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California, Los Angeles, Los Angeles, CA, United States

The presence of shadows in remotely sensed images can reduce the accuracy of land
surface classifications. Commonly used methods for removing shadows often use multi-
spectral image analysis techniques that perform poorly for dark objects, complex
geometric models, or shaded relief methods that do not account for shadows cast on
adjacent terrain. Here we present a new method of removing topographic shadows using
readily available GIS software. The method corrects for cast shadows, reduces the amount
of over-correction, and can be performed on imagery of any spectral resolution. We
demonstrate this method using imagery collected with an uncrewed aerial vehicle (UAV)
over a supraglacial stream catchment in southwest Greenland. The structure-from-motion
digital elevation model showed highly variable topography resulting in substantial
shadowing and variable reflectance values for similar surface types. The distribution of
bare ice, sediment, and water within the catchment was determined using a supervised
classification scheme applied to the corrected and original UAV images. The correction
resulted in an insignificant change in overall classification accuracy, however, visual
inspection showed that the corrected classification more closely followed the expected
distribution of classes indicating that shadow correction can aid in identification of
glaciological features hidden within shadowed regions. Shadow correction also caused
a substantial decrease in the areal coverage of dark sediment. Sediment cover was highly
dependent on the degree of shadow correction (k coefficient), yet, for a correction
coefficient optimized to maximize shadow brightness without over-exposing illuminated
surfaces, terrain correction resulted in a 49% decrease in the area covered by sediment
and a 29% increase in the area covered by water. Shadow correction therefore reduces
the overestimation of the dark surface coverage due to shadowing and is a useful tool for
investigating supraglacial processes and land cover change over a wide variety of complex
terrain.
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1 INTRODUCTION

The use of high resolution imagery has revolutionized our
understanding of natural landscapes. Analysis of high resolution
satellite (e.g., WorldView satellites) and Uncrewed Aerial Vehicle
(UAV)-based imagery allows for classification of features that may
be hidden in coarser resolution remote sensing products (e.g.,
Landsat, MODIS) (Ryan et al., 2015; Akar et al,, 2017). This is
especially important in glacial terrain where dark features such as
water bodies and sediment impact the energy balance of the ice
surface. Many supraglacial features including stream channels,
cryoconite holes, and fractures have low spatial coverage and
often occur at spatial scales below high resolution satellite
imagery (Ryan et al,, 2015; Yang et al., 2018). Yet, these features
have a disproportionately large impact on albedo. Supraglacial
streams, for example, are responsible for 12% of the ice albedo
variability despite only covering 2% of the ice surface (Ryan et al.,
2018). In some regions of the ice sheet, supraglacial streams can
also contain expanses of dark sediment deposits covering up to
25% of the channel bed furthering this albedo reduction (Leidman
et al, 2020). Understanding the spatial distribution of these
features can facilitate a more process-based understanding of
satellite-derived albedo measurements (Moustafa et al., 2015). In
turn, this improved understanding can aid climate model
calculations of surface mass balance (Enderlin et al., 2014; Ryan
et al,, 2018) and dynamic losses from hydrofracturing and runoft
induced ice acceleration (McGrath et al., 2012; Smith et al., 2021).
Additionally, knowing the extent of hydrologic features on the
surface of Antarctica can help improve predictions of ice shelf
instability (McGrath et al., 2012). Climate models show that the
areal coverage of supraglacial surface water will increase with
climate warming especially in northeast Greenland, exacerbating
the effect of ice sheet melting (Igneczi et al., 2016). Understanding
the effect of changing land cover is therefore important for
assessing the impact of ice sheets on large scale ocean
circulation and sea level rise (Rennermalm et al., 2007; Bakker
et al.,, 2016).

One issue that often complicates land surface classification is
shadowing. Complex topography and high relief objects can
cause large shadows which obscure terrain and reduce
classification accuracy. This is especially true in the polar
regions where low sun angles cause long and dark shadows on
adjacent terrain. Crevassing, supraglacial stream incision, and
large-scale subglacially-derived undulations can cause large
topographic features to develop on the ice sheet surface in
Greenland (Yi et al., 2005; Nolin and Payne, 2007; van der
Veen et al., 2009). Shadows cast by these features have similar
spectral properties as dark sediment within the visible spectrum
which potentially leads to over-classification (Ryan et al., 2018).
Even so, the impact of shadowing on melting of the ablation zone
is rarely addressed, let alone quantified, in remote sensing studies
of the Greenland Ice Sheet.

Several methods have been developed to detect and remove
shadows from remotely sensed imagery (Dare, 2005; Adeline et al.,
2013; Shahtahmassebi et al., 2013). Identifying shadowed regions
by hand can be costly, time consuming, and inaccurate (Tarko
et al., 2018). A threshold analysis using an index of spectral bands
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or an invariant color model is commonly used, but can lead to
over-classification of shadows as dark colored objects, requires
multispectral imagery, and ignores the causes of the observed
shadows (Sarabandi et al, 2004). Traditional shaded relief
methods cannot remove cast shadows on adjacent land surfaces
and only account for decreased reflectance due to a particular slope
not being in direct view of the sun, also known as self-shadowing
(Shahtahmassebi et al., 2013). Additionally, shadow relief methods
such as cosine functions over-correct in shadowed regions since
they assume Lambertian scattering (Soenen et al, 2005). A
commonly used shadow relief method is the C-correction. This
method is similar to a cosine-correction but adds a coefficient C to
both the cosine zenith and cosine incident angle (Teillet et al.,
1982). C is defined as the y-intercept divided by the slope of the
cosine incident vs digital number linear regression. The
C-correction is computationally inexpensive and has shown to
perform better than other Digital Elevation Model (DEM) based
corrections in some situations (McDonald et al., 2000). However,
its effectiveness is dependent on ground cover type and can cause
differential correction for each spectral band. Shortcomings with
the C-correction method have been remedied with complex
methods utilizing a support vector machine (SVM) supervised
classifiers trained with line-of-sight analysis of airborne laser
scanners (Tolt et al,, 2011). These methods have high coherence
with visual interpretation however they require high resolution
DEMs (0.25m) and hyperspectral imagery as well as extensive
computational processing time. A simpler method for removing
cast shadows that uses widely available software is therefore
necessary for accurately analyzing remotely sensed imagery.

