
under ambient conditions, while the in-situ measurements of
absorption and scattering coefficients are under dry conditions.
However, seeking an exact explanation for such a difference is
hard since it is within the estimated retrieval errors of SSA.
Indeed, gaining an SSA retrieval accuracy of 0.028 is largely due to
the constraints provided by RSP’s multiangle polarimetry, by
HSRL’s direct measurement of extinction, as well as by the
smoothness constraints imposed on the variation of refractive

FIGURE 6 | (A) Retrieved profiles of AOD (left panel) and SSA (right panel) at 532 nm (black curves), with comparison to the collocated HiGEAR measurement
(red dot); (B): retrieved fine mode (left panel) and coarse mode (right panel) aerosol size distributions (black curves), with comparison to the in-situ HiGEAR
measurements via UHSAS and APS (red curves). The retrieved AOD, SSA and size distribution are derived from the speciated aerosol abundance and intrinsic quantities
displayed in Figure 5. Moreover, the retrieved AOD in the left panel of Figure 6A is accumulated AOD from TOA to different altitudes with 315 m resolution. The
horizontal bars in all panels indicate the retrieval errors. Collocation of HiGEAR and RSP/HSRL-2 measurements was demonstrated in Figure 4. To estimate the retrieval
uncertainties, the measurement uncertainties are same as those used in Figure 5.
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index and size distribution. The benefits of using polarimetry to
constrain the retrieval of aerosol SSA has been demonstrated by
multiple airborne polarimeters such as RSP (Wu et al., 2015),
AirMSPI (Xu et al., 2017), AirSPEX (Hasekamp et al., 2019) and
AirHARP (Puthukkudy et al., 2020). Generally, retrieval error is
within ∼0.02–0.04 when the absolute error with DOLP
measurement is less than ∼0.005. However, in this work, we
are retrieving vertically dependent aerosol properties. Therefore,
the parameter space is significantly expanded, and the
polarimeter’s capability may spread increasingly thin as the
number of vertical layers for retrieval to resolve increases. To
mitigate this issue, extra a priori constraints regarding smooth
variations of some aerosol properties are imposed, and they play a

significant role in retrieval accuracy enhancement. Similar to the
comparison of AOD in the left panel of Figure 9, the left and right
panels of Figure 10 give a comparison of the accumulated AODs
against the product of 4-STAR at 355 and 1,064 nm, respectively.
The MADs of AOD at these two wavelengths are found to be
0.010 and 0.004, respectively. As a retrieval quality check, the
comparison was also made to AOD calculated from HSRL-2’s
extinction measurement in 355 nm. Compared to the agreement
of retrieval AOD and HSRL-2 AOD in 532 nm, the agreement of
the two AODs in 355 nm slightly reduces. For AOD at 1,064 nm,
the difference in the retrieval and 4-STAR AODs falls beyond the
range of retrieval error bars at some points. To fill the gap, wemay
need to further account for the uncertainties in 4-STAR AOD

FIGURE 7 |Comparison of HSRL-2measurements withmodel fit using the retrieved aerosol properties displayed in Figure 6. Consistent with Figures 5 and 6, the
observations were acquired at 14:25:10 UTC on September 12, 2016 during ORACLES campaign. (A)Upper panels: extinction coefficients at 355 nm (left) and 532 nm
(right) as a function of altitude; Middle panels: backscatter coefficient at 355 nm (left), 532 nm (middle), and 1,064 nm (right) as a function of altitude. Bottom panels:
depolarization ratio at 355 nm (left), 532 nm (middle), and 1,064 nm (right) as a function of altitude. (B) Lidar ratio at 355 nm (left) and 532 nm (right). The
horizontal bars in all panels indicate the measurement uncertainties. The measurement uncertainties are same as those used in Figure 5.
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measurements (e.g., ∼0.01 for above-cloud AOD sampled at
500 nm and 1,020 nm according to LeBlanc et al., (2020)).

Figures 11 and 12 compare the effective radius and effective
variance of fine and coarse mode aerosols against the reference
data derived from in-situmeasurements by use of the UHSAS and
APS instruments aboard P-3 aircraft. We filtered out the results
above 5.2 km where aerosols loading is very low so that the
retrieved aerosol microphysical properties are subjected to
relatively larger retrieval errors. Moreover, the UHSAS/APS
measured the size-resolved number concentration are fit with
the number weighted log-normal size distribution expressed in
Eq. 103. Following the derivation of r(s)g and σ(s)g from fitting in-
situ measurements, the effective radius and variance is
calculated via

r(s)eff � r(s)g e
5
2[σ(s)g ]2 , (104)

v(s)eff � e[σ(s)g ]2 − 1. (105)

