
The Directly-Georeferenced
Hyperspectral Point Cloud: Preserving
the Integrity of Hyperspectral Imaging
Data
Deep Inamdar1, Margaret Kalacska1*, J. Pablo Arroyo-Mora2 and George Leblanc1,2

1Applied Remote Sensing Laboratory, Department of Geography, McGill University, Montréal, QC, Canada, 2Flight Research
Laboratory, National Research Council of Canada, Ottawa, ON, Canada

The raster data model has been the standard format for hyperspectral imaging (HSI) over
the last four decades. Unfortunately, it misrepresents HSI data because pixels are not
natively square nor uniformly distributed across imaged scenes. To generate end products
as rasters with square pixels while preserving spectral data integrity, the nearest neighbor
resampling methodology is typically applied. This process compromises spatial data
integrity as the pixels from the original HSI data are shifted, duplicated and eliminated
so that HSI data can conform to the raster data model structure. Our study presents a
novel hyperspectral point cloud data representation that preserves the spatial-spectral
integrity of HSI data more effectively than conventional square pixel rasters. This Directly-
Georeferenced Hyperspectral Point Cloud (DHPC) is generated through a data fusion
workflow that can be readily implemented into existing processing workflows used by HSI
data providers. The effectiveness of the DHPC over conventional square pixel rasters is
shown with four HSI datasets. These datasets were collected at three different sites with
two different sensors that captured the spectral information from each site at various
spatial resolutions (ranging from ∼1.5 cm to 2.6 m). The DHPC was assessed based on
three data quality metrics (i.e., pixel loss, pixel duplication and pixel shifting), data storage
requirements and various HSI applications. All of the studied raster data products were
characterized by either substantial pixel loss (∼50–75%) or pixel duplication (∼35–75%),
depending on the resolution of the resampling grid used in the nearest neighbor
methodology. Pixel shifting in the raster end products ranged from 0.33 to 1.95 pixels.
The DHPCwas characterized by zero pixel loss, pixel duplication and pixel shifting. Despite
containing additional surface elevation data, the DHPC was up to 13 times smaller in file
size than the corresponding rasters. Furthermore, the DHPC consistently outperformed
the rasters in all of the tested applications which included classification, spectra geo-
location and target detection. Based on the findings from this work, the developed DHPC
data representation has the potential to push the limits of HSI data distribution, analysis
and application.
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INTRODUCTION

In the era of machine learning, the wealth of spatial-spectral
information provided by hyperspectral imaging (HSI) data
presents a unique opportunity to model and understand
complex dynamics in a variety of applications (Eismann,
2012). For instance, airborne long-wave infrared HSI data
have been successfully used for mineral exploration, mining
and geohazard monitoring through the detection of rock
forming and alteration minerals (Riley and Hecker, 2013). In
vegetation studies for example, visible and near-infrared airborne
HSI data have been used with thermal imagery for the early
detection of Xylella fastidiosa, a pathogenic floral bacterium
(Poblete et al., 2020). The success of these applications, in
addition to many others, rely on the use of various cutting-
edge analytical techniques that have been specifically developed
to exploit HSI data and its unique properties. For instance, the
high dimensionality of HSI data can be leveraged using deep
feature extraction techniques (Chen et al., 2016; Rasti et al., 2020)
that transform raw data in a hierarchical fashion to a lower
dimensional data representation composed of new variables that
are more discriminant, abstract and robust. Challenges from
spectral mixing in HSI data can be minimized using dictionary
learning-based unmixing approaches (Hong et al., 2019; Liu et al.,
2019) to understand the material composition of a single pixel.
Even in the presence of signal noise, targets of interest can readily
be detected using ensemble learning techniques (Zhao et al., 2019;
Sun et al., 2020) and classified using graph convolutional neural
networks (Qin et al., 2019; Hong et al., 2020a).

In order to obtain spatially coherent HSI data that optimally
preserves the captured spectral information from the
conventional sensor types (e.g., pushbroom and whiskbroom)
used on unmanned aerial systems (UAS) (e.g., Lucieer et al., 2014;
Arroyo-Mora et al., 2019; Arroyo-Mora et al., 2021) and manned
airborne platforms (e.g., Kalacska et al., 2016), the geometric
correction is essential. In the geometric correction, each pixel of
acquired HSI data is located in a real-world coordinate space at
the intersection of an input digital surface model (DSM) and a
straight line that is projected from the sensor position at the pixel
dependent look direction (Müller et al., 2002; Schroth, 2004; Yeh
and Tsai, 2011; Lenz et al., 2014). The look direction describes the
angle from which incoming electromagnetic radiation is observed
by a particular pixel of the imager (Müller et al., 2002). It is
calculated by accounting for the roll, pitch and yaw while
simultaneously considering the focal geometry and boresight
misalignment of the imaging system (Müller et al., 2002;
Warren et al., 2014). The DSMs used to geometrically correct
HSI data are typically derived from either Light Detection and
Ranging (LiDAR) (Liu, 2008), radar altimetry (Leslie, 2018) or
Structure-from-Motion photogrammetry (Westoby et al., 2012).

Due to various factors (e.g., lens distortion, sensor movement,
rugged terrains) pixels in the imagery are not uniformly spaced
over the imaged scene after the geometric correction (Galbraith
et al., 2003; Vreys et al., 2016). To correct for this non-uniformity,
the geometrically corrected data are often resampled on a north-
oriented linear grid. Each cell in this grid is typically separated by
an equal distance in both the easting and northing directions,

leading to a raster with square pixels (Shlien, 1979; Richards and
Jia, 1999; Warren et al., 2014).

When spatially resampling HSI data, the nearest neighbor
resampling method is conventionally applied (Roy, 2000;
Williams et al., 2017). In this technique, the spectrum for each
cell in the pre-specified linear grid is determined by the nearest
spectrum from the geometrically corrected imaging data that are
being resampled (Shlien, 1979). Since this resampling process
does not change the value recorded in any given spectrum, the
nearest neighbor methodology preserves spectral data integrity
(Schläpfer et al., 2007). Nonetheless, the nearest neighbor method
can compromise spatial data integrity. For instance, nearest
neighbor resampling can lead to a blocky appearance due to
pixel duplication if oversampling occurs (Arif and Akbar, 2005).
Likewise, if the data are undersampled during nearest neighbor
resampling, pixels can be lost all together, eliminating valid
spectral information (Arif and Akbar, 2005). Even if pixel
duplication and loss are near zero, nearest neighbor
resampling shifts the position of each pixel (Shlien, 1979; Roy,
2000), altering the calculated location of each spectral
measurement.

In many of the popular sensor designs (e.g., pushbroom and
whiskbroom) the spatial characteristics of collected HSI data are
often different between the cross track and along track directions
(Inamdar et al., 2020). Therefore, it is difficult to select a spatial
resolution for the resampling grid used in the nearest neighbor
methodology. Figure 1 illustrates this issue, showing the spatial
resampling process for theoretical HSI data. In this example, the
pixel spacing in the cross track is half that of the along track. If the
imagery is resampled to the cross track pixel spacing, there would
likely be a substantial amount of pixel duplication due to
oversampling in the along track (Figure 1A). In the alternative
case where the imagery is resampled to the along track pixel
spacing, there would be a considerable amount of pixel loss due to
undersampling in the cross track (Figure 1B). The impact of pixel
loss and duplication on remote sensing applications has not been
addressed in the literature. Regardless of the method, resampling
will affect the spatial integrity of HSI datasets so that the end
product fits a raster data structure (Shlien, 1979).