Here, we develop a relatively simple method to remove cast
shadows from remotely sensed imagery. We demonstrate this
method using a high resolution DEM derived from structure-
from-motion analysis of UAV imagery. Structure-from-motion
analysis of remotely sensed stereopair images has proliferated the
availability of high resolution DEMs, especially in the polar regions
(Noh and Howat, 2015), however, to our knowledge, these DEMs
have not been used to remove shadows and improve classification
of supraglacial features or predict shadow locations. We apply this
method to imagery collected in 2016 over the Greenland Ice Sheet.
The shadow removal algorithm utilizes ArcGIS Pro’s solar
radiation toolset to identify shadowed regions and performs a
supervised classification on the original and corrected imagery to
quantify the impact of our shadow removal process on the
classification of water, sediment, and bare ice surfaces. Finally,
we show how the use of DEM-derived shadow models can improve
classification of remotely sensed imagery.

2 DATA

In order to perform the shadowing correction described below, two
datasets are needed; 1) a high resolution nadir image with a known
image collection time, and 2) a co-located digital elevation model of
the region with a spatial resolution fine enough to adequately
represent the topography that is causing the shadowing. For this
analysis, imagery was collected at 12:30 West Greenland Summer
Time (UTC-2 h) on July 21st, 2016 near the ice edge in southwest
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FIGURE 1 | Flow chart of processing steps. Rmin, Rmean, and Rmax are the minimum, mean, and maximum values of the radiation surface (R), respectively. Imean is
the mean value of the illumination surface (composite black and white image). lsnhag @nd Iy, are the mean values of the illumination surface within the shadowed and
illuminated areas respectively based on the area solar radiation shadow mask. Ryorm is the normalized radiation value used as a threshold for determining the amount of
correction applied to each pixel. K is an arbitrary scaling factor.

Greenland (67.15N, 50.00W, the so-called Point 660, 30 km east of
the town of Kangerlussuaq). A 3DR Solo quadcopter UAV
mounted with a Canon S110 digital camera (12 MB) collected a
total of 1,196 RGB images in RAW format over four flights within
1 hour of solar noon. Four ground control points marked with
orange plastic rectangles (0.3 m x 0.4 m) were simultaneously
georeferenced with a Trimble R7 survey-grade GPS with a 20 min
static occupation to allow for higher positional accuracy. The UAV
was flown at a maximum of 100 m above the ice surface with a
minimum of 75% image overlap. As a result, the images had a total
footprint of 1.3 km®.

3 METHODS

UAV imagery was processed in several steps to produce a corrected
and classified image (Box A-E in Figure 1). First, UAV imagery
(Box A, Figure 1) was processed with structure-from-motion (using
Agisoft Metashape Pro version 1.6.5) to produce a 0.034m
resolution orthomosaic RGB image and a 0.068 m resolution
DEM (Box B, Figure 1). These were the highest possible output
resolutions for the imagery. Camera calibration parameters and
bundle adjustments were automatically set to reduce ground control
point (GCP) error accounting for the 0.05 m accuracy of the GNSS
and digitization (Table 1). This resulted in a mean GCP
georeferencing error of 0.15m. Ice velocity, derived from the
GCP static occupations, showed a negligible effect during the
image collection period compared to the georeferencing accuracy.
This method of structure-from motion bundle adjustment and DEM
generation has proved to result in highly accurate elevation data
(Smith et al., 2016). The DEM, resampled to 0.68 m resolution with
cubic convolution to conserve computing time, was used as the
input to the Area Solar Radiation tool in ArcGIS Pro 2.1 to create a
radiation raster image (Box C, Figure 1). For the Area Solar
radiation tool, we used a transmissivity value of 0.545, which is
representative for the atmospheric conditions in this area (van den

Broeke et al., 2008). The Area Solar Radiation tool was then set to
calculate solar radiation every 6 minutes from 12:12 to 12:48 local
time (UTC-2h) July 21st, 2016. The rescaled area solar radiation
output image is hereafter referred to as the radiation raster. After
the radiation raster was created, a novel shadow correction method
(Box D, Figure 1) scaled the values to the difference in brightness
between shadowed and illuminated areas.

Pixels with below average (below the arithmetic mean) solar
radiation (R,can) Were considered to be in shadow used to create a
shadow mask (Figure 1, Steps 1, 2 in Box D). All three of the
orthomosaic bands were then averaged together to create a
composite black and white image hereafter termed an
illumination surface (I, Figure 1, Step 3). This averaging
process ensures that the same correction factor is applied to
all bands and therefore reduces the potential for blue shifting in
the corrected image. Then the average value of the illumination
surface (I) within shadowed regions (R < Ryean) and unshadowed
regions (R > Ryyean) Were calculated using a zonal statistic (Ighaa
and Iy, respectively, Figure 1, Step 4). The solar radiation raster
(R) was normalized to values between —1 and 1 using the
equation:

Ry = 2(R) — Ruin _ 1 1)

Rmax - Rmin

where R,,,,,, is the normalized radiation raster, R is the radiation
value, and R,,, and R,,;, were the maximum and minimum
values of the radiation output, respectively (Figure 1, Step 5).
Using the values for Iy, Iy,s and the mean value of the
illumination surface (I,,..,), a correction surface was made
following equation:

CorrectionValue — { k(Iillu - Imeun)Rnorm lfRnorm >0 } (2)

k (Imeun - Ixhad)Rnarm ifRnorm <0

where k is an arbitrary shadowing coefficient greater than 0
(Figure 1, Step 6). Pixels with R > R, are given a correction
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TABLE 1 | Accuracy of each classification type. The user’s accuracy indicates how often a classification on the map accurately depicts the actual feature, also known as
errors of commission. Kappa, or the Cohen’s kappa statistic, is a measure of the level of agreement between the classification and the assessment points that factors in

the possibility of the relationship occurring by chance.