Comparison of fine and coarse mode aerosol effective radii and
variance in the left panel of Figures 11 and 12 indicates the
retrieved values are larger than their counterparts as measured by
UHSAS and APS. The MADs of effective radii are around 0.012
and 0.377 μm for fine and coarse aerosols, respectively. Such a
difference is basically within the estimated range of retrieval
errors. MADs of effective variance are around 0.132 and 0.257
for fine and coarse aerosols, respectively. Such a deviation is
beyond the range of estimated retrieval errors. However, the in-
situ aerosol size measurement by HiGEAR suite of instruments
has 5% (Uin 2016) and 10% (Pfeifer et al., 2016) uncertainty for
fine and coarse mode aerosols, respectively. Moreover, HiGEAR
measurement was carried out under dry conditions while the
retrieved aerosol properties from RSP and HSRL-2’s observations

FIGURE 8 | (A)Comparison of RSP radiancemeasurements (in BRF unit) with model fit using the retrieved aerosol properties displayed in Figure 5. Consistent with
Figures 5 and 6, the observations were acquired at 14:25:10UTC on September 12, 2016 during ORACLES campaign. Comparison is made for five wavelengths from
near UV (410 nm) to near-infrared (865 nm) in different panels. (B) Comparison of RSP DOLP measurements with model fits using the retrieved aerosol properties
displayed in Figure 5. The vertical bars in all panels indicate the measurement uncertainties.
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FIGURE 9 | Systematic comparison of accumulated partial-column AOD and layer-effective SSA from retrieval using 50 combined sets of HSRL-2 and RSP
observations to the reference measurement by 4-STAR and HiGEAR. Left panel: comparison of accumulated AOD at 532 nm against 4-STAR and HSRL-2
measurements; Right panel: comparison of SSA at 532 nm against HiGEAR reference data. Collocation of these measurements was demonstrated in Figure 4. For SSA
comparison, less than 50 retrieval data points are plotted due to the screening of data for altitude above 5.2 km (too low aerosol loading). The vertical bars in all
panels indicate the retrieval errors.

FIGURE 10 | Same as the left panel of Figure 9 but the comparison against 4-STAR and HSRL-2 reference data for AOD at 355 nm, and against 4-STAR reference
data for AOD at 1,064 nm. Left panel: comparison of AOD at 355 nm; Right panel: comparison of AOD at 1,064 nm. The vertical bars in all panels indicate the retrieval
errors.

FIGURE 11 |Comparison of effective radius (left panel) and variance (right panel) of fine mode aerosol size distribution. The vertical bars in all panels indicate the
retrieval errors.
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were under ambient conditions. These are potential sources that
can cause the difference in the estimated geometric number mean
radius and standard deviation from HiGEAR measurements,
which further impacts the comparison of aerosol effective
radius and variance.

SUMMARY

An optimization approach is developed to combine the use of
lidar and polarimetric observations to retrieve the vertical
profiles of speciated aerosol abundance and properties over
the ocean. These aerosol properties include aerosol refractive
index, size distribution, and spherical particle fractions.
Acquired during 2016 ORACLES field campaign, the HSRL-2
measurements of extinction, backscatter and depolarization in
combination with RSP measurements of radiance and DOLP are
used to test the retrieval. Comparison to the accumulated AODs
from TOA to different altitudes measured by 4-STAR aboard the
P-3 at different altitudes (up to 6 km) shows an MAD of 0.010,
0.006, and 0.004 for 355, 532 and 1,064 nm, respectively. At the
vertical resolution of 315 m, validation of SSA against the in-situ
measurement by HiGEAR shows an accuracy of 0.028 for
532 nm. Comparing the retrieved effective radii of fine and
coarse mode aerosols to the reference data from in-situ
measurements by UHSAS and APS, we found the MADs to
be around 0.012 and 0.377 μm for fine and coarse mode aerosols,
respectively.

While most comparisons indicate that the differences are within
the estimated retrieval errors or withinmeasurement uncertainties of
relevant quantities, it is noteworthy that we assume 1) a plane-
parallel atmosphere-surface system for computing polarized
radiative transfer and 2) sphere and spheroid model for
computing aerosol single-scattering properties. These assumptions
are subjected to errors. One error source that is particularly relevant
to lidar-polarimeter combined retrieval under the context of high
spatial resolution is the difference in the atmosphere viewed along
nadir direction by lidar and the atmosphere viewed along oblique
angles of a polarimeter. In a strict sense, combined retrieval should

only use nadir polarimetric measurements, or all angular
measurements but with a 3D forward RT model that accurately
accounts for the spatial inhomogeneity with the atmosphere.
However, the former option will reduce the benefits of multi-
angular benefits in constraining while the latter option will
reduce the modeling efficiency. As a trade-off between retrieval
accuracy and efficiency, we use all angular measurements and retain
the simplicity of assuming a plane-parallel atmosphere-surface
system to perform the retrieval. Then the modeling errors are
factored into the error estimates (see Retrieval Error Estimate).
Nevertheless, seeking an effective way to further mitigate
modeling errors while retaining the modeling efficiency is a
worthwhile topic to pursue in the next stage.
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