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Thorough comparison to observations is key to developing a credible climate model
forecasting capability. Deep Space Climate Observatory (DSCOVR) measurements of
Earth’s reflected solar and emitted thermal radiation provide a unique observational
perspective that permits a more reliable model/data comparison than is possible with
the otherwise available satellite data. The uniqueness is in the DSCOVR satellite’s viewing
geometry, which enables continuous viewing of the Earth’s sunlit hemisphere from its
Lissajous orbit around the Lagrangian L1 point. The key instrument is the Earth
Polychromatic Imaging Camera (EPIC), which views the Earth’s sunlit hemisphere with
1024-by-1024-pixel imagery in 10 narrow spectral bands from 317 to 780 nm, acquiring
up to 22 high spatial resolution images per day. The additional feature is that the frequency
of EPIC image acquisition is nearly identical to that of the climate GCM data generation
scheme where climate data for the entire globe are ‘instantaneously’ calculated at 1-h
radiation time-step intervals. Implementation of the SHS (Sunlit Hemisphere Sampling)
EPIC-view geometry for the in-line GCM output data sampling establishes a precise self-
consistency in the space-time data sampling between EPIC observational and GCM
output data generation and sampling. The remaining problem is that the GCM generated
data are radiative fluxes, while the EPIC measurements are backscatter-dependent
radiances. Radiance to flux conversion is a complex problem with no simple way to
convert GCM radiative fluxes into spectral radiances. The more expedient approach is to
convert the EPIC spectral radiances into broadband radiances by MODIS/CERES-based
regression relationships and then into solar radiative fluxes using the CERES angular
distribution models. Averaging over the sunlit hemisphere suppresses the meteorological
weather noise, but preserves the intra-seasonal larger scale variability. Longitudinal slicing
by the Earth’s rotation permits a self-consistent model/data comparison of the longitudinal
model/data differences in the variability of the reflected solar radiation. Ancillary EPIC
Composite data provide additional cloud property information for climate model
diagnostics. Comparison of EPIC-derived seasonal and longitudinal variability of the
Earth’s planetary albedo with the GISS ModelE2 results shows systematic
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overestimate of cloud reflectivity over the Pacific Ocean with corresponding
underestimates over continental land areas.

Keywords: DSCOVR, deep space climate observatory, self-consistent space/time data sampling, longitudinal
slicing, sunlit hemisphere observations, climate diagnostic data, EPIC

INTRODUCTION

Model/data comparisons are essential for improved
understanding of the Earth’s climate system. But, as illustrated

in Figure 1, this seemingly straightforward task is not simple.
Climate GCMs and the real world are quasi-chaotic in behavior.
So, there is no reason to expect agreement except for averages
taken over sufficiently large space and time scales. Moreover,

FIGURE 1 |ModelE2 4 × 5 degree horizontal resolution monthly-mean planetary albedo (Upper Left) and total cloud cover (Middle Left) computed for July 2018.
The corresponding observational counterparts are the CERES planetary albedo (Upper Right) on a 2 × 2.5 degree grid averaged over the years 2001–2013, and the
ECMWF Re-Analysis-Interim (ERAI) total cloud cover (Middle Right) also on a 2 × 2.5 degree grid averaged over the years 1979–2014. Seasonal CERES EBAF
planetary albedo (Bottom) for 2003–2019 (Loeb et al., 2009; 2018) with the ensemble annual mean subtracted. For comparison, the black squares depict the
ModelE2 decadal-mean seasonal variability of the global planetary albedo for years 2000–2010 with the annual mean subtracted.
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most climate system variables exhibit strong diurnal variability
(e.g., Eastman andWarren, 2014). Whereas GCM output data are
computed uniformly over the globe at uniform time-steps, and
uniformly averaged into monthly-mean latitude-longitude tables
such as the planetary albedo and total cloud cover in Figure 1
(Left panels), the observational data typically use sequential
space-time sampling from a sun-synchronous satellite track,
such as the CERES planetary albedo data (Top Right), with
considerable uncertainty as to how the diurnal cycle might
have been averaged or referenced. The European Centre for
Medium-Range Weather Forecasts Reanalysis Interim
(ECMWFs ERAI) total cloud cover, which is a global re-
analysis product of observations acquired over the past 3.5
decades. These data comparisons show qualitative similarity,
but with substantial small-scale differences. Even for monthly-
mean averages, considerable meteorological weather noise
remains. By averaging data over the entire globe, the weather
noise can be minimized, as in Figure 1 Bottom. The seasonal
CERES Energy Balanced and Filled (EBAF) planetary albedo for