Instead of the conventional raster data structure, hyperspectral
data can be represented as a point cloud, where each spectrum has
a distinct position in a three-dimensional space. Hyperspectral
point clouds have been extensively discussed in the remote
sensing literature. Hyperspectral point cloud generation
methodologies can be grouped into three main categories
(Brell et al., 2019): 1) physical measurements that collect
simultaneous hyperspectral and surface elevation data from a
single sensor (e.g., Vauhkonen et al., 2013), 2) photogrammetric
ranging with multiple full-frame hyperspectral images (e.g.,
Oliveira et al., 2019) and 3) data fusion that synergistically
integrates surface elevation data with conventional HSI data
(e.g., Brell et al., 2019). With physical measurements, it is
critical to recognize that a single airborne sensor is not
capable of collecting both high quality spectral and elevation
data (Brell et al., 2019), especially at fine spectral-spatial
resolutions. With photogrammetric ranging, the data storage
requirements can pose operational and computational
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difficulties, especially at high spatial resolutions (< 3 cm) over
large extents since a large volume of data are collected due to the
necessity of multiple images with significant overlap. There can
also be fundamental issues with photogrammetric ranging
hyperspectral point cloud generation related to spectral data
integrity depending on the manner in which the spectral
information is assigned to each calculated elevation point
(Aasen et al., 2015). Data fusion utilizing separate surface
elevation and HSI datasets are generally the most feasible,
however, their spectral and spatial alignment is challenging
due to different sampling strategies, interaction with surface
objects and fundamental differences in sensor characteristics
(e.g., spectral-spatial point spread functions, illumination
sources and viewing angles) (Brell et al., 2016; Brell et al.,
2017; Brell et al., 2019).

Despite the abundance of hyperspectral point cloud
generation methods, raster datasets have remained the
standard for HSI data for over 40 years (Vane et al., 1984;
Wilkinson, 1996; Goetz, 2009). This is likely due to the
aforementioned difficulties with hyperspectral point cloud
generation approaches: they can be difficult to implement,
computationally expensive, result in large file sizes and
compromise spatial-spectral data integrity. Interestingly,
when generating conventional raster images, a
hyperspectral point cloud is generated as each hyperspectral
pixel is assigned an easting, northing and elevation value
during the geometric correction (Müller et al., 2002; Lenz
et al., 2014). This point cloud information is rarely analyzed by
end users, who are provided with the elevation removed,
resampled HSI products in raster format. A data fusion
workflow that is implemented via the geometric correction
would be straightforward to implement in existing processing
protocols. The lack of spatial resampling in such a data
product would also mean that the point cloud would

preserve the spatial-spectral integrity of HSI data more
effectively than rasters.

The objective of our study is to propose a hyperspectral point
cloud data representation that preserves the spatial-spectral
integrity of HSI data more effectively than conventional square
pixel raster end products. This data representation, the Directly-
Georeferenced Hyperspectral Point Cloud (DHPC), is generated
through a novel data fusion workflow that can be implemented
with the same tools used to generate conventional rasters. Our
work herein first describes four HSI datasets that we use to
generate both raster and DHPC end products. This description
incudes an overview of the implemented raster data processing
workflow and the developed DHPC data fusion workflow. After,
we assess the DHPC and raster data products based on three
spatial integrity data quality metrics (i.e., pixel loss, pixel
duplication and pixel shifting) and data storage requirements,
which is an important parameter for data distribution. Finally, we
assess the practical implications of the data quality metrics by
comparing the DHPC end products against the conventional
raster end products in common HSI applications including
classification, spectra geo-location and target detection.
Overall, our study proposes an alternative data representation
to the conventional raster data model that has the potential to
push the limitations of data distribution, analysis and application
in HSI.

MATERIALS AND METHODS

Data Collection and Processing
Study Areas
The study analyzed HSI data collected at three field sites with
different topographic features: the Mer Blue Peatland (MBP), the
Cowichan Garry Oak Preserve (CGOP) and the Parc National du

FIGURE 1 | Pixel loss and pixel duplication during nearest neighbor spatial resampling. Consider spatially resampling a hyperspectral imaging dataset (given by the
colored circles) acquired along an approximate true north heading where the pixel spacing in the cross track is half that of the along track. To generate a rasterized data
product (given by the grey raster grid and the small black dots which designate the center of each cell), the data must be resampled on a north-oriented grid. Panels (A)
and (B) show two resampling grids that could be used for the nearest neighbor resampling.
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Mont- Mégantic (MMG). These sites are important climate
change and conservation study areas. The MBP is a
∼8,500 year old ombrotrophic bog in Ottawa, Ontario, Canada
(Lafleur et al., 2001). It is characterized by a hummock-hollow
microtopography that corresponds with spatial patterns in
vegetation and hydrology (Malhotra et al., 2016). A hollow is
a wetter low-lying area that is dominated by Sphagnum spp
mosses, while a hummock is a drier elevated mound rising
from the surface with a dense cover of vascular plants in
addition to mosses (Lafleur et al., 2005; Eppinga et al., 2008).
The CGOP is located near Duncan, British Columbia, Canada.
The site is an endangered Garry OakMeadow with an open forest
and an understory composed of native grasses and herbaceous
vegetation. At this site, there is a difference in elevation (>10 m)
between the top of the canopy and the understory. The MMG
field site is located in southern Québec, Canada. The site is
composed of mixed northern hardwood and boreal forest
stands. The elevation gradient at this site is relatively large in
comparison to the other two sites, changing by more than 600 m
within the 10 km2 area surrounding the peak of the mountain
(Savage and Vellend, 2015).

Hyperspectral Imaging Data
HSI data were acquired with two hyperspectral imagers: the
micro-Compact Airborne Spectrographic Imager (µCASI-1920,
ITRES, Calgary, AB, Canada) and the Compact Airborne
Spectrographic Imager (CASI-1500, ITRES, Calgary, AB,
Canada). The imagers were mounted on different airframes
and captured spectral information at different spatial scales
(∼1.5–3 cm and ∼0.5–2.5 m, respectively) over the visible-near
infrared portion of the electromagnetic spectrum. The µCASI-
1920 was mounted on a DJI Matrice 600 Pro UAS. It is a variable
framerate pushbroom imager that collects spectral data across a
34.21° field of view over 288 spectral bands (401–996 nm) on a
silicon-based focal plane array (Arroyo-Mora et al., 2019). The
CASI-1500 was mounted in a Twin Otter fixed-wing aircraft. It is
a variable frame rate, grating-based, pushbroom imager with a
39.8° field of view that collects spectral information over 288
spectral bands (366–1,053 nm) with a silicon-based charged
coupled device detector (Soffer et al., 2019). Both µCASI-1920

and CASI-1500 HSI data were collected over the MBP. µCASI-
1920 data were collected at the CGOP site and CASI-1500 data
were collected at the MMG site. Table 1 lists the parameters
associated with both the µCASI-1920 and CASI-1500 datasets.
The CGOP and MMG HSI data represented terrains with large
elevation gradients relative to the sensor altitude and nominal
pixel sizes of the imagery.

The raw hyperspectral data were radiometrically and
atmospherically corrected. The radiometric correction was
implemented with proprietary software developed by the
sensor manufacturer while the atmospheric correction was
done using ATCOR4 [as described in Soffer et al. (2019)]. The
MMG imagery further had a Lambert + Statistical-Empirical
BRDF topographic correction applied (Richter and Schläpfer,
2020).

Conventional Hyperspectral Imaging Data (Square
Pixel Raster)
To generate conventional HSI end products (georeferenced raster
with square pixels), the radiometrically and atmospherically
corrected data were first geometrically corrected and then
spatially resampled. The geometric correction was completed
with proprietary software from the sensor manufacturer using
the onboard inertial navigation system data (position and
attitude). The DSMs used for the geometric correction are
described in Digital Surface Models. Conventional square pixel
raster images were generated for each HSI dataset by spatially
resampling the geometrically corrected HSI data on a north-
oriented linear grid using a nearest neighbor methodology. Since
there was a discrepancy between the cross track and along track
pixel spacing of the collected HSI data, each HSI dataset was
resampled on two different grids. Adjacent grid cells were
separated by the cross track pixel spacing in the first
resampling grid and the along track pixel spacing in the
second resampling grid. Since the along track spacing was
consistently larger than that of the cross track, the first
resampling grid oversampled the data while the second
undersampled the data to generate raster data products with
square pixels. In total 8 imaging data sets were generated (two
images for each of the HSI datasets described in Table 1).