Bare Ice Water User’s
User’s Accuracy Accuracy
Original 92.0% 88.7%
C-Corrected 83.3% 96.0%
Area Solar Radiation 85.8% 94.0%

factor scaled to the difference in illumination between I, (the
illumination for unshadowed regions) and I,,.,, (the average
value of the illumination surface). Pixels with R < R,,,,,,, are given
a correction factor scaled to the difference between 1,,,.,,,, and I;,.4
(the average illumination for shadowed regions). This
thresholding of the correction factor based on R, was
applied since shadowing causes a Poisson distribution of
radiation values with shadowed pixels decreasing in radiation
more than optimally oriented pixels increase in radiation.
However, since the amount of correction decreases as R,,,,,, of
each pixel approaches 0, the precise threshold value has very little
impact on the overall correction. The correction surface was then
subtracted from each band to create the corrected image
(Corrected = Original — Correction Surface) (Figure 1, Step
7). This process causes areas with below average radiation to
be brightened and areas with above average radiation to be
dimmed.

In addition to the novel shadow removal method described
above, the original imagery was processed using a traditional
C-correction shadow removal algorithm (McDonald et al., 2000)
for comparison. The C-correction method uses the equation:

:Lc050+C 3)

cosi+ C

n

where L, is the corrected radiance value, L is the original radiance
value, 0 is the solar zenith angle, i is the incident angle, and Cis equal to
a/b where a is the y-intercept and b is the slope of the cosine incident
vs. digital number linear regression (Teillet et al., 1982; Soenen et al,
2005). Incident angles were determined using the ArcGIS slope and
aspect tool and the solar elevation angle (90°-solar zenith angle), solar
azimuth, and solar declination from the National Oceanic and
Atmospheric Association (NOAA) Solar Calculator (44.21°, 161.4°,
and 20.3", respectively) (https://www.esrl.noaa.gov/gmd/grad/solcalc/).
Digital numbers were averaged for all three bands and plotted against
the cosine of the incident angle (R* = 0.31) resulting in a C value of 1.
116 which was used for the C-correction shadow removal method.
The original imagery, the radiation based corrected imagery, and
the C-corrected imagery was classified using a maximum likelihood
supervised classification. This method, easily implemented using
ArcGIS Pro, has shown to be a highly accurate way of classifying
land cover (Sisodia et al., 2014). A total of 91 training polygons were
used; 36 bare ice, 34 water, and 21 sediment polygons for a total of
1,699,961, 290,459, and 292,312 cells each, respectively. Special
consideration was taken to make sure that bare ice polygons
covered a wide variety of ice surfaces including steep surfaces
and weathered ice. Each of the three classes are fairly spectrally

Sediment User’s Total Accuracy Kappa
Accuracy
94.0% 91.6% 0.873
61.3% 80.2% 0.703
90.0% 89.9% 0.848

unique and have similar non-Lambertian properties therefore
variable viewing angles likely have little impact on the
classification. An accuracy assessment was then done on 450
randomly generated points (150 from each class) to determine
the total accuracy, producer’s accuracy, and user’s accuracy for
the three images. Producer’s accuracy is a measure of how often
a feature on the ground is accurately identified whereas user’s
accuracy is how often a classification on the map accurately
depicts the actual feature. In other words, producer’s error
measures errors of omission whereas user’s error measures errors
of commission. For the sake of most glaciological research, user’s
accuracy is more relevant. The overall accuracy denotes the number
of correctly identified points divided by all 450 points. Lastly, a rough
estimate of surface albedo was determined based on the classified
images. The albedo value was calculated using the albedo of clean ice
(0.55), shallow water (0.26), and concentrated cryoconite deposits
(0.09) determined by Ryan et al. (2018) weighted by the spatial extent
of each class. The albedo values from Ryan et al. (2018) are based on
similar UAV imagery in southwest Greenland under similar
atmospheric conditions therefore no additional atmospheric
correction is necessary.

4 RESULTS

Supraglacial streams and sediment were pervasive throughout the
study area. Sediment seemed to consolidate into supraglacial
floodplains and melt ponds similar to results found by
Leidman et al. (2020). Smaller streams tended to have
relatively more sediment versus larger and more highly incised
channels. The slope for the study area was 16.9° + 10.7° (mean +
standard deviation). This topography resulted in extensive dark
shadows throughout the study area, especially along the banks of
supraglacial streams (Figure 2C). The output solar radiation
raster had a left skew with a mode of 351 WH/m™> and
standard deviation of 60.9 WH/m™>. Within the flight
footprint, 40.3% of the area had below average solar radiation.
The C-correction method resulted in some shadowed regions
being overexposed with reflectance values shifted disproportionately
towards more blue hues, i.e. blue-shifting (Figure 2D). Cast shadows
remained dark after the correction which was particularly noticeable
within stream channels. Additionally, the contrast of non-shadowed
regions decreased and received a browner coloration relative to the
original image. This was in contrast to the area solar radiation based
shadow removal method which saw no such coloration change. A
value of 2.1 was used for the k coefficient in order to maximize
shadow correction while minimizing over-exposure (Supplementary
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FIGURE 2 | (A) Map of Greenland showing the location of UAV imagery collection shown as yellow star. (B) Orthomosaic UAV imagery before any shadow
correction. The location of inset maps C-E is shown with a red rectangle and the location of the ground control points are shown with yellow dots. (C) Zoomed in imagery
without any shadow correction. (D) Imagery corrected with a traditional C-correction method. (E) Imagery corrected with the area solar radiation based method.
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Figures S1, S2). The resulting image displayed almost no
overexposed areas or blue-shifting. It also removed cast shadows
and maintained the coloration of illuminated areas (Figure 2E). As a
result, features within the scene were much more easily identifiable
than in the original and C-corrected images.

