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The globe is currently undergoing a range of alarming changes related to social and environmental
systems, and the links between the two. Our ability as researchers to study the dynamics of these
ongoing processes is essential for real-world understanding and application of management
strategies that can mitigate potentially negative outcomes. The scale of change and its associated
impact generated by natural and anthropogenic drivers varies across the landscape, such as local
degradation of ecosystem services, regional deforestation, large scale urbanization, and widespread
yet geographically specific changes yielded by vagaries in climate. Understanding such critical
changes is of paramount importance for the future wellbeing of the coupled human-natural systems
that we are all a part of and on which we all depend.

Historically, one of the greatest limitations in our ability to study these systems with remote
sensing technology has been inadequate availability of time series datasets that provide fine enough
spatial and temporal resolution capable of identifying processes of global environmental change
(GEC). However, with the advances in sensors used for environmental remote sensing, as well as the
improvements in data storage and distribution, we now have the capacity to employ time series
techniques for detecting GEC and addressing the multitude of questions surrounding its impacts.
Currently, many of the time series methodologies being applied to examine this suite of issues are still
in development, and as such, there is significant space for growth, innovation, and exploration in the
field of time series remote sensing analysis (TSRSA).

Only a few decades ago, what was considered a detailed TSRSA may have involved three or more
Landsat images and corresponding land cover classifications with a set time interval, such as a
decadal study (Southworth et al., 2004; Mondal and Southworth 2009; Cassidy et al., 2010; Gibbes
et al., 2010; Adhikari and Southworth 2012). This has given way to analyses withmuch finer temporal
resolution, including remotely sensed information with daily global coverage dating as far back as
30 years (Zhu and Southworth, 2012; Campo-Bescós et al., 2013; Haro-Carrión et al., 2020; Herrero
et al., 2020). The tremendous amount of data now available for remote sensing research cannot be
efficiently utilized with traditional methodologies of analysis, creating a need for new approaches and
techniques. Use of artificial intelligence (AI), specifically related to issues of big data and machine
learning, including deep learning, are all possible innovations within this field. As such, we are now
on the cusp of being able to effectively investigate some of the most pressing environmental concerns
of our time at a temporal scale relevant to climatological, ecological, and social systems. The coming
decade will surely present landmark innovations, introduce novel approaches, and yield
breakthroughs in understanding our world. Such advances will undoubtedly be facilitated by the
enhanced accessibility of remotely sensed datasets with greater temporal range, which will enable
more effective monitoring and detection of GEC.

Traditionally, the most common approach used in remote sensing studies has been a selection of
two to five dates, for which individual landcover classifications were produced and change was
determined by comparing classifications over time (Southworth et al., 2004; Mondal and Southworth
2009; Cassidy et al., 2010; Gibbes et al., 2010; Adhikari and Southworth 2012). While these studies
were very useful and often linked directly with ancillary information from surveys for greater insight
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into the exhibited change on the landscape, the true density of
landcover data was limited. Despite the large number of studies
using such methods for landcover change analysis, we have now
surpassed the limited scope offered by this approach, with
advances in sensor technology extending the possibilities of
remote sensing science.

The launch of improved sensors led to new questions and
opportunities within Earth science. The Advanced Very High
Resolution Radiometer (AVHRR) managed by the National
Oceanic and Atmospheric Administration (NOAA) offered
daily coverage at a global scale beginning in 1981, albeit with
a very coarse spatial resolution. It has since been succeeded by the
Visible Infrared Imaging Radiometer Suite (VIIRS), which
provides better spatial resolution and a larger swath. Similarly,
the Landsat fleet revolutionized Earth observation (EO) after its
initial launch of the multispectral scanner (MSS) in 1972. This
was followed by the thematic mapper (TM), the enhanced
thematic mapper (ETM), and the operational land imager
(OLI), the latter of which will soon be succeeded by OLI-2
aboard Landsat nine that is set to launch in September of
2021. These sensors have allowed scientists to capture almost
50 years of information, beginning in 1973 to present, serving to
increase the data density with much finer spatial and spectral
resolutions over time (Kuezner et al., 2015). Furthermore, the
provision of open access to the existing Landsat archive in 2008
marked a turning point within environmental remote sensing of
land surface processes, as data became widely available at a level
previously unprecedented. This publicly available data was
corrected and registered by the United States Geological
Survey (USGS), allowing many researchers to exploit a data
source that was previously unavailable to them due to
technical limitations (Weng 2018).