TABLE 1 | Parameters for the hyperspectral imaging data acquired over the Mer Bleue Peatland (MBP), the Cowichan Garry Oak Preserve (CGOP) and the Parc National du
Mont- Mégantic (MMG) with the µCASI-1920 and the CASI-1500. Nominal altitudes are reported as height above ground level.

Parameter MBP (µCASI-1920) MBP (CASI-1500) CGOP (µCASI-1920) MMG (CASI-1500)

Date (dd-mm-yyyy) 15-07-2019 15-07-2019 15-05-2019 18–07-2019
Image start time (hh.mm.ss GMT) 15.44.49 15.44.38 18.33.41 15.06.34
Latitude of flight line center (DD) 45.4102 45.4014 48.8080 45.4588
Longitude of flight line center (DD) −75.5157 −75.5156 −123.6305 −71.1516
Nominal heading (°) 156 341 165 171
Nominal altitude (m) 45 1,133 60 2,325
Nominal speed (m/s) 2.7 41.6 2.7 53.5
Integration time (ms) 9 48 9 48
Frame time (ms) 11 48 11 48
Cross track pixel resolution (cm) 1.5 55 2.0 113
Cross track pixel spacing (cm) 1.5 55 2.0 113
Along track pixel resolution (cm) 2.4 198 2.4 257
Along track pixel spacing (cm) 3.0 198 3.0 257
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Directly-Georeferenced Hyperspectral Point Cloud
The DHPC data fusion workflow implements a standard
geometric correction processing protocol to create the point
cloud (Figure 2). The workflow has three major inputs: the
atmospherically corrected HSI data, the inertial navigation
data of the sensor (position and attitude) and a DSM of the
area covered by the HSI data.

The first step in the DHPC data fusion workflow modifies the
input DSM, blurring it through convolution with the point spread
function of the imaging sensor. This modification makes the
spatial properties of the DSM more consistent with the collected
HSI data; each point in the blurred DSM corresponds to the
average elevation of the objects/terrain that would contribute to a
single HSI pixel.

In the second and final step of the data fusion workflow, the
HSI data in its original sensor geometry is projected onto the
blurred DSM. This was practically done by applying the
geometric correction described in Conventional Hyperspectral
Imaging Data (Square Pixel Raster), using the blurred DSM
instead of the original. As a result of the blurred DSM, each HSI
pixel receives the average surface elevation of the materials
contributing to it. With the real-world position (northing,

easting, averaged surface elevation) of each pixel from the
imagery in its original sensor geometry, the DHPC is
complete. In our study, each point in the DHPC data
product was referred to as a “pixel”. Following the described
workflow, a DHPC was generated for each of the HSI datasets
from Table 1.

Digital Surface Models
The DSMs used to geometrically correct the µCASI-1920 data
were generated by using a Structure-from-Motion Multiview
Stereo (SfM-MVS) workflow from RGB photography
(Kalacska et al., 2017; Kalacska et al., 2020). In this workflow
(Lucanus and Kalacska, 2020) geo-tagged aerial photographs
were collected on June 6th, 2019 (for MBP) and May 11th,
2019 (for CGOP) over the area covered by the µCASI-1920
imagery, with a Canon EOS 5D Mark III equipped with a
Canon EF 24–70 mm f/2.8 L II USM lens set to a focal length
of 24 mm. All photographs included the geolocation and altitude
of the UAS, as recorded by an EMLID Reach M+ GNSS module.
The collected raw GNSS data were postprocessed with RTKLIB
(Takasu and Yasuda, 2009) using local base station data collected
from a EMLID Reach RS+ GNSS module that was receiving

FIGURE 2 | Flow chart of the hyperspectral imaging (HSI) processing workflow for both conventional rasterized hyperspectral imaging end products and the
Directly-Georeferenced Hyperspectral Point Cloud (DHPC).
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incoming corrections from a commercial NTRIP (Networked
Transport of Radio Technical Commission for Maritime Services
via Internet Protocol) casting service (Smartnet North America,
Atlanta) on an RTCM3-iMAX (Radio Technical Commission for
Maritime IndividualizedMaster Auxiliary) mount point that used
both GPS and GLONASS constellations. The SfM-MVS workflow
was implemented using Pix4D Mapper Pro [see Kalacska et al.
(2020) for details], ultimately generating a DSM at a spatial
resolution of 0.69 cm for the MBP and 1.52 cm for the CGOP.

For the MBP CASI-1500 data, airborne LiDAR data collected
for the National Capital Commission in 2009 (density 2–4 pts
m2) (Arroyo-Mora et al., 2018b) were used to generate a DSM at a
spatial resolution of 0.5 m. Based on ground observations and
peat growth modeling, the MBP has been estimated to grow <
0.5 m over the last millennium (Frolking et al., 2010). Given this
slow growth rate, the LiDAR data collected in 2009 is still
appropriate to apply to the peatland.

For theMMGCASI-1500 data, the study used airborne LiDAR
data collected in 2018 by the Ministry of Forests, Wildlife and
Parks of Québec as part of the province-wide LiDAR sensor data
acquisition project (density 2.5 pts m2) (Le ministère des Forêts,
de la Faune et des Parcs, 2021). The dataset was provided as a
DSM at a spatial resolution of 1 m.

Data Assessment Metrics
Three spatial data quality metrics were calculated for each DHPC
and square pixel raster end product: pixel loss (PL), pixel
duplication (PD) and root mean square error in the radial
direction (RMSEr). PL (%) is the total percentage of pixels
from the original HSI dataset that were not used in the final
data product. PD (%) is the total percentage of pixels in the final
data product that are duplicates. The RMSEr gives a measure of
the average distance (cm) the location of each pixel (as
determined from the geometric correction) was shifted while
generating the final end product. Assuming a uniform pixel
spacing in the cross track and along track directions, it is possible
to derive theoretical PL and PD values (see Theoretical Pixel Loss
and Pixel Duplication Derivation) for any given HSI dataset from
nominal flight parameters alone. Following this derivation,
theoretical PL (PLH) and PD (PDH) values were calculated for
each of the resampled and DHPC datasets and compared to the
measured values. In addition to the described spatial data quality
metrics, data storage requirements for each DHPC and square
pixel raster end product were also calculated.

Pixel Loss
The PL was calculated according to Mulcahy (2000) (Eq. 1):

PL � (1 − UIr

TIo

) × 100% (1)

where the following holds: UIr represents the number of unique
spectra in the analyzed data product (Ir) and TIo represents the
number of total spectra in the original imagery from which Ir was
derived. PL is given as a percentage, indicating the total
percentage of pixels from the original HSI dataset that were
not used in the final data product.

Pixel Duplication
The PD was calculated according to Mulcahy (2000) (Eq. 2):

PD � (1 − UIr

TIr

) × 100% (2)

where the following holds: UIr represents the number of unique
spectra in the analyzed data product (Ir) while TIr represents the
total number of spectra in Ir. PD is given as a percentage, indicating
the total portion of pixels in Ir that are duplicates of one another.

Horizontal Linear Root Mean Square Error in Radial
Direction
The RMSEr was calculated according to American Society for
Photogrammetric Engineering Remote Sensing (2015) (Eq. 3):

RMSEr �
����������������������������������������������������������∑i�n

i�1([Pr,North(Sr(i)) − Po,North(Sr(i))]2 + [Pr,East(Sr(i)) − Po,East(Sr(i))]2)
n

√
(3)

where the following holds: Sr(i) represents the spectrum from the
ith pixel of the analyzed data product (Ir); Pr,North(Sr (i))
represents the northing position of Sr(i) in Ir; Pr,East(Ir (i)),
represents the easting position of Sr(i) in Ir; n represents the
total number of spectrum in Ir; Po, North (Sr(i)) represents the
original northing position of Sr(i) as calculated during the
geometric correction; and Po, East (Sr(i)) represents the original
easting position of Sr(i) as calculated during the geometric
correction. The RMSEr gives a measure of the average distance
(cm) the location of each pixel (as determined by the geometric
correction) is shifted in the final data product.