Classification of the ice surface using the original,
C-corrected, and area solar radiation corrected imagery
showed that bare-ice covers the vast majority of the scene
(92, 89, and 93% respectively. Only 3% of cells changed class
after the shadow correction was performed. The majority of
the changed classification was reclassification of sediment to
bare-ice (neon green, Figure 3). Most of the reclassified areas
(86%) occurred within shadowed regions indicating that the
classification scheme more easily identified surface classes
after shadows were brightened. This can also be seen with
the change in classification confidence with increased shadow
correction. As the k value is increased, the likelihood of a
correct classification significantly increases (Figure 4A). The
degree to which classification confidence correlates with Kk,
however, is likely dependent on the accuracy of the training
polygons in identifying the spectral properties of each class.
Additionally, as k increases, the proportion of cells classified as
sediment steadily decreases (Figure 4B). At a k value of 2.1, the
percentage of the image extent covered by sediment decreases
by 49% compared to the original imagery. The proportion of
cells classified as water also increases although to a lesser
extent (+29%). The shadow correction rarely results in
pixels changing classification to sediment (0.07% of the time).

The accuracy assessment for the three classified rasters
(i.e., original, C-corrected, area solar radiation corrected with k
= 2.1) shows that, overall, both shadow correction methods reduce
the total accuracy of the scene (Supplementary Table S1).
However, the accuracy decrease is significantly less for the area
solar radiation based method compared to the C-correction
method and the accuracy of the area solar radiation method is
within the margin of error for the accuracy assessment. Shadow
removal resulted in a large increase in the user’s accuracy for water
pixels but a decrease in user’s accuracy of bare ice and sediment
classification. The high Cohen’s kappa statistic for the original
image and the area solar radiation classification indicates the high
total accuracy for both classifications is likely not merely the result
of chance. This is less so for the C-correction in which the level of
agreement for the kappa statistic is considered moderate.

The average albedo of the original, C-corrected, and area solar
radiation corrected imagery was determined using a weighted
average of each surface class multiplied by the albedo value
reported by Ryan et al. (2018) (0.55 for bare ice, 0.26 for
shallow water, and 0.09 for concentrated cryoconite
deposits, which are likely analogous to the sediments seen
in this imagery). Using these values, the original and
C-correction imagery both have albedo values of 0.516
(Figure 4A). After the solar radiation based shadow
removal with a k coefficient of 2.1, the scene has an
albedo of 0.523. This indicates that the increase in
classified bare ice within the scene after shadow removal
increased the classification-derived albedo by 1.4%.
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FIGURE 3 | (A) Supervised classification map with coloration indicating the classification of the original vs. area solar radiation corrected imagery. Black box
indicates the location of the inset map (panel C). (B) Proportion of each class. Bare ice to bare ice is not shown but makes up the remainder of the imagery extent (91%).
(C) Zoomed in view of the classification map showing one of the larger supraglacial streams in the scene.
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FIGURE 4 | (A) The average likelihood of a correct classification for each pixel and the scene albedo as a function of the k value applied to the area solar radiation
correction. The likelihood of a correct classification is a sigmoidal function of the ArcGIS Maximum Likelihood Classification output uncertainty value. The albedo was
calculated using a weighted average of the albedo for clean ice (0.55), shallow water (0.26), and concentrated cryoconite deposits (0.09) from Ryan et al. (2018) weighted
by the proportion of pixels in each class. The blue dot indicates that albedo derived from the C-Correction classification. (B) The image extent classified as sediment
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5 DISCUSSION

The application of the area solar radiation tool for removing terrain
effects in remotely sensed imagery proved to be an effective means of
classifying land cover without the downsides of overexposure, color
shifting, or cast-shadow preclusion. This novel approach is able to
lessen the exposure of highly illuminated areas and increase the
exposure of areas within cast shadows by taking a mechanistic
approach to shadow correction and using available topographical
data to calculate sun exposure throughout a scene. Additionally, the
shadow correction was able to be performed with widely used GIS
software, in this case ESRI ArcGIS Pro, with minimal processing.
While not tested here, processing steps involving ArcGIS’ Area Solar
Radiation tool could potentially be implemented using QGIS’ SAGA
“Potential Incoming Solar Radiation” or SEBE (Solar Energy on
Building Envelopes) algorithms in order to make the workflow
completely open source (Lindberg et al., 2015). As such, classification
can be performed quickly with insignificant loss of accuracy and
increased confidence.