The AVHRR and Landsat satellites have acted as pillars of
environmental remote sensing, paving the way for most future
research. Since their inception there has been development of
newer sensors, such as the Moderate Resolution Imaging
Spectroradiometer (MODIS) onboard the Aqua and Terra
platforms managed by the National Aeronautics Space Agency
(NASA). As well as the European Space Agency’s Advanced
Along Track Scanning Radiometer (AATSR) and the Medium
Resolution Imaging Spectrometer (MERIS) onboard the
European Environmental Satellite (ENVISTAT). While these
more recent sensors generate valuable information, they are
more temporally limited, with the Terra platform having been
launched in 1999 and ENVISTAT only lasting from 2002 to 2012.
Despite an abundance of new sensors, now contributing to the
array of environmental remote sensing resources, their utility in
TSRSA is constrained by relatively small-time frames for which
they have gathered data. Given that much of the GEC occurring
on our planet is intricately linked with climate and other
processes that unfold over long periods of time, it is critically
important to analyze EO with sufficient historical depth. One way
to address the temporal limitations is to develop a time series of
data from across a suite of image platforms and sources, which are
then integrated and resolved to a single analysis, and as such,
these data fusion approaches and techniques do offer potential for
the enhanced monitoring of our Earth system.

With the greater availability of these long-term remotely
sensed datasets, the innate challenges of time series analysis
are further complicated due to immense volumes of data and
computational requirements, making the prospects for innovative
and novel time series based remote sensing analysis most
opportune. There have long been unique difficulties to
working with EO caused by the spatial dependence and
nonstationary temporal nature that is often inherent in
remotely sensed data (Muir et al., 2021). This includes issues
of spatial and serial correlation, the latter of which is particularly
troubling for dense time series (Kuezner et al., 2015). In the past,
researchers relying on traditional approaches for time series
analysis of remotely sensed data have on occasion excluded
necessary model parameters to account for such characteristics
in the data, fundamentally altering the results of their research.
This has promoted further growth in the realm of time-space
modeling, though the development in both computer
programming and statistical analyses can pose additional
challenges for those researchers undertaking advanced time
series remote sensing studies.

Additionally, satellite imagery in its current form of plentiful
images with very fine temporal and spatial scales, has inevitably
become an issue of big data. The use of standard computing
hardware to analyze all relevant images is no longer efficient, or in
some cases not feasible, making high-performance computing
essential to analyses of EO. Yet, the computing power needed to
investigate dense time-series and adequate storage of big data can
be prohibitive to researchers, particularly those in less developed
nations who have historically faced impediments to obtaining
and working with large geospatial datasets. Furthermore, costs
associated with accessing commercial data collections, such as
those with very high resolution, may prove to be a financial
constraint to scientists across the globe.

The temporal limitations of the sensors themselves presents
several obstacles in time series remote sensing, such as cross-
platform comparisons, integration, and data fusion, which may
be needed to generate observations with a temporal scale
necessary for studying the major issues facing our planet.
However, some sensor-related issues remain beyond the
control of those using the imagery gathered by sensors. Even
when data is available over adequate time durations, the sensors
themselves may be affected by problems such as geolocation
errors, orbital drift, inaccuracies in sensor calibration, and long-
term issues related to sensor lines. This is compounded by the
well-established geographically specific challenges linked to
atmospheric profile and conditions during data collection,
correctional climatological data and cloud cover, and impacts
from regional topography.

Despite the aforementioned challenges, major gains have been
made in several areas of time series remote sensing (Kuezner
et al., 2015). Modern techniques have pioneered new ways of
measuring useful remotely sensed information from Earth’s
surface, integrating information across different datasets, and
revolutionary analytical methodologies. Previous studies of
remotely sensed time series have employed a limited number
of variables or indices. Among these, vegetation indices (VI) have
been widely used in environmental remote sensing given their

Frontiers in Remote Sensing | www.frontiersin.org September 2021 | Volume 2 | Article 7704312

Southworth and Muir Remote Sensing Time Series Analysis

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


ability to estimate vegetation cover, vigor, and growth (Xue and
Su 2017). More than 40 VI’s have been created over the last
50 years and used in a varied range of studies, including those
related to wildfires, land degradation, and for enhanced
discrimination between land cover classes (Bannari et al.,
1995; Yengoh et al., 2014). Model data has also been utilized
to develop time series of vegetation-related variables, such as
MODIS-based Net Primary Productivity spanning 20 years,
global measurements of Vegetation Directional Persistence
derived from NDVI, and multiple time series products that
estimate Leaf Area Index (Southworth et al., 2016; Xiao et al.,
2017). These metrics provide valuable insights as time series
products for monitoring Earth’s system over time due to the
direct connection between vegetation and various drivers of GEC,
such as climate and anthropogenic land use. Other subfields of
remote sensing have developed their own indices to evaluate and
monitor change over time. In urban remote sensing spectral
indices have been applied to evaluate the rate of urbanization
through the urban index (UI), normalized difference built-up
index (NDBI), the normalized difference impervious surface
index (NDISI), among others (Kawamura et al., 1996; Zha
et al., 2003; Xu, 2008). Hydrologists and climatologists have
overcome problems of spatial heterogeneity in climatological
data and accelerated the process of identifying drought by
exploiting remotely sensed observations to estimate
climatological indices (Liu et al., 2020). Spectral indices have
become critical scientific tools across the numerous subfields
utilizing TSRSA, with some studies employing multiple indices
for a more holistic understanding of GEC.