Theoretical Pixel Loss and Pixel Duplication Derivation
This section derives the theoretical PL (PLH) and PD (PDH) of a
hypothetical HSI dataset (Io) collected with uniform pixel spacing
in the cross track and along track directions. In this section, Iowas
assumed to be collected over an area with length W in the cross
track direction and length L in the along track direction.
Furthermore, the cross track pixel spacing (Pscross) was
assumed to be smaller than that of the along track pixel
spacing (Psalong). The total number of spectra in Io (TIo) was
approximated by the following:

TIo � (L/Psalong)(W/Pscross) (4)

The theoretical PL and PD values were calculated for the two
resampling approaches investigated in our study. The first resampling
grid oversampled Io (resampling resolution equal to the cross track
pixel spacing) while the second undersampled Io (resampling
resolution equal to the along track pixel spacing). The total
number of pixels in the resampled dataset can be calculated from:

TIr � (L/Rr)(W/Rr), (5)

where Rr is the resolution of the resampled image (Ir).
Considering the first scenario (dataset is oversampled), it is

assumed that there is no PL (PLH � 0%) since Rr is always equal to
or smaller than pixel spacing throughout Io. To derive PDH, the
number of total (TIr) and unique (UIr) spectra within the
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resampled image (Ir) must be calculated. Since there is no PL, UIr
is equal to TIo.

Starting from the PD formula given in Pixel Duplication, the
derivation follows:

PDH � (1 − UIr

TIr

) × 100% (6)

PDH � ⎛⎝1 − (L/Psalong)(W/Pscross)
(L/Pscross)(W/Pscross)⎞⎠ × 100% (7)

PDH � (1 − Pscross
Psalong

) × 100% (8)

Considering the second scenario (dataset is undersampled), it is
assumed that there is no PD (PDH � 0%) since the resampling
resolution is always equal to or greater than the pixel spacing
throughout Io. To derive PLH, TIo andUIr are required. Since there
is no PD, UIr is equal to TIr

Starting from the PL formula given in Pixel Loss, the derivation
follows:

PLH � (1 − UIr

TIo

) × 100% (9)

PLH � ⎛⎝1 − (L/Psalong)(W/Psalong)(L/Psalong)(W/Pscross)⎞⎠ × 100% (10)

PLH � (1 − Pscross
Psalong

) × 100% (11)

The theoretical PL and PD of the DHPCs required no derivation;
since pixels were not resampled after the geometric correction,
there should be zero PLH or PDH.

Hyperspectral Imaging Data Applications
To compare the DHPC to the two resampled data products, two
applications were tested with the MBP µCASI-1920 imagery. The
first was a simple classification problem, differentiating two
microforms (hummocks and hollows) in the MBP. The second
µCASI-1920 application aimed to approximate the potential error
in biomass estimation for hummocks and hollows (based on the
classification results).

Two applications were also assessed for the MBP CASI-1500
data. The first located unique spectra within pre-specified
vegetation plots. This application was based on common HSI
end user requirements of matching ground control data (e.g.,
vegetation species counts) with HSI data (Arroyo-Mora et al.,
2018a). The second CASI-1500 application was a sub-pixel target
detection exercise.

Hummock and Hollow Classification (µCASI-1920)
Hummocks and hollows were classified from the MBP µCASI-1920
HSI data using a linear discriminant analysis (LDA) classification
(Fisher, 1936). An independent classification model was trained and
validated for each of the resampled µCASI-1920 images and the
DHPC, resulting in nine different classification models. Each of the
models were differentiated by the utilized training dataset
(oversampled raster, undersampled raster or DHPC) and training

variables (elevation only, spectral reflectance only or elevation and
spectral reflectance). The surface elevation data for the rasterized data
products were provided during geometric correction by resampling
the surface elevation value associated with each pixel. The
performance of each model was measured by the overall accuracy,
producer’s accuracy and user’s accuracy metrics calculated on the
validation dataset. The training and validation datasets for each
model were generated based on both elevation and spectral data
with domain knowledge of the MBP. In this process, trees were
masked by removing the upper 2 percentile of the surface elevation
distribution in each dataset. The surface elevation data were then
detrended by removing the median surface elevation in a 10 × 10m
area around each pixel. Potential hummocks were identified as the
75–90th percentile of the detrended surface elevation data. Potential
hollows were identified as the bottom 5th percentile. The identified
hummocks and hollows were further filtered to remove bright
(i.e., man-made objects) and low (i.e., shadows) reflectance
objects. In this filtering, hummock and hollow labels that fell
within the top and bottom 5 percentile of the spectral data at
600 nm were removed. Half of the remaining hollow labels were
randomly selected and designated as training data. The other 50% of
hollow labels were designated as validation data. An equal number of
hummock data points were randomly selected and designated as
training data and validation data. Aminimum of 60,000 training and
validation data points were used for each of the models.

Biomass Error Estimation for Hummocks and Hollows
(µCASI-1920)
To assess the impact of resampling and the DHPC on a basic
modeling question, our study investigated how classification
errors could affect total aboveground biomass estimation. The
biomass of hummocks and hollows were assumed to be Gaussian
in nature. For hummocks, this Gaussian distribution was defined
by a mean value of 527 g/m2 and a standard deviation (SD) of
43 g/m2. For hollows, this Gaussian distribution was defined by a
mean value of 431 g/m2 and a SD of 147 g/m2. Each of these
biomass distributions (mean and SD) were based on ground data
from the MBP reported in Bubier et al. (2003).

A biomass value was randomly generated for each observation
in the validation dataset based on its actual microform label. For
instance, if an observation was actually labeled a hummock, it
would be randomly assigned a biomass value from the previously
defined hummock biomass distribution function. The mean of
the randomly generated biomass values was calculated separately
for hummocks and hollows based on the predicted labels in the
validation dataset. In a perfect classification, the mean biomass of
predicted hummocks and hollows would be nearly identical to the
values used for the field-based biomass distributions. As such, to
quantify the error in the biomass estimation for hummocks and
hollows due to misclassification, the difference between the mean
of the predicted and actual biomass distributions (ΔBµ,mf) was
calculated for both hummocks (ΔBµ,hk) and hollows (ΔBµ,hw).

Geo-Locating Spectra From Pre-Specified Vegetation
Plots (CASI-1500)
One-hundred virtual 3 × 3 m vegetation plots were randomly
placed across the MBP (uniform probability distribution over
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space). The mean number of spectra and unique spectra per plot
were calculated in both the raster data sets and the DHPC
generated from the CASI-1500. A pixel spectrum was located
within a plot if its center was within the spatial boundaries of the
plot. The percentage of these spectra located outside the plots
before rasterization were calculated. The tested datasets were
evaluated by identifying the mean number of unique spectra per
plot that fell within its spatial boundaries before and after
rasterization.

Detecting Sub-Pixel Targets (CASI-1500)
A target detection analysis was conducted on each of the MBP
CASI-1500 datasets. One-thousand artificial targets were
randomly placed across the MBP (uniform probability
distribution over space). In sub-pixel detection applications,
the position of a target within a pixel’s field of view and the
sensor point spread function are of utmost importance (Radoux
et al., 2016). As such, this application assumed that a target can be
detected within a pixel of the imagery in its raw sensor geometry
(pre-rasterization) if the point spread function of the pixel was
greater than a pre-defined threshold value at the location of the
target. The study tested threshold values ranging from 0.15 to 0.85
in increments of 0.05. The higher the threshold, the more difficult
it was for a target to be detected within any given pixel of the
imagery in its original sensor geometry. Based on this target
detection, the false discovery rate and false negative rate were then
calculated for each of the oversampled, undersampled and DHPC

products. A pixel was a true positive if the detected target was
within its spatial boundaries. For the rasterized data product, the
spatial boundaries were given by their pixel boundaries. For the
DHPC, the boundaries were given by the full width at half
maximum (FWHM) of the sensor point spread function.