The shadow correction algorithm presented here resulted in a
decrease in overall accuracy of the classification by 1.7% as well as a
and drop in user’s accuracy for sediment and bare ice. This is contrary
to visual evaluation that suggested that the corrected image
represented the distribution of classes closer to expectation. While
the user’s accuracy decrease is likely more relevant to glaciological
studies trying to identify features on the ice surface, a similar small
decrease in accuracy is seen in the producer’s accuracy (85, 95, and
90% for bare ice, water, and sediment respectively). The accuracy drop
for the area solar radiation correction method was less than that of the
C-correction method, however, the fact that accuracy is decreasing
begs the question of why this is occurring while classification
confidence is increasing. Firstly, the classification of the accuracy
assessment points into the three classes was based on the manual
visual interpretation and is therefore subjected to human errors.
Secondly, the correction slightly decreases the exposure of highly
illuminated areas and illuminated areas composed nearly 60% of the

scene. Thus, it is possible that small accuracy decreases within the
illuminated areas could have caused the overall accuracy to decrease
despite accuracy increasing within shadowed regions. Additionally,
the 450 points used for the accuracy assessment may not have been
sufficient for determining the accuracy of a scene composed of 1.13
billion pixels. Potentially, a more intensive classification method such
as decision trees or support vector machines could improve this
classification accuracy (Otukei and Blaschke, 2010). Qualitatively, the
scene after the correction is applied is more representative of how
supraglacial features are distributed on the ice sheet based on the
authors’ experience in the field however, the accuracy assessment
suggests that this correction is probably best suited for visual
interpretation of a scene and individual feature identification
rather than quantitative analysis of bulk land cover change over
the entire ablation zone.

The change in the distribution of bare ice, water, and sediment
before and after the area solar radiation shadow correction shows that
shadows complicate classification on dark surfaces and potentially
lead to an over-classification of sediment and other dark surfaces. This
overestimation of distributed and cryoconite sediments in shadowed
regions was also noted (albeit not quantified) by Ryan et al. (2018).
This potential overestimation of sediment cover may result in
erroneously low calculations of surface albedo when calculated
based on area weighted averages. This underestimation of albedo
may also cause assessments of Greenland Ice Sheet melt rates to be
slightly overestimated, especially in areas with steep topography or in
studies using imagery taken far from solar noon. Analysis of ICESat
data has shown that the surface roughness and average slope of the ice
surface decrease with elevation in Greenland (Yi et al., 2005) and
therefore the errors caused by shadowing likely decreases with
elevation as well. Olson and Rupper (2019) showed that shadows
on valley glaciers, especially at high latitudes, can decrease incoming
solar radiation on the ice surface by over 5 W/m2; however, our work
shows that accounting for shadows in remotely sensed imagery is also
important for understanding the energy balance of ice sheets and ice
caps. Changes in the albedo of the Greenland Ice Sheet by 1% have
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been related to a change in surface mass balance by 27 Gt/yr (Dumont
et al,, 2014), therefore errors in albedo on the scale estimated in this
study (1.7%) would potentially have substantial impacts on
predictions of sea level rise.

Understanding and correcting for shadows is also important for
understanding the hydrology of the Greenland Ice Sheet. River widths
derived from satellite imagery is a common method for mapping
supraglacial stream networks and moulin meltwater inputs (Pavelsky
and Smith, 2008; Yang et al., 2016). However, some of the most
intense shadows seen in the imagery presented here occurred in
highly incised regions near moulins. Therefore, special care should be
taken to make sure that cast shadows do not result in incorrect width
estimates. Hochreuther et al. (2021) found that cast shadows resulted
in an overclassification of supraglacial lake pixels in Sentinel-2
imagery and applied a shadow mask from the R-package “insol”
(Corripio, 2003) to mask out these regions. While (Hochreuther et al,,
2021) did not use “insol” to improve the classification as we have done
here, it shows that the package could be used similarly to the method
we described here to perform shadow corrections using open source
software. Additionally, (Liang et al., 2012), found that shadows from
clouds can lead to a significant number of false positives when
using automated classification schema of supraglacial lakes. While
cloud shadows are not addressed by the area solar radiation based
shadow removal method, this shows that shadows can potentially
lead to erroneous assessments of the impact of supraglacial lakes
on ice sheet surface mass balance.

The use of the area solar radiation based shadow removal method
has some potential limitations. For one, it requires a high resolution
digital elevation model. The increasing availability of stereopair
imagery and structure-from-motion software though means that
this method is becoming increasingly viable, even in remote, and
extreme environments such as polar regions. The area solar radiation
tool in ArcGIS is also computationally intensive, especially for areas
with large spatial extents and may be prohibitively so if applied to a
very large area with high spatial resolution. The area solar radiation
shadow removal method is able to correct imagery of a wide range of
bands; however, it is unclear if this method may cause problems when
applied to imagery far from the visible range. The intensity of the
shadow correction needed for a given image will depend on the
exposure of the camera, local weather conditions, and the extent of the
shadows themselves therefore the k coefficient would need to be scaled
appropriately via trial and error and may differ from the value of 2.1
that was ideal for the scene used in this study. Additionally, edge effects
may come into play for imagery collected in which topography outside
the scene causes shadowing within the image extent. Despite these
limitations, our method likely can be applied to a wide range of
imagery with varying pixel resolution, wavelength ranges, and surface
features. While the use of this algorithm was tested over the Greenland
Ice Sheet, this method can be applied to any surface and may bring
insights when applied to other areas with complex topography such as
forests and urban areas. This method however does not preserve
reflectance values and therefore cannot be applied for analysis that
requires band indexing or image textures to be preserved.

This research shows that shadows can result in the over-
classification of dark surfaces and, as a result, lead to an
overestimation of solar absorption for a landscape. For the
Greenland Ice Sheet, this error translates to shadows being
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classified as sediment instead of bare ice on the ice sheet
surface leading to lower estimates of albedo when albedo is
derived from land cover classification. If not accounted for,
this error might skew our understanding of sediment transport
processes and the impact of climate change on supraglacial
hydrology and microbiology. This is especially prescient in
Antarctica where the presence of water bodies on the ice
surface is closely tied to the stability of ice shelves (McGrath
et al., 2012). Increased ponding of water on surface of the Larsen
A and B ice shelves lead to increased hydrofracturing and their
eventual disintegration. Therefore, accurately classifying the
extent of melt ponds on the surface of Larsen C, Amery, and
Getz Ice Shelves would likely improve predictions of when these
ice shelves may collapse and further contribute to increased
dynamic ice losses.