Owing to the greater data availability and the creation of new
metrics, there has been a strong emphasis on the development of
new approaches, which have enabled researchers to examine
temporal trends in EO more readily. Change detection
algorithms have been especially promising for studying GEC,
facilitating identification of shifts in time series data occurring at
different rates across temporal and spatial scales. Although most
algorithms operate at the pixel level, some have been built to
incorporate information from neighboring pixels, permitting
greater insight into the agents of landcover change and a
means to reduce issues of seasonal variation (Kennedy et al.,
2015; Hamunyela et al., 2016). Zhu (2017a) classified change
detection algorithms for TSRSA into six major categories based
on; 1) frequency of observations, 2) index used to detect change,
3) number of variables, 4) offline or online detection, 5)
magnitude of change, and 6) the scale of analysis (i.e.
subpixel/pixel/spatial). The algorithms can be defined through
their different methodologies for detecting change, such as
thresholding, differencing, segmentation, trajectory
classification, regression, and statistical boundaries. The latter
of these methods includes the widely used Breaks for Additive
Seasonal and Trend (BFAST) and the Continuous Change
Detection and Classification (CCDC) (Verbesselt et al., 2010;
Zhu andWoodcock 2014), which are based on the theory that any
significant deviation from the expected statistical boundary in the
time series indicates change. Also, among the commonly used
algorithms is the Landsat-based detection of Trends in
Disturbance and Recovery (Land-Trendr), developed by

Kennedy et al. (2010). This method reveals abrupt change
through a process of segmentation along a time series,
whereby specific types of landcover change can be identified
through their distinct temporal signatures captured in spectral
space. Selection of a change detection algorithm is highly
dependent on the scale of the change target and the
anticipated rate of change, either abrupt or gradual, where the
former may be better suited to identify processes such as
deforestation and the latter to monitor shifts in species
composition and broader ecosystem health (Hayes and Sader
2001; Fickas et al., 2016; Hamunyela et al., 2016).

As with any technologically dependent discipline, AI has
played an integral role in advancing TSRSA. The information
available for extraction in large remotely sensed datasets implores
the use of AI techniques. Many in the field are familiar with AI
through preliminary machine learning (ML), such as random
forest classifications (Belgiu and Drăguţ 2016). However, the
possibilities are expanding through deep learning (DL) that is
characterized by neural networks (NNs), which typically involves
data containing two or more layers. The superior density now
available in remote sensing imagery has shifted the focus to
greater consideration of the time variable, rather than
individual image analysis (Ma et al., 2019). This move towards
time-series processing will be greatly facilitated by the creation of
innovative network architectures capable of simultaneously
utilizing spatial, temporal, and spectral information from EO
(Zhu et al., 2017b). AI has also progressed processing of big data
and data-mining with DL as a data-driven strategy for knowledge
discovery, capable of obtaining more information than what was
previously achievable with rule-based approaches (Liu 2015;
Wang et al., 2020). AI offers channels to improve data fusion
and integration through augmenting spatial and temporal
resolution, analysis of multi-source and multimodal data, and
streamlined processing (Cao et al., 2020; Peng et al., 2020). This is
exemplified by methods such as reconstruction of imagery from
the Landsat archive through feature-level fusion (Chen et al.,
2021), as well as multimodal-temporal fusion for generating
image series with greater temporal resolution (Liu et al., 2019).
These advanced techniques have now improved researcher’s
abilities to analyze GEC across the realms of Earth’s natural
systems, and tools are already available in a variety of
programming languages and software packages (Lary et al.,
2016; Maxwell et al., 2018; Yuan et al., 2020). The
introduction of AI and DL in remote sensing has prompted
the proposal of three major directions in time series research,
including new methods for constructing time series datasets, data
extraction, and environmental applications for time series
analysis (Ma et al., 2019; Jeon et al., 2020).

Recent advances in the collection and distribution of remotely
sensed imagery have profoundly advanced our ability to
understand the complex nature of our planet and the link
between humans and their environment (Liu 2015). Looking
forward, growth of TSRSA and the assimilation of AI in
environmental remote sensing analyses will only deepen,
empowering researchers to understand Earth’s system and the
coupled socio-ecological processes taking place within it. As
scientists more fully embrace and expand on the
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computational capacities impelled by AI (machine learning, deep
learning, data fusion, cloud storage etc.) and the resolution of the
temporal axis in remote sensing analyses becomes finer, former
obstacles no longer limit the questions that can now be addressed
with TSRSA. The greatest challenges facing our planet, those of
changing climate and land systems, protecting ecological
diversity, limiting ecological degradation, and increasing rates
of urban expansion globally can bemore accurately examined and
better understood using time series approaches, and the satellite
based EO represents one of the most powerful tools at our
disposal. Coupled with our increasing ability to reveal long

term land surface dynamics through the use of increasingly
innovative and novel time series approaches, we are no longer
hampered by limitations in computational power or data
availability, placing us at the cusp of realizing major
advancements within the field of time series analysis.
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