RESULTS

Hyperspectral Imaging Data Assessment
Terrain With Small Elevation Gradient Relative to
Sensor Altitude and Nominal Pixel Size
The MBP HSI data are displayed in Figures 3, 4. Table 2 records
the RMSEr, PL, PD, PLH, PDH and file size of the raster and point
cloud datasets. The oversampledMBP data products were large in
file size (30.90 Gb for µCASI-1920 and 40.36 Gb for CASI-1500)
and characterized by high PD (50.25% for µCASI-1920 and
77.70% for CASI-1500). The PD for the oversampled CASI-
1500 dataset was relatively large in comparison to the
theoretical value (PDH � 72.22%). The undersampled MBP
data products were small (7.77 Gb for µCASI-1920 and
2.57 Gb for CASI-1500) and characterized by a large PL
(51.09% for µCASI-1920 and 72.32% for CASI-1500). The
RMSEr for the resampled µCASI-1920 and CASI-1500 were
1.1 cm and 66.7 cm, respectively. The DHPC products for the
MBP had a small file size (4.55 Gb for µCASI-1920 and 3.05 Gb
for CASI-1500) and were characterized by zero PL, PD and

FIGURE 3 | Hyperspectral imaging data (R � 639.6 nm, G � 550.3 nm, B � 459.0 nm) from the µCASI-1920 over the Mer Bleue Peatland. Panels (A, B) are
rasterized hyperspectral imaging datasets resampled to 1.5 × 1.5 cm (A) and 3 × 3 cm (B). Panel (C) represents the Directly-Georeferenced Hyperspectral Point Cloud
(DHPC) viewed from above. Panel (D) displays a video still of the DHPC in a 12 × 12 m region around the image zoom center. In all panels, each displayed band is linearly
stretched between 0 and 12%. The full video can be seen in Supplementary Video S1. The white stripes in the DHPC [clearly visible in the image zoom of panel
(C)] represent areas on the ground that were not sampled by the hyperspectral imager during data acquisition. These gaps are not present in the raster images (A, B) as
they are interpolated over with duplicated pixels from the edges of the stripes during the nearest neighbor resampling.
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RMSEr. Supplementary Video S1, S2 show the DHPCs in three
dimensions.

Terrain With Large Elevation Gradient Relative to
Sensor Altitude and Nominal Pixel Size
The CGOP and MMGHSI data are displayed in Figures 5, 6 and,
respectively. Table 3 records the RMSEr, PL, PD, PLH, PDH and
file size of the raster and point cloud datasets. The oversampled
CGOP and MMG data products were large in file size (24.40 Gb
for CGOP and 30.67 Gb for MMG) and characterized by high PD
(34.29% for CGOP and 59.76% for MMG). The oversampled

CGOP dataset also had a relatively large PL of 11.09% in
comparison to the theoretical value (PLH � 0.00%). The
undersampled CGOP and MMG data products were small in
file size (10.89 Gb for CGOP and 5.54 Gb for MMG) and
characterized by high PL (46.69% for CGOP and 58.12% for
MMG). The PL for the undersampled CGOP dataset was
relatively large in comparison to the theoretical value (PLH �
33.33%). The undersampled MMG and CGOP data products also
had relatively high PD (11.49% for CGOP and 5.52% for MMG)
in comparison to the theoretical value (PDH � 0.00%). The
RMSEr for the resampled CGOP and MMG data were 3.9 cm

FIGURE 4 | Hyperspectral imaging data (R � 640.8 nm, G � 549.9 nm, B � 459.0 nm) for the CASI-1500 over the Mer Bleue Peatland. Panels (A, B) are rasterized
hyperspectral imaging datasets resampled to 50 × 50 cm (A) and 200 × 200 cm (B) grids. Panel (C) represents the Directly-Georeferenced Hyperspectral Point Cloud
(DHPC) viewed from above. Panel (D) displays a video still of the DHPC in a 240 × 240 m region surrounding the image zoom center. The full video can be seen in
Supplementary Video S2. In all panels, each displayed band is linearly stretched between 0 and 12%.

TABLE 2 | The file size, pixel loss (PL), pixel duplication (PD), theoretical pixel loss (PLH), theoretical pixel duplication (PDH) and horizontal root mean square error (RMSEr) in
the radial direction for the µCASI-1920 and CASI-1500 data over the Mer Bleue Peatland. These data include the resampled hyperspectral imaging datasets and the
Directly-Georeferenced Hyperspectral Point Clouds (DHPC).

Dataset (Pixel size) File size
(Gb)

PLH (%) PDH (%) PL (%) PD (%) RMSEr (cm)

Resampled µCASI-1920 Data (1.5 × 1.5 cm) 30.90 0 50.00 1.15 50.25 1.1
Resampled µCASI-1920 Data (3 × 3 cm) 7.77 50.00 0.00 51.09 1.61 1.1
µCASI-1920 DHPC 4.55 0.00 0.00 0.00 0.00 0.0
Resampled CASI-1500 Data (50 × 50 cm) 40.36 0.00 72.22 0.8576 77.70 66.7
Resampled CASI-1500 Data (200 × 200 cm) 2.57 72.22 0.00 72.32 0.43 66.7
CASI-1500 DHPC 3.05 0.00 0.00 0.00 0.00 0.0
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and 86.6 cm, respectively. The DHPC products for the CGOP and
MMG sites had a small file size (10.16 Gb for CGOP and 4.73 Gb
for MMG) and were characterized by zero PL, PD and RMSEr.
Supplementary Video S3, S4 show the DHPCs in three
dimensions.

Hyperspectral Imaging Data Applications
Hummock and Hollow Classification
The three models trained on the spectral data alone had the
lowest overall classification accuracies (83.3–83.7%) (Table 4).
Importantly, there was a discrepancy in these models between
producer’s accuracy and user’s accuracy. For hollows, the user’s
accuracies ranged from 86.3 to 86.8%. These values were higher
than the producer’s accuracies which ranged from 79.1 to 79.6%.
The opposite trend was observed for hummocks where the user’s
accuracy ranged from 80.8 to 81.2%while the producer’s accuracy
ranged from 87.4 to 87.9%. The models trained on the surface
elevation data alone had overall accuracies of 85.8–86.5%. As with

the spectral models, there was a discrepancy between user’s
accuracy and producer’s accuracy. In hollows, the user’s and
producer’s accuracies were valued at 82.4–83.0% and 91.1–91.8%,
respectively. For hummocks, the user’s accuracy and producer’s
accuracies were valued at 90.0–90.8% and 80.5–81.2%,
respectively. The classification models trained on both the
spectral and elevation data had the highest overall accuracy,
user’s accuracy and producer’s accuracy values ranging from
90.0 to 91.3% for both hummocks and hollows. Although all
classification accuracies were relatively constant when comparing
models trained with identical variables, the DHPC based
classification had higher overall accuracies by 0.3–0.7%.

The output classification map over a 12 × 12 m plot for each
model is shown in Figure 7. When trained on spectral data alone
(e.g., Figure 7H), the classification tracked hummocks and
hollows observable in the RGB image (Figure 7J). Isolated
hummock pixels were observed in hollow patches within the
classification. The opposite was also observed, with isolated

FIGURE 5 | Hyperspectral imaging data (R � 639.6 nm, G � 550.3 nm, B � 459.0 nm) from the µCASI-1920 over the Cowichan Garry Oak Preserve. Panels (A, B)
are rasterized hyperspectral imaging datasets resampled to 2 × 2 cm (A) and 3 × 3 cm (B) grids. Panel (C) represents the Directly-Georeferenced Hyperspectral Point
Cloud (DHPC) viewed from above. Panel (D) displays a video still of the DHPC in a 24 × 24 m region surrounding the image zoom center. The full video can be seen in
Supplementary Video S3. In all panels, each displayed band is linearly stretched between 0 and 22%. The white stripes in the DHPC [clearly visible in the image
zoom of panel (C)] represent areas on the ground that were not sampled by the hyperspectral imager during data acquisition. These gaps are not present in the raster
images (A, B) as they are interpolated over with duplicated pixels from the edges of the stripes during the nearest neighbor resampling.
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hollow pixels within hummock patches. These isolated pixels
qualitatively decreased when using elevation data in addition to
spectral data (e.g., Figure 7I), leading to a higher spatial
coherency. There were few isolated pixels in the classification
model trained on the surface elevation data alone. Nevertheless,
there were clear areas of misclassification. For instance, in the
north-west corner of the displayed classification map (e.g.,

Figure 7G), the entire region was classified as hummocks,
despite the presence of hollows that can be seen in the RGB
image (see Figure 7J) and surface elevation map (see Figure 7K).