6 CONCLUSION

Shadows complicate the classification of land surfaces in remotely
sensed imagery, especially in the Greenland ablation zone where
extensive crevassing and supraglacial stream channels create
significant topographic heterogeneity. This is compounded by
low sun angles and limited availability of ground-truthed surface
classification measurements. We show here a novel method of
correcting for this shadowing that models shadow locations based
on a digital elevation model. This method can overcome some of
the pitfalls associated with other correction methods such as
overexposure, color shifting, and underexposed cast shadows
without significantly reducing classification accuracy. Imagery
not corrected for shadows can lead to an over-estimation of the
extent of dark surface features such as supraglacial debris cover
and therefore may lead to underestimating albedo and thereby
incorrect assessments of the surface energy balance. Based on our
results, we recommend that image classification methods applied
to the Greenland Ice Sheet apply the shadow correction method
presented here with a k value of 2.1, to avoid underestimating
dark sediment material by up to 49%. Incorporating this shadow
model based correction to high resolution imagery can improve
our understanding of the overall processes occurring on the ice
sheet surface and help us better predict how these processes will
change with increased melting.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Materials, further inquiries can be
directed to the corresponding author.

The DEM and Orthomosaic Imagery from the UAV flight
have been submitted to the Arctic Data Center under creative
commons public domain usage rights.

AUTHOR CONTRIBUTIONS

SL: Collected field data, ran the structure-from-motion
software, developed the algorithm, wrote the majority of

Frontiers in Remote Sensing | www.frontiersin.org

August 2021 | Volume 2 | Article 690474


https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles

Leidman et al.

the manuscript, and edited the manuscript based on co-
author and editor responses. AR: Provided input for
scientific ideas and contributed to editing and writing draft
manuscripts. RL: Provided input for scientific ideas and
contributed to editing. MC: Collected field data and contributed
to editing the manuscript.

FUNDING

Funding for this research was provided by the National Science
Foundation Graduate Research Fellowship Program and the
NASA Cryospheric Science Program Grants #NNX14AH93G
and #80NSSC19K0942.

ACKNOWLEDGMENTS

We are thankful for the support of Polar Field Services, UNAVCO,
Sarah W. Cooley, Rohi Muthyala, Laurence C. Smith, and Dino

REFERENCES

Adeline, K. R,, Chen, M., Briottet, X,, Pang, S. K., and Paparoditis, N. (2013).
Shadow Detection in Very High Spatial Resolution Aerial Images: A
Comparative Study. ISPRS J. Photogrammetry Remote Sensing 80, 21-38.
doi:10.1016/j.isprsjprs.2013.02.003

Akar, A. L. P. E. R, Gokalp, E. R. T. A. N, Akar, 0. Z. L. E. M, and Yilmaz, V.
(2017). Improving Classification Accuracy of Spectrally Similar Land Covers in
the Rangeland and Plateau Areas with a Combination of WorldView-2 and
UAV Images. Geocarto Int. 32, 990-1003.

Bakker, P., Schmittner, A., Lenaerts, J. T. M., Abe-Ouchi, A., Bi, D., Broeke, M. R.,
et al. (2016). Fate of the Atlantic Meridional Overturning Circulation - Strong
Decline under Continued Warming and Greenland Melting. Geophys. Res. Lett.
doi:10.1002/2016GL070457

Corripio, J. G. (2003). Vectorial Algebra Algorithms for Calculating Terrain
Parameters from DEMs and Solar Radiation Modelling in Mountainous
Terrain. Int. J. Geographical Inf. Sci. 17, 1-23.

Dare, P. M. (2005). Shadow Analysis in High-Resolution Satellite Imagery of Urban
Areas. Photogrammetric Eng. Remote Sensing 71, 169-177.

Dumont, M., Brun, E., Picard, G., Michou, M., Libois, Q., Petit, J.-r., et al.
(2014). Contribution of Light-Absorbing Impurities in Snow to
Greenland’s Darkening since 2009. Nat. Geosci. 7, 509-512. doi:10.1038/
NGEO2180

Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-]., van Angelen, J. H., and van den
Broeke, M. R. (2014). An Improved Mass Budget for the Greenland Ice Sheet.
Geophys. Res. Lett. 14, 866-872. doi:10.1002/2013GL059010.Received

Hochreuther, P., Neckel, N., Reimann, N., and Humbert, A. (2021). Fully
Automated Detection of Supraglacial Lake Area for Northeast Greenland
Using Sentinel-2 Time-Series. Remote Sensing 13, 1-24.

Igneczi, A., Sole, A. ], Livingstone, S. J., Leeson, A. A., Fettweis, X., Selmes, N, et al.
(2016). Northeast Sector of the Greenland Ice Sheet to Undergo the Greatest
Inland Expansion of Supraglacial Lakes during the 21st century. Geophys. Res.
Lett. 43, 9729-9738. doi:10.1002/2013GL058740.Received

Leidman, S. Z., Rennermalm, A. K., Muthyala, R., Qizhong, G., and Overeem, L
(2020). The Presence and Widespread Distribution of Dark Sediment in
Greenland Ice Sheet Supraglacial Streams Implies Substantial Impact of
Microbial Communities on Sediment Deposition and Albedo Geophysical
Research Letters. Geophys. Res. Lett. 48, 1-12. doi:10.1029/2020GL088444

Liang, Y.-1,, Colgan, W., Lv, Q,, Steffen, K., Abdalati, W., Stroeve, ]., et al. (2012). A
Decadal Investigation of Supraglacial Lakes in West Greenland Using a Fully
Automatic Detection and Tracking Algorithm. Remote Sensing Environ. 123,
127-138. doi:10.1016/j.rse.2012.03.020

Shadow Correction in Greenland

Guthrie. We acknowledge the Greenlandic people and their Elders
both past and present, as well as future generations who continue to
be stewards of this land.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frsen.2021.690474/
full#supplementary-material

Supplementary Figure S1 | UAV imagery with differing values for the k
coefficient. The value of k = 2.1 was selected for analysis in this study
due to the areas of overexposure on north facing slopes seen in images
with k > 2.1.