2003 to 2019 (Loeb et al., 2009, Loeb et al., 2018) is the reference.
The GISS ModelE2 planetary albedo seasonal change shown by
the black squares. There is a close similarity, but the off-sets are
difficult to interpret quantitatively. All data comparisons are
useful, but they focus on different aspects of the climate
variables. The longitudinal slicing methodology used here
describes an approach that averages out the weather noise, but
retains important intra-seasonal and longitudinal variability that
is not simple to extract from conventional data.

EPIC-DERIVED CLIMATE CONSTRAINT

EPIC makes full-disk images of the Earth’s sunlit hemisphere in
10 narrow spectral band channels with a 1024 × 1024 (download)
spatial resolution. Depending on telemetry rate, 13 to 22 images
per day are acquired from the Lissajous orbit at the Lagrangian L1
point 1.4 to 1.6 × 106 km from the Earth in the direction of the
Sun. The procedure for converting the EPIC spectral radiances

FIGURE 2 | Planetary albedo from EPIC reflected SW flux for 2017 and 2018 (Upper Left and Upper Right), normalized by the CERES global annual-mean SW
radiative flux (Loeb et al., 2018), and divided by the seasonal Total Solar Irradiance (Kopp and Lean, 2011). The longitudinal slicing is depicted by the colored lines, which
represent longitudinally contiguous regions, and which correspond to Greenwich-mean time of high-noonmeridians that are also tagged with the geographic location of
the illuminated hemisphere-center meridian. The representative members of each colored longitude grouping is identified by its designated black dot monthly-
mean position. Geographically, the colored lines proceed westward from the international date line at 1-hourly intervals (15° of longitude). The heavy black line is the
daily-mean average over a full rotation of the Earth. The mid-month DSCOVR sub-satellite latitude is depicted at figure bottom. Bottom Left and Bottom Right are the
corresponding planetary albedo results for 2017 and 2018 obtained from GISS ModelE2 simulations running with prescribed current-climate sea surface temperatures,
and using in-line sampling of the GCM output data using SHS sampling in accord with the DSCOVR Ephemeris viewing geometry.
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into EPIC reflected SW fluxes is described by Su et al., 2018; Su
et al., 2020. UsingMODIS/CERES-based regression relationships,
the spectral radiances are first converted into broadband SW
radiances. They are then transformed into radiative fluxes using
the CERES angular distribution models. All these tasks are
performed at the pixel level, then integrated over the entire
sunlit hemisphere (as viewed from the Lagrangian L1 point) to
convert each EPIC image into a single climate-style data point for
the sunlit hemisphere-mean reflected SW flux. Without loss in
precision, these reflected SW fluxes are normalized relative to
CERES global annual-mean SW radiative flux (Loeb et al., 2018),
and divided by the Total Solar Irradiance (TSI) (Kopp and Lean,
2011) to obtain the planetary albedo.

For each day’s-worth of 13–22 images, the EPIC derived SW
fluxes are interpolated to their nearest Greenwich-Mean (GMT)
hour to align the data points in longitude. Thus, the 5,000 to 6000
EPIC images per year are transformed into 12 × 24 monthly-
mean tables of planetary albedo points, plotted in Figure 2
(Upper). The color-coded longitudes cover the full rotation of

the Earth in 1-h time-steps (24 h of GMT, and 15o steps in
longitude). The data are grouped into five broad longitude ranges
color-coded as follows: Pacific Ocean (dark blue), East-Asia
(green), Africa-Asia (magenta), Atlantic Ocean (light blue),
and North America (orange). Key meridians of the five
longitude ranges are further identified by their heavier solid
color and black dots that depict their monthly-mean value at
their mid-month position, which also include the sub-satellite
latitude listed at the bottom of the figure. The group members are
further identified by a different line-style. Each color-coded
meridian is identified by its Greenwich-Mean time (GMT) of
noon-time sun. Thus, the international Date Line is identified by
its 0 GMT. In addition to the GMT designation, each meridian is
also identified by a geographic reference to help identify its
relative location.