Biomass Error Estimation
The differences between the mean of the predicted and actual
biomass distribution for both hummocks (ΔBµ,hk) and hollows

FIGURE 6 | Hyperspectral imaging data (R � 640.8 nm, G � 549.9 nm, B � 459.0 nm) for the CASI-1500 over the Parc National du Mont- Mégantic. Panels (A, B)
are rasterized hyperspectral imaging datasets resampled to 110 × 110 cm (A) and 260 × 260 cm (B) grids. Panel (C) represents the Directly-Georeferenced
Hyperspectral Point Cloud (DHPC) viewed from above. Panel (D) displays a video still of the DHPC. The full video can be seen in Supplementary Video S4. In all panels,
each displayed band is linearly stretched between 0 and 12%. The white stripes in the DHPC represent areas on the ground that were not sampled by the
hyperspectral imager during data acquisition. The white stripes in the DHPC [clearly visible in the image zoom of panel (C)] represent areas on the ground that were not
sampled by the hyperspectral imager during data acquisition. These gaps are not present in the raster images (A, B) as they are interpolated over with duplicated pixels
from the edges of the stripes during the nearest neighbor resampling.

TABLE 3 | The file size, pixel loss (PL), pixel duplication (PD), theoretical pixel loss (PLH), theoretical pixel duplication (PDH) and horizontal root mean square error (RMSEr) in
the radial direction for the µCASI-1920 data from the Cowichan Garry Oak Preserve and the CASI-1500 data from the Parc National du Mont- Mégantic. These data
include the resampled hyperspectral imaging datasets and the Directly-Georeferenced Hyperspectral Point Clouds (DHPC).

Dataset (Pixel size) File size
(Gb)

PLH (%) PDH (%) PL (%) PD (%) RMSEr (cm)

Resampled µCASI-1920 Data (2 × 2 cm) 24.40 0.00 33.33 11.09 34.29 3.9
Resampled µCASI-1920 Data (3 × 3 cm) 10.89 33.33 0.00 46.69 11.49 3.9
µCASI-1920 DHPC 10.16 0.00 0.00 0.00 0.00 0.0
Resampled CASI-1500 Data (110 × 110 cm) 30.67 0.00 56.11 0.36 59.76 86.6
Resampled CASI-1500 Data (260 × 260 cm) 5.54 56.11 0.00 58.12 5.52 86.6
CASI-1500 DHPC 4.73 0.00 0.00 0.00 0.00 0.0
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(ΔBµ,hw) are displayed in Figure 8 (for exact values see
Supplementary Table S1). The hollow distribution had a
positive ΔBµ,hw for all of the classification models. The
opposite trend was observed in hummocks (ΔBµ,hk<0). ΔBµ,hw
ranged from 12.72 to 13.18 g/m2 for all models trained with the
spectral data alone. ΔBµ,hk ranged from −18.09 to −18.47 g/m2 for
all models trained with the spectral data alone. The models
trained on the elevation data alone had the largest ΔBµ,hw
values (16.29–16.91 g/m2). In comparison to these values, the
magnitude of the ΔBµ,hk values when using elevation data alone
were relatively small (8.79–9.56 g/m2). When using the
classification models that incorporated both spectral and
elevation information, both ΔBµ,hw and ΔBµ,hk decreased in
magnitude; ΔBµ,hw was equal to 8.34–8.54 g/m2 while ΔBµ,hk
ranged from −8.48 to −9.45 g/m2. Although all classification
accuracies were relatively constant when comparing models
trained with identical variables, the magnitude of ΔBµ,hw and
ΔBµ,hk for the DHPC based classifications were always lower by
0.07–0.97 g/m2.

Geo-Locating Spectra From Pre-Specified Vegetation
Plots
The mean and SD of the number of CASI-1500 spectra located
per vegetation plot is shown in Figure 9 (for exact values see
Supplementary Table S2). For all resampled data products,
spectra that were originally located outside the plot ended up
within the boundaries of the plot after rasterization. The highest
mean number of spectra located per plot (36.00) was acquired
when oversampling the data. Approximately 62% of the
identified spectra were duplicates of one another as there
were only a mean of 13.56 unique spectra per plot.
Approximately 38% of these unique spectra on average were
from outside of the actual plots before rasterization. The lowest
mean number of spectra located per plot (2.26) was acquired
when undersampling the data. 100% of the located spectra were
unique. On average, 40% of the spectra were originally from
outside of the actual plots before rasterization. When using the
DHPC, it was possible to locate a mean of 8.46 unique spectra
per plot. With this technique, there was zero duplication in these
spectra. Furthermore, none of the located spectra were
originally from outside the actual plots.

Detecting Sub-Pixel Targets
The results of the sub-pixel target detection (n � 1,000 targets) are
displayed in Figure 10. The total number of identified targets
decreased as the threshold value increased. The total number of
targets identified were identical for the oversampled data product
and the DHPC, decreasing from 1,000 at a threshold of 0.15 to
402 at a threshold value of 0.85. The undersampled data products
detected 577 targets at a threshold of 0.15 and 88 at a threshold of
0.85. The false discovery rate decreased linearly as the applied
threshold value increased for all data products. The false
discovery rate of the oversampled data products decreased
from 90% at a threshold value of 0.15 to 80% at a threshold
value of 0.85. These false discovery rates were consistently larger
than that of the undersampled data and the DHPC by an average
of 50% and 69%, respectively. For all data products, the false
negative rate increased linearly as the applied threshold value
increased. The false negative rate was consistently largest for the
undersampled data product increasing from 67% to 93% as the
threshold value changed from 0.15 to 0.85. These false negative
rates were consistently larger than that of the oversampled data
and the DHPC by an average of 53% and 64%, respectively.

DISCUSSION

Our study presents a novel hyperspectral point cloud data
representation which preserves the spatial integrity of HSI data
(i.e., zero PL, PD and pixel shifting). Because the data fusion
workflow does not modify the spectra from the original HSI data,
the DHPC also preserves spectral data integrity. Although the
raster datasets preserved spectral data integrity with the nearest
neighbor methodology, spatial data integrity was compromised
due to PL, PD and pixel shifting from the resampling. For the
raster data products, there was a trade-off between PD and PL
that was dependant on the resolution of the implemented
resampling grid; oversampling resulted in substantial PD
(∼35–75%) while undersampling led to substantial PL
(∼50–75%) (Tables 2, 3). The PL and PD were primarily
caused by the uneven pixel spacing between the cross track
and along track directions. While it may be possible to collect
data with nearly identical pixel spacing in the cross track and

TABLE 4 | Accuracy results for the hummock-hollow classification models (µCASI-1920 hyperspectral imaging (HSI) data from the Mer Bleue Peatland). Each of the models
were differentiated by the training dataset and training variables. The training datasets included the Directly-Georeferenced Hyperspectral Point Cloud (DHPC) in addition
to the three resampled hyperspectral images. The superscriptsS, E corresponded to the inclusion of the spectral reflectance and surface elevation, respectively.