Supplementary Figure S2 | Same as the k = 3.4 image of Supplementary Figure
S1 with yellow ovals indicating areas of overexposure and blue-shifting that informed
the decision to use a k value of 2.1 for the analysis.

Supplementary Table S1 | Parameters used to generate the DEM in Agisoft
Metashape Pro. Camera parameters were automatically calibrated to minimize
ground control point error.

Lindberg, F., Jonsson, P., Honjo, T., and Wa, D. (2015). Solar Energy on Building
Envelopes-3D Modelling in a 2D Environment. Solar Energy 115, 369-378.
doi:10.1016/j.solener.2015.03.001

McDonald, E. R, Wu, X., Caccetta, P., and Campbell, N. (2000). Illumination
Correction of Landsat TM Data in South East NSW. Proc. Tenth Australas.
Remote Sensing Conf. 22, 19-23.

McGrath, D., Steffen, K., Rajaram, H., Scambos, T., Abdalati, W., and Rignot, E.
(2012). Basal Crevasses on the Larsen C Ice Shelf, Antarctica: Implications for
Meltwater Ponding and Hydrofracture. Geophys. Res. Lett. 39, 1-6. doi:10.1029/
2012GL052413

Moustafa, S. E., Rennermalm, A. K., Smith, L. C., Miller, M. A., Mioduszewski, J. R.,
Koenig, L. S., et al. (2015). Multi-modal Albedo Distributions in the Ablation
Area of the Southwestern Greenland Ice Sheet. Cryosphere 9, 905-923.
doi:10.5194/tc-9-905-2015

Noh, M. J,, and Howat, I. M. (2015). Automated Stereo-Photogrammetric DEM
Generation at High Latitudes: Surface Extraction with TIN-Based Search-Space
Minimization (SETSM) Validation and Demonstration over Glaciated Regions.
GIScience and Remote Sensing 52, 198-217. doi:10.1080/15481603.2015.1008621

Nolin, A. W., and Payne, M. C. (2007). Classification of Glacier Zones in Western
Greenland Using Albedo and Surface Roughness from the Multi-Angle Imaging
SpectroRadiometer (MISR). Remote Sensing Environ. 107, 264-275.
doi:10.1016/j.rse.2006.11.004

Olson, M., and Rupper, S. (2019). Impacts of Topographic Shading on Direct Solar
Radiation for valley Glaciers in Complex Topography. The Cryosphere 13, 29-40.

Otukei, J. R,, and Blaschke, T. (2010). Land Cover Change Assessment Using
Decision Trees, Support Vector Machines and Maximum Likelihood
Classification Algorithms. Int. . Appl. Earth Observation Geoinformation 12,
27-31. doi:10.1016/j.jag.2009.11.002

Pavelsky, T. M., and Smith, L. C. (2008). RivWidth: A Software Tool for the
Calculation of River Widths from Remotely Sensed Imagery. IEEE Geosci.
Remote Sensing Lett. 5. doi:10.1109/LGRS.2007.908305

Rennermalm, A. K., Wood, E. F., Weaver, A. ], Eby, M., and Déry, S. J. (2007).
Relative Sensitivity of the Atlantic Meridional Overturning Circulation to River
Discharge into Hudson Bay and the Arctic Ocean. J. Geophys. Res.
Biogeosciences 112, 1-12. doi:10.1029/2006]G000330

Ryan, J. C,, Hubbard, A. L., Box, J. E., Todd, J., Christoffersen, P., Carr, J. R, et al.
(2015). UAV Photogrammetry and Structure from Motion to Assess Calving
Dynamics at Store Glacier , a Large Outlet Draining the Greenland Ice Sheet.
The Cryosphere 9, 1-11. doi:10.5194/tc-9-1-2015

Ryan, J. C., Hubbard, A., Stibal, M., Irvine-Fynn, T. D., Cook, J., Smith, L. C., et al.
(2018). Dark Zone of the Greenland Ice Sheet Controlled by Distributed
Biologically-Active Impurities. Nat. Commun. 9, 1-10. doi:10.1038/s41467-
018-03353-2

Frontiers in Remote Sensing | www.frontiersin.org

August 2021 | Volume 2 | Article 690474


https://www.frontiersin.org/articles/10.3389/frsen.2021.690474/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frsen.2021.690474/full#supplementary-material
https://doi.org/10.1016/j.isprsjprs.2013.02.003
https://doi.org/10.1002/2016GL070457
https://doi.org/10.1038/NGEO2180
https://doi.org/10.1038/NGEO2180
https://doi.org/10.1002/2013GL059010.Received
https://doi.org/10.1002/2013GL058740.Received
https://doi.org/10.1029/2020GL088444
https://doi.org/10.1016/j.rse.2012.03.020
https://doi.org/10.1016/j.solener.2015.03.001
https://doi.org/10.1029/2012GL052413
https://doi.org/10.1029/2012GL052413
https://doi.org/10.5194/tc-9-905-2015
https://doi.org/10.1080/15481603.2015.1008621
https://doi.org/10.1016/j.rse.2006.11.004
https://doi.org/10.1016/j.jag.2009.11.002
https://doi.org/10.1109/LGRS.2007.908305
https://doi.org/10.1029/2006JG000330
https://doi.org/10.5194/tc-9-1-2015
https://doi.org/10.1038/s41467-018-03353-2
https://doi.org/10.1038/s41467-018-03353-2
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles

Leidman et al.

Sarabandi, P., Yamazaki, F., Matsuoka, M., and Kiremidjian, A. (2004). Shadow
Detection and Radiometric Restoration in Satellite High Resolution Images.
IEEE Int. IEEE Int. IEEE Int. Geosci. Remote Sensing SymposiumIGARSS 04.
Proc. 6, 3744-3747. doi:10.1109/IGARSS.2004.1369936

Shahtahmassebi, A., Yang, N., Wang, K., Moore, N., and Shen, Z. (2013). Review of
Shadow Detection and De-shadowing Methods in Remote Sensing. Chin.
Geographical Sci. 23, 403-420. doi:10.1007/s11769-013-0613-x

Sisodia, P. S., Tiwari, V., and Kumar, A. (2014). Analysis of Supervised Maximum
Likelihood Classification for Remote Sensing Image. Int. Conf. Recent Adv.
Innov. Eng. 1-4.

Smith, L. C., Andrews, L. C,, Pitcher, L. H., Overstreet, B. T., Rennermalm, A. K.,
Cooper, M. G,, et al. (2021). Supraglacial River Forcing of Subglacial Water
Storage and Diurnal Ice Sheet Motion. Geophys. Res. Lett. 48. doi:10.1029/
2020GL091418

Smith, M., Carrivick, J., and Quincey, D. (2016). Structure from Motion
Photogrammetry in Physical Geography. Prog. Phys. Geogr. 40, 247.
doi:10.1177/0309133315615805

Soenen, S. A., Peddle, D. R., and Coburn, C. A. (2005). SCS+C: A Modified Sun-
Canopy-Sensor Topographic Correction in Forested Terrain. IEEE Trans.
Geosci. Remote Sensing 43, 2148-2159. doi:10.1109/TGRS.2005.852480

Tarko, A., Bruin, S. D., and Bregt, A. K. (2018). Comparison of Manual and
Automated Shadow Detection on Satellite Imagery for Agricultural Land
Delineation. Int. J. Appl. Earth Observation Geoinformation 73, 493-502.
doi:10.1016/j.jag.2018.07.020

Teillet, P. M., Guindon, B., and Goodenough, D. G. (1982). On the Slope-Aspect
Correction of Multispectral Scanner Data. Can. J. Remote Sensing 8, 84-106.

Tolt, G., Shimoni, M., and Ahlberg, J. (2011). A Shadow Detection Method for
Remote Sensing Images Using VHR Hyperspectral and LIDAR Data. Int. Geosci.
Remote Sensing Symp. (Igarss), 4423-4426. doi:10.1109/IGARSS.2011.6050213

van den Broeke, M., Smeets, P., Ettema, J., and Munneke, P. K. (2008). Surface
Radiation Balance in the Ablation Zone of the West Greenland Ice Sheet.
J. Geophys. Res. Atmospheres 113. doi:10.1029/2007JD009283

Shadow Correction in Greenland

van der Veen, C.J., Ahn, Y., Csatho, B. M., Mosley-Thompson, E., and Krabill, W. B.
(2009). Surface Roughness over the Northern Half of the Greenland Ice Sheet
from Airborne Laser Altimetry. . Geophys. Res. 114, 264-275. doi:10.1029/
2008JF001067

Yang, K., Smith, L. C,, Chu, V. W,, Pitcher, L. H., Gleason, C. J., Rennermalm, A. K.,
et al. (2016). Fluvial Morphometry of Supraglacial River Networks on the
Southwest Greenland Ice Sheet. GIScience ¢ Remote Sensing 53, 459-482.
doi:10.1080/15481603.2016.1162345

Yang, K., Smith, L. C,, Karlstrom, L., Cooper, M. G., Tedesco, M., As, D. V., et al.
(2018). Supraglacial Meltwater Routing through Internally Drained
Catchments on the Greenland Ice Sheet Surface. Cryosphere Discuss., 1-32.

Yi, D., Zwally, H. J., and Sun, X. (2005). ICESat Measurement of Greenland Ice
Sheet Surface Slope and Roughness. Ann. Glaciology 42, 83-89. doi:10.3189/
172756405781812691

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commerecial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Leidman, Rennermalm, Lathrop and Cooper. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Remote Sensing | www.frontiersin.org

10

August 2021 | Volume 2 | Article 690474


https://doi.org/10.1109/IGARSS.2004.1369936
https://doi.org/10.1007/s11769-013-0613-x
https://doi.org/10.1029/2020GL091418
https://doi.org/10.1029/2020GL091418
https://doi.org/10.1177/0309133315615805
https://doi.org/10.1109/TGRS.2005.852480
https://doi.org/10.1016/j.jag.2018.07.020
https://doi.org/10.1109/IGARSS.2011.6050213
https://doi.org/10.1029/2007JD009283
https://doi.org/10.1029/2008JF001067
https://doi.org/10.1029/2008JF001067
https://doi.org/10.1080/15481603.2016.1162345
https://doi.org/10.3189/172756405781812691
https://doi.org/10.3189/172756405781812691
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles

	Terrain-Based Shadow Correction Method for Assessing Supraglacial Features on the Greenland Ice Sheet
	1 Introduction
	2 Data
	3 Methods
	4 Results
	5 Discussion
	6 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