The key takeaway from Figure 2 Bottom panels is that, over
the East-Asia area (3 GMT, black-dot green), ModelE2
overestimates clouds during the NH summer season (since
clouds are the principal contributors to Earth’s planetary

FIGURE 3 |Hovmöller plots of the EPIC (Left) and ModelE2 (Right) planetary albedo for 2017 and 2018 for the same data presented in Figure 2. The Y-scale has
time running upward starting with January 2017 at the bottom through December 2018 at the top. The X-scale is longitude running from 0° E longitude at the left and 0°W
longitude at the right. The X-scale references the GMT of the noon-time Sum, starting at GMT = 0 at the Date Line at the center, proceeding westward toward the left as
the Earth rotates. The input data for the Hovmöller plots is precisely the same 12 × 24 tables of monthly-mean sunlit hemisphere averages for the 24 uniformly
spaced GMT for both EPIC and ModelE2, respectively. In the color bar, magenta identifies the highest planetary albedos, deep blue the lowest.
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albedo, e.g., Stephens et al., 2015). Meanwhile, the cloud
reflectivity over the continental Africa-Asia land areas (8
GMT, black-dot magenta) is strongly underestimated. By
comparison, the EPIC results in the Figure 2 Top panel show
planetary albedo to be highest over the Africa-Asia region, in
strong contrast to the ModelE2 longitudinal dependence.

A likely explanation for this striking model/data difference is
the use of a globally uniform relative humidity criteria for the
onset of cloud condensation in the ModelE2 cloud scheme, which
involves utilizing a critical (less than 100%) relative humidity
criteria for the statistical overlap of water vapor and temperature
probability distributions, becoming sufficient to achieve the
relative humidity threshold for cloud condensation over some
fraction of the grid box. Due to the broader water vapor and
temperature probability distributions that exist over land
compared to ocean, conditions are more favorable for cloud
formation over land compared to the ocean. Thus, using a
globally uniform cloud condensation onset will overestimate
clouds over the ocean and underestimate clouds over land.
Using land/ocean dependent relative humidity criteria to make
it more difficult to form clouds over ocean, and easier over land,
would lead to improved agreement with observations by reducing
the cloud radiative effect over the ocean while increasing the
cloud contribution to planetary albedo over land.

Other significant differences are the daily-mean of the seasonal
variability depicted by the heavy black line, which resembles the
general EPIC data variability, but has less than half of seasonal
amplitude of the EPIC planetary albedo, and the ModelE2
planetary albedo during NH summer months, which has little
resemblance to the EPIC planetary albedo. However, there is
some similarity in that ModelE2 planetary albedo exhibits similar
longitudinal ordering and slope during the winter months, from
January to March and also from October to December.

The Figure 2 “spaghetti-line” planetary albedo data is shown
in Figure 3 in Hovmöller format with the EPIC planetary albedo at
figure Left, and correspondingModelE2 results at figure Right. The
Hovmöller format has specific value for displaying space-time
variability, whereas the line format provides a more quantitative
comparison for the amplitude of the seasonal and longitudinal
variability. In the Hovmöller (1949) format, the Y-scale has time
increasing upward (with some implicit latitudinal perspective). The
X-scale depicts the longitudinal dependence (including the noon-
time GMT of EPIC image acquisition). To help locate GMT and
longitude points in their geographic perspective, world maps in 4o

x 5o GCM resolution are displayed in Figure 4.
Year 2017 has been identified as a La Niña year (Zhang et al.,

2019). Presumably related to this, there is the significantly greater
space-time variability evident in 2017 than in 2018. Most notable
is the sharp decrease in planetary albedo (Figure 3, Bottom Left)
over the Central Pacific region during February-March of 2017.

Also remarkable are the enigmatic oscillations (with a peak-to-
peak periodicity spanning ~ 30° in longitude) that appear over the
Eastern Pacific in February and November, and over the Indian
Ocean in April. In contrast, year 2018 appears to be a uniformly
quiescent year having apparently reverted back to ENSO-neutral
conditions. As for identifying the geographic epicenter and its
spatial extent of the features responsible, that is not within reach,
based just on the hemisphere-averaged longitudinal variability
information that is available. These features appear to be of
limited extent in size and duration in time. Yet their radiative
impact is clearly evident on the hemisphere-mean EPIC derived
planetary albedo. La Niña activity is identified by fluctuations in
sea surface temperature that then induce the atmospheric
response in cloud cover. It may be that the space-time
variability of the EPIC planetary albedo can serve as an
indicator of La Niña/ENSO activity.

FIGURE 4 | Hovmöller-style ratio plot of year 2017 divided by year 2018 of the EPIC (Left) and ModelE2 (Right) planetary albedo plotted in Figure 3. The Y-scale
has time running upward startingwith January at the bottom through December at the top. As in Figure 3, the X-scale is longitude running from 0° E longitude at the left to
0° W longitude at the right. GMT references the location of high-noon Sun. The world map is included for geographic reference.
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The 2017 April oscillations over what is likely the Indian
Ocean, are unique in that they are limited in their time duration
as well as in spatial extent. Like the February and October-
November oscillations in this area, they have peak-to-peak ~
30° extent in longitude, but have a time duration that is only about
a month. Their location in longitude extends basically from South
Africa to Australia. It is unclear whether these Indian Ocean
oscillations might be related to the La Niña phenomenon, or if
they are just simply a different member of the ubiquitous climate
system oscillations.

Interestingly, there are several longitudes that exhibit extended
periods of steady monotonic change in planetary albedo. One
such example is the 2017 (and 2018) Atlantic Ocean region,
represented by West Africa (13 GMT, black-dot light blue) in
Figure 2 Top, and in Figure 3 Left along the GMT = 13 longitude,
which has its season minimum planetary albedo in August that
keeps increasing steadily through December.

The Figure 3 Right Hovmöller comparison of ModelE2 results
to EPIC shows little resemblance, due largely to the overestimated
northern hemisphere (NH) summer cloudiness over the East-
Asia and Western Pacific, which appear as the isolated large
regions high albedo near left-center of the annual panels. Perhaps
the most disappointing is the absence in the ModelE2 results of
the strong decrease in planetary albedo over the Central Pacific in
February is the Figure 3 Bottom Left EPIC results. It is plausible
that this might be an artifact due to initialization issues of
switching on the prescribed current-climate SSTs for 2017 and
2018 from their climatological spin-up versions, and not allowing
sufficient time for the atmosphere and clouds to adjust to the

prescribed SSTs. Otherwise, there are only modest perceptible
differences between the ModelE2 results for the 2017 La Niña
year and 2018. There is little evidence of the persistent oscillations
that are so prominent in the EPIC results in Figure 3 Bottom Left.

Figure 4 is a ratio plot of the 2017 and 2018 Hovmöller maps
in Figure 3. With 2018 as the reference year, ratioing isolates the
La Niña atmospheric (and cloud) response by removing the large
seasonal climatological variability. Except for the still glaring
absence of the February La Niña signature in the ModelE2
results, there is otherwise substantial agreement in the
ModelE2 response to the 2017 La Niña SST changes that are
seen in the EPIC results, such as decreased planetary albedo
across the Central and Eastern Pacific and increased planetary
albedo over the East-Asia region.

Overall, ModelE2 does not reproduce the strong EPIC
February decrease in planetary albedo, or the sharp increase in
October, which appears to be caused by a shift in the seasonal
increase planetary albedo between 2017 and 2018. Also, assuming
2018 to be a ENSO-neutral year, there would appear to be a
possible La Niña precursor occurring over the Indian Ocean
during January 2017 with a strong decrease in the EPIC planetary
albedo.

The “spaghetti” line plots in Figure 2 and the Hovmöller
contour maps in Figure 3 are two very different ways to represent
and compare precisely the same data, in this case, the tabulated
data of longitudinally sliced EPIC planetary albedo and the
similarly sampled ModelE2 GCM output data. The data have
been strongly averaged, thus making small differences of a
percent or less to be meaningful. The Figure 2 line plots

FIGURE 5 | All-cloud cloudy sky fraction (Top Panel) from EPIC Composite analysis results for the year 2017 (Top Left) and 2018 (Top Right). (Bottom Panel):
All-cloud cloudy sky fraction from GISS ModelE2 SHS in-line sampling results for the year 2017 (Bottom Left) and 2018 (Bottom Right).
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provide the more quantitative representation of the differences in
the seasonal variability between neighboring longitudes or
longitude groups, showing quantitatively the GCM deficiencies
in longitudinal cloud distribution.

Clearly, the Figure 3 Hovmöller maps are best in displaying
the patterns of variability, showing convincingly the La Niña
signature in the EPIC planetary albedo data. And the Hovmöller
ratio plots of years 2017 and 2018 in Figure 4, by removing the
largest common variability, could readily identify the similarities
between the EPIC and ModelE2 planetary albedo results that
were not apparent from the Figure 2 or Figure 3 comparisons.
This same approach is applicable for examining the patterns of
variability of cloud properties to see how they contribute to the
planetary albedo.

EPIC HEMISPHERIC COMPOSITE DATA

Since clouds are the principal contributors to planetary albedo,
the next step is to access the changes in cloud properties and the

cloud distribution that produce the observed variability in
planetary albedo. For this purpose, the necessary cloud
property data are conveniently available in the form of the
EPIC Composite data.

In the process of generating the EPIC-based radiative SW
fluxes, Su et al. (2018) constructed the 5-km resolution EPIC
composite database, which includes detailed cloud properties
such as cloud fraction, cloud-top altitude, and cloud optical
depth, water/ice phase, and particle size, compiled from
multiple imagers in low earth orbit (LEO) and geostationary
(GEO) satellites, with the data selection tuned to closely match
the EPIC observations in time and viewing geometry. Monthly-
mean and sunlit hemisphere averages are thus available for
longitudinal slicing analyses that match those for the radiative
fluxes. With the EPIC composite data, it becomes possible to see
the actual causes that lead to the radiative climate symptoms.

The key component of this transformation is the 5-km
resolution global composite data product with its optimally
merged together cloud properties from Low Earth Orbit (LEO)
satellites, and from geostationary (GEO) satellites, based on cloud

FIGURE 6 | Hovmöller plots of the EPIC (Left) and ModelE2 (Right) cloudy sky fraction for 2017 and 2018. The Y-scale has time running upward starting with
January 2017 at the bottom through December 2018 at the top. The X-scale is longitude running from 0° E longitude at the left and 0°W longitude at the right. The X-scale
references the GMT of the noon-time Sum, starting at GMT = 0 at the Date Line at the center, proceeding westward to the left as the Earth rotates. In the color bar,
magenta identifies the highest cloud fractions, deep blue the lowest.
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property retrievals using a common set of retrieval algorithms
(Minnis et al., 2008; Minnis et al., 2011). The 5-km composite
data product is aggregated from LEO/GEO data for closeness in
time and viewing geometry to the EPIC observation time, then
convolved to the EPIC grid.

Ancillary data, such as surface type, snow/ice, skin
temperature, and precipitable water, are also included in the
EPIC composite data (Khlopenkov et al., 2017). CERES Edition4
angular distribution models (Su et al., 2015) are then used to
compute SW anisotropic factors for converting EPIC broadband
radiances into reflected SW fluxes, which are integrated over the
sunlit hemisphere to provide a basic calibration reference for
NISTAR measurements, and serve as reference for climate GCM
longitudinal slicing comparisons.

Figure 5 Top Panel shows the seasonal variability for the EPIC
derived all-cloud sky fraction for 2017 and 2018. The highest
cloud fractions are found over the Pacific Ocean (22 GM, black-
dot blue) and over the East-Asia region (3 GMT, black dot-
green), except for the large dip in September-October of 2018
when North America (18 GMT, orange) is surging to its top value
in October-November. The lowest cloud fractions are seen over
the Atlantic West Africa region (13 GMT, black-dot light blue).
We use the term “dayurnal” here to refer to the variability seen at
the Lissajous orbital vantage point during a full day’s rotation of
the Earth, and “dayurnal mean”, for the average over all 24
longitude views (heavy black line), which is a global dawn-to-dusk
diurnal average, given that each longitude view incorporates a
range of diurnal samples from the neighboring longitudes, but its

viewing locality is at the Lissajous orbit. This is to differentiate
this from the term “diurnal mean”, which already has an
established meaning of referring to a local 24-h average.
The saving grace for using this term, is that the dayurnal
mean is identically reproduced for both EPIC and GCM data
sampling.

The Figure 5 Bottom Panel depicts the seasonal variability of
the ModelE2 cloudy sky fraction for the years 2017 and 2018,
which corresponds to the EPIC all-cloud sky fraction that is
shown in the Figure 5 Top Panel. Here again, the one redeeming
feature of the ModelE2 all-cloud sky fraction is that ModelE2
tends to reproduce the overall longitudinal ordering of the EPIC
all-cloud sky fraction results, at least in the NH summer months.
For ModelE2 and EPIC, the highest cloud fractions occur over
East-Asia (3 GMT, black-dot green) and Pacific Ocean (23 GMT,
black-dot dark blue) regions, while the lowest occur over Atlantic
(13 GMT, black-dot light blue) and Africa-Asia (8 GMT, black-
dot magenta) regions. The North America (18 GMT, black-dot
orange) meridians are in between, exhibiting a biannual
variability with maxima occurring in April-May and in
October-November. For ModelE2, the dayurnal amplitude of
the seasonal cloud fraction amplitude is at maximum and also
at minimum during the NH summer months, with strong
constriction of the cloud fraction amplitude, during the NH
winter months. Both EPIC and ModelE2 show a small
increase in cloud fraction going from 2017 to 2018, with the
EPIC cloud fraction increasing by about 1.5%, and ModelE2 by
about 0.5%.

FIGURE 7 | Top Panel: All-cloud cloud-top altitude from EPIC Composite analysis results for the year 2017 (Top Left) and for the year 2018 (Top Right).Bottom
Panel: All-cloud cloud-top altitude (km) from GISS ModelE2 climate simulations for the year 2017 (Bottom Left) and 2018 (Bottom Right) sampled using the Sunlit
Hemisphere Sampling (SHS) simulator and employing the DSCOVR Ephemeris viewing geometry.
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Figure 6 displays the cloudy sky fraction data from Figure 5 in
Hovmöller format with the EPIC cloud fraction at Figure 6 Left,
and the ModelE2 results at Figure 6 Right. The Hovmöller results
basically echo the spaghetti line plot results in showing the
highest cloud fractions over the Pacific Ocean region with the
lowest over the Atlantic, including also much of Europe and
Africa and the eastern parts of North and South America.

In comparing the EPIC cloud fraction variability between the
year 2017 (La Niña) and 2018, there are no significant differences
in small-scale fluctuations between the 2 years. Except perhaps
for a couple of points in April 2017 that appear to be coincident
with similar isolated small-scale points occurring in April 2017 of
the EPIC planetary albedo fluctuations in Figure 3, the 2 years are
similarly quiescent. Given the totally different nature of these two
measurements, it is not necessarily surprising. The EPIC
planetary albedo is derived directly from a single set of
observed spectral radiances. On the other hand, cloud changes
involve more options. For example, with favorable meteorological
conditions for cloud condensation, clouds can increase vertically
in optical depth, rather than spreading out horizontally.
Moreover, for the EPIC cloudy sky fraction, thresholds are

involved in deciding whether a given pixel is declared to be
mostly clear, or mostly cloudy, and that for some threshold,
optically thin clouds might be missed altogether.

For ModelE2, cloud fraction is defined in a still different way.
Based on grid-box-mean meteorological conditions, a cloud
fraction is determined at each grid box. A random number is
then used to decide whether radiative calculations are to be
performed for either a totally clear or totally cloudy grid box.
Thus, as a computing time saving device, ModelE2 clouds are
treated as being fractional in time rather than being fractional in
space. Radiatively, for monthly-mean averages, it all averages out.
Perhaps it is remarkable that the EPIC and ModelE2 cloud
fractions agree as well as they do. As for the strong
constrictions in dayurnal amplitude of ModelE2 cloud-top
altitude during winter months, there appears to be no
explanation.

While changes in cloud-top altitude have only minimal impact
on the planetary albedo, they have a profound effect on the
outgoing LW radiation due to the direct temperature dependence
of thermal radiation that is emitted to space from the cloud-top
region. As a result, cloud-top altitude is an important climate

FIGURE 8 | Hovmöller plots of the EPIC (Left) all-cloud cloud-top altitude from EPIC Composite analysis results for 2017 and 2018, and ModelE2 (Right) from
GISS ModelE2 climate simulations for the years 2017 and 2018, for the corresponding line plots of cloud-top altitude in Figure 7.
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variable that is directly involved in defining the Earth’s radiative
energy balance, but on the thermal outgoing LW radiation side.
Thermal LW radiation is not currently included in the EPIC
Composite data collection, so comparing cloud altitude and its
LW radiative effects is beyond the scope of this model/data
comparison.

Nevertheless, cloud-top altitude is one of the key cloud
properties that are tabulated as part of the EPIC Composite
Data (Su et al., 2018). The cloud property information is retrieved
from multiple imagers in low Earth orbit (LEO) satellites that
include MODIS, VIIRS, and AVHRR, and also geostationary
(GEO) satellites such as GOES-13, GOES-15, METEOSAT-7,
METEOSAT-10, MTSAT-2, Himawari-8. Cloud properties were
deduced using a common set of algorithms based on the CERES
cloud detection and retrieval system (e.g., Minnis et al., 2008;
Minnis et al., 2011). Cloud properties from the LEO/GEO
imagers are merged together to provide a global composite
data product with 5-km resolution by using an aggregated
rating system that optimizes the space-time viewing geometry
characteristics to provide the best match with EPIC observations.
The global composite data are then remapped into the EPIC grid
so as not to degrade the EPIC Composite cloud fraction
information (Khlopenkov, et al., 2017).

The Figure 7 Top Panels display the seasonal and longitudinal
variability of the EPIC Composite cloud-top altitude.
Interestingly, both the highest and lowest cloud altitudes occur

in July, and more broadly, during the NH summer months for
both 2017 and 2018, when the dayurnal cloud-top amplitude has
its largest variability. The highest cloud-top altitudes are
experienced over the West China continental region (6 GMT,
dot-dash magenta), while simultaneously, the lowest cloud-top
altitudes occur over the North America region epitomized by the
Iowa (18 GMT, black-dot orange) meridian. The cloud-top
minima in the dayurnal amplitude are seen in April and
October in 2017, with a somewhat deeper minimum occurring
in October-November of 2018. The annual-mean cloud-top
altitude remains basically unchanged between 2017 and 2018
(registering a small 1.3% increase).

The Figure 7 Bottom Panel shows the seasonal and
longitudinal variability of the GISS ModelE2 cloud-top
altitude. There are some similarities in the overall shape of the
seasonal variability of the cloud-top altitude between the EPIC
and the ModelE2 results, in that the GCM also has a July centered
NH summer maximum, with a mirror minimum, in the cloud-
top dayurnal amplitude, but with a more extended (January to
May) spring minimum, and a shortened (December) winter
minimum. Moreover, there is substantial ramp-up in the
dayurnal-mean of the cloud-top altitude from January to
April, (heavy black line) followed by a steady deline. The same
behavior is seen in the EPIC dayurnal-mean (Top Panel), but
with a greatly reduced amplitude. However, the one big difference
between the EPIC and ModelE2 cloud-top altitude variability is

FIGURE 9 | Top Left: Ice cloud sky fraction from EPIC Composite analysis results for year 2017, and Top Right: ice cloud sky fraction for year 2018. Bottom
Panel Left: Water cloud sky fraction from EPIC Composite analysis results for year 2017, and Bottom Right: water cloud sky fraction for 2018.
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the difference in the longitudinal ordering. For EPIC, cloud-top
altitude maxima are centered over West China (6 GMT, dot-dash
magenta), whereas the ModelE2 cloud-top altitude maxima are
centered over East-Asia (3 GMT, black-dot green). Similarly, the
EPIC, cloud-top altitude minima are centered over North America
region epitomized by Iowa (18 GMT, black-dot orange), whereas
theModelE2 cloud-top altitudeminima are centeredmore over the
Atlantic Ocean region (13 GMT, black-dot light blue).

The apparent shift in longitude between the cloud-top altitude
location between the EPIC observational data and the ModelE2
climate simulation is made far more clearly evident in the
Hovmöller representation of the cloud-top altitude variability,
as demonstrated in Figure 8. The Hovmöller format shows both
the maxima and the minima to be longitudinally aligned, and that
his holds for both EPIC