Classification model
(Pixel Size)

Overall accuracy
(%)

Hollow User’s
accuracy (%)

Hollow Producer’s
accuracy (%)

Hummock User’s
accuracy (%)

Hummock Producer’s
accuracy (%)

Resampled HSI Data E (1.5 × 1.5 cm) 85.90 82.39 91.31 90.26 80.48
Resampled HSI Data E (3 × 3 cm) 85.84 82.45 91.07 90.03 80.62
DHPC Data E 86.52 83.03 91.80 90.84 81.24
Resampled HSI Data S (1.5 × 1.5 cm) 83.35 86.42 79.14 80.76 87.57
Resampled HSI data S (3 × 3 cm) 83.30 86.29 79.17 80.76 87.43
DHPC data S 83.72 86.76 79.60 81.15 87.85
Resampled HSI Data S, E (1.5 × 1.5 cm) 90.87 91.20 90.47 90.55 91.27
Resampled HSI Data S, E (3 × 3 cm) 90.63 91.10 90.06 90.17 91.21
DHPC data S, E 91.24 91.32 91.14 91.16 91.34
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along track, there are practical limitations that make it difficult.
For example, the pixel spacing in the along track is dependent on
the integration time, frame time and platform speed, all of which
have impacts on other aspects of the data such as the signal to
noise ratio and positional accuracy (Arroyo-Mora et al., 2019;
Inamdar et al., 2020). The PL and PD caused by nearest neighbor
resampling have been analyzed in a limited number of remote
sensing studies (e.g., Kimerling, 2002; Kollasch, 2005; Williams
et al., 2017), with only one focusing on HSI data (Williams et al.,

2017). However, it was outside the scope of these studies to
quantify the negative effects of PD and PL.

In the resampled MBP and MMG data, the calculated PL and
PD metrics were only marginally larger than the theoretical
expectations (PDH and PLH) (Tables 2, 3). The PD and PD in
the CGOP rasters exceeded theoretical expectations by up to
∼13%. The elevated PD and PL were likely a result of non-
uniform pixel spacing due to differences in surface elevation
across the scene. In the CGOP there was a difference in pixel

FIGURE 7 | Panels (A-I) display sample hummock-hollow classification maps (12 × 12 m plot) generated from each of the trained models (µCASI-1920 HSI data
from the Mer Bleue Peatland). The µCASI-1920 HSI data included the Directly-Georeferenced Hyperspectral Point Cloud (DHPC) in addition to the two resampled
hyperspectral images. The hyperspectral dataset used to generate each panel is given by the row titles. The training variables used to generate each classification model
were displayed in the subtitle below each panel. An RGB image (R � 639.6 nm, G � 550.3 nm, B � 459.0 nm, linearly stretched between 0 and 12%) and surface
elevation map (linearly stretched from 68 to 69 m) were generated by viewing the DHPC from directly above and are displayed in panels (J) and (K), respectively. The
hummocks appear green in panel (J) while hollows appear red. The white stripes in the DHPC data derivatives (G-K) represent areas on the ground that were not
sampled by the hyperspectral imager during data acquisition. These gaps are not present in the raster data derivatives (A-F) as they are interpolated over with duplicated
pixels from the edges of the stripes.
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spacing between the top of the canopy (∼1.5 cm in cross track)
and the understory (∼2.0 cm in cross track). As such, even when
resampling to 2.0 cm, the data were being undersampled at the
top of the canopy, leading to PL. Due to the elevation of the
surface relative to the sensor altitude, tall objects (e.g., treetop)
blocked the view of lower lying regions of the imagery (e.g.,
ground below the canopy), leading to areas on the ground that
were not imaged (data holes seen in Figure 5C). Such gaps are not
present in the resampled images (Figures 5A,B) as they have been
interpolated over with duplicated pixels from the edges,
increasing PD values. The conservative assumptions made in
Theoretical Pixel Loss and Pixel Duplication Derivation while
deriving PDH and PLH likely mean that these metrics can be used
to approximate the lower boundary of PL and PD. As such, PDH

and PLH are valuable for flight planning efforts, allowing data
collectors to avoid PL and PD in their datasets.

Regardless of whether the HSI dataset was undersampled or
oversampled, pixel shifting was large in the studied rasters
(RMSEr � ∼0.33–1.33 pixels in the raster MBP and MMG
data) in comparison to the DHPC. The RMSEr values were,
however, less than half the pixel spacing in the along and cross
track directions and thus consistent with studies performed at the
satellite level that quantify pixel shifting due to nearest neighbor
resampling (e.g., Tan et al., 2006; Roy et al., 2016). Pixel shifting
due to nearest neighbor resampling has been noted to negatively

affect various applications [e.g., aligning multi-temporal datasets
(Tan et al., 2006), change detection (Roy, 2000), classification
(Alcantara et al., 2012) and biophysical parameter estimation
(Tian et al., 2002)]. The exceptionally large RMSEr values
(∼1.30–1.95 pixels) in the CGOP was likely caused by the
non-uniform pixel spacing across the scene due to large
changes in elevation between treetops and ground below
canopy relative to the sensor altitude.

In the DHPC data products (Figures 3–6), the observable
white stripes represented areas on the ground that were not
sampled by the hyperspectral imager during data acquisition.
Such gaps in the imagery were likely caused by non-uniform
sensor movement (e.g., sudden platformmovement from changes
in wind direction) between consecutive integration periods. It is
important to recognize that these gaps are a true characteristic of
the HSI data itself and are not data artifacts. Such gaps are not
present in the resampled images as they have been interpolated
over with duplicated pixels from the edges of the stripes. This
example shows how the raster data model misrepresents HSI data
as neighboring pushbroomHSI pixels in the along track direction
are not uniformly spaced across the entire image.

In an ideal HSI end product, each pixel from the HSI data in its
original sensor geometry should be sampled once. Since each
pixel has identical data storage requirements (Johnson and
Jajodia, 1998), an ideal HSI end product would have a file size
roughly equal to that of the HSI data before the geometric
correction (e.g., 4.09 Gb for the MBP µCASI-1920 data). In

FIGURE 8 | Biomass estimation errors (difference between mean of
predicted and actual biomass) for the developed hummock hollow
classification models for the µCASI-1920 hyperspectral imaging data from the
Mer Bleue Peatland. This data included the Directly-Georeferenced
Hyperspectral Point Cloud (DHPC) in addition to the two resampled
hyperspectral images. Each of the models were differentiated by the training
dataset (given by bar colours) and training variables. The bars above 0
correspond to hollow biomass estimation errors while the bars below
correspond to hummocks.

FIGURE 9 | The mean and SD of the number of spectra, number of
unique spectra and number of unique spectra properly located per each 3 ×
3 m virtual vegetation plot (n � 100) from the Mer Bleue Peatland CASI-1500
data. The CASI-1500 data included the Directly-Georeferenced
Hyperspectral Point Cloud (DHPC) in addition to the two resampled
hyperspectral images. The error bars give the 1-sigma window around each
mean value. Properly located spectra refer to those which were contained
within each plot before and after rasterization (in the case of the resampled
data products).
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the rasterized data products, NoData pixels are abundant along
the edges of the imagery (black pixels along the edges of Figures
6A,B). These additional NoData pixels contribute to the overall
files size of raster data products (Lutes, 2005), increasing the data
storage requirements. PD in the oversampled datasets led to a
larger number of pixels, resulting in larger file sizes than in the
ideal scenario (e.g., 30.90 Gb for the MBP µCASI-1920 data).
Although the PL in the undersampled data product meant that
many pixels were lost from the original HSI data in its raw sensor
geometry (theoretically leading to smaller files sizes than in the
ideal scenario), there were generally more pixels overall due to the
presence of the NoData pixels. As such, even the undersampled
datasets often had larger file sizes (e.g., 7.77 Gb for the MBP
µCASI-1920 data) than in the ideal scenario. Even with its
additional elevation data, the data storage requirements of the
DHPC were only slightly larger than in the ideal scenario (e.g.,
4.55 Gb for the MBP µCASI-1920 DHPC). The small file size was
due to the absence of PD and NoData pixels along the edges of the
imagery, making the DHPC ideal for data distribution. This is
important given the data requirements of HSI, especially for high
spatial resolution applications (Arroyo-Mora et al., 2019).

The DHPC outperformed the raster data products in the four
studied applications. In the hummock-hollow classification,
models trained with spectral data alone had the lowest overall

accuracy (∼83%) and a discrepancy between user’s accuracy and
producer’s accuracy. The discrepancy meant that there was a
large portion of hollow pixels that were misclassified as
hummocks, explaining why the magnitude of ΔBµ,hk (∼18 g/
m2) was larger than ΔBµ,hw (∼13 g/m2) in the biomass error
calculation. Models trained with the surface elevation data
alone had an intermediate overall accuracy (∼86%). The
discrepancy between user’s accuracy and producer’s
accuracy in these models meant that the magnitude of
ΔBµ,hk (∼9 g/m2) was smaller than that of ΔBµ,hw (∼17 g/m2)
since a large portion of hummock pixels were being
misclassified as hollows. The classification models trained
on both the spectral and elevation data had high overall
accuracy, user’s accuracy and producer’s accuracy for both
hummocks and hollows (∼91%), leading to relatively low
errors in biomass estimation (magnitude of ∼9 g/m2). These
findings show that the integration of surface elevation and
spectral information can lead to improved results for
classification problems, agreeing with a number of other
studies (e.g., Elaksher, 2008; Vauhkonen et al., 2013; Brell
et al., 2019; Sothe et al., 2019; Hong et al., 2020b). For instance,
Sothe et al. (2019) improved the overall accuracy of tree
species classification of tropical forests by > 10% by using
elevation data in addition to spectral information.

FIGURE 10 | Target detection results from the CASI-1500 hyperspectral imaging data over the Mer Bleue Peatland. Artificial targets (n � 1,000) were randomly
placed within the scene. The CASI-1500 data included the Directly-Georeferenced Hyperspectral Point Cloud (DHPC) in addition to the two resampled hyperspectral
images. Panel (A) displays the number of targets (out of a maximum 1,000) identified in the target detection. Panel (B) and (C) give the false discovery and false negative
rates, respectively.
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The DHPC based classification consistently had higher overall
accuracies by 0.3–0.7% which led to lower biomass estimation
errors by 0.07–0.97 g/m2. The higher accuracies were likely due to
the reduced levels of PL and PD, the latter of which has been
found to impede classification accuracy (Chowdhury and
Alspector, 2003). Based on the microform spatial distribution
in the 19 km2 region of MBP (Arroyo-Mora et al., 2018a), by
implementing the DHPC, the aboveground biomass estimation of
hollows (∼12.7% area coverage) and hummocks (∼51.2% area
coverage) would be improved by 179–1,504 kg and
3,415–9,437 kg, respectively. Such a systematic increase in
biomass estimation performance is biologically important since
above ground biomass is one of the primary sources of carbon to
peat soil and thus impacts the ability of peatlands to mitigate the
effects of climate change by sequestering carbon (Moore et al.,
2002).

In the geo-location application, a substantial portion of
the located spectra in the raster data products originated
from outside the plot before resampling (∼40%). These
spectra were only brought within the plot due to the pixel
shifting from resampling. If these spectra were used as
training data in any remote sensing application, this could
mean that a substantial amount of the training data would
not be valid, potentially leading to error unrelated to the
applied algorithm (Tan et al., 2006). When using the DHPC,
0% of the identified spectra were originally from outside the
plots. By maximizing the total number of unique spectra
located per plot, the DHPC should lead to improved
performance in applications that rely on accurately
matching field data to collected imagery [e.g., biophysical
parameter estimation (Zhu et al., 2013) and classification
(Alcantara et al., 2012)].

In the sub-pixel target detection application, a trade-off was
observed between false discovery and false negative rates
(Figure 10B,C). Such a trade-off is commonly discussed in the
target detection literature (e.g., Han et al., 2014); false negatives
increase while false discoveries decrease as target detection
thresholds become more strict. The false discovery and false
negative rates were linked to the PD and PL metrics
(Figure 11). False discoveries were created when each true
positive pixel was duplicated during resampling. Likewise, PL
led to false negatives as true positive pixels were lost during
resampling. These principles explain why the oversampled data
product had a large false discovery rate and a low false negative
rate while the opposite was observed in the undersampled data
product. The DHPC minimized both false discovery rates (19%
and 69% smaller on average than the undersampled and
oversampled rasters, respectively) and false negative rates (11%
and 64% smaller on average than the oversampled and
undersampled rasters, respectively). The reduced error rates
could allow individuals following up on target detection maps
to identify more targets with less searching power, reducing cost
andminimizing physical and environmental risks, [e.g., landmine
detection (Makki et al., 2017) and invasive species detection
(Pengra et al., 2007)]. In target detection applications where
the precise location of a target is necessary, it may be
problematic to use HSI data that is spatially resampled with
the nearest neighbor approach. Further research should
investigate the performance of target detection algorithms
before and after spatial resampling.

In signature matched target detection algorithms, error
metrics are often theoretically calculated based on the modeled
probability distributions of the background and target signals. For
reliable error metrics, the modeled distributions must accurately

FIGURE 11 | False discoveries and false negatives caused by pixel loss and pixel duplication in a target detection exercise. Consider spatially resampling a
hyperspectral imaging dataset (given by the colored circles) acquired along an approximate true north heading where the pixel spacing in the cross track is half that of the
along track. To generate a rasterized data product (given by the raster grid and the small black dots which designate the center of each cell), the data must be resampled
on a north-oriented grid. In this scene there is one target of interest (purple star) that can be detected by the hyperspectral data point represented by the purple
circle. Panel (A) shows that pixel duplication can cause false discoveries while panel (B) shows that pixel loss can cause false negatives.
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describe the data (Manolakis et al., 2016). There must also be a
statistically significant number of target and background pixels.
The availability of such datasets are often limited in the literature
(Manolakis et al., 2013). In the theoretical target detection, the
PSF was used as a detection statistic, fundamentally representing
the horizontal distance from each pixel center to the nearest
target. Since the location of each simulated target was known, it
was possible to calculate error metrics from the target detection
results, as opposed to modeled probability distributions. Such a
target detection workflow is valuable in understanding the
limitations of sub-pixel target detection and the variables that
control it (e.g., size and position of a target within a pixel).

Aside from preserving spatial-spectral data integrity and the
minimal data storage requirements, the DHPC is advantageous
over other existing hyperspectral point clouds as its data fusion
workflow can be implemented with the same tools used to process
conventional raster end products. Additionally, the DHPC can
use HSI and DSM data from a variety of different data sources
and thus is not limited by any particular sensor. Furthermore, by
convolving the DSM by the hyperspectral sensor PSF during the
data fusion workflow, the spatial characteristics of the elevation
data become more consistent with that of the HSI data. As such,
the elevation information encoded in each pixel of the DHPC
actually corresponds to the footprint of the spectral information,
leading to a more spatially coherent data fusion. This convolution
may come at the cost of fine spatial scale elevation information.
Although there are hyperspectral point clouds that can preserve
fine spatial scale elevation information, they can come at the cost
of spectral data integrity, especially over spectrally and spatially
heterogeneous terrains (Brell et al., 2019). Further research into
the performance of the DHPC against other point cloud data
representations is advised.

In this work, we developed a hyperspectral point cloud that
preserves the spatial-spectral integrity of HSI data more
effectively than conventional rasterized square pixel end
products. Our DHPC methodology has been shown to
produce no pixel shift, duplication or loss. Despite
containing additional surface elevation data, the DHPC file
size was up to 13 times smaller than the corresponding
rasterized datasets. This is favorable for data distribution,
especially since the DHPC generation workflow can be easily
implemented with pre-existing processing protocols.
Importantly, the DHPC consistently outperformed raster
data products in various remote sensing applications
(classification, target detection, spectra geolocation). Overall,
our research shows that the developed DHPC data
representation has the potential to push the limits of HSI
data distribution, analysis and application.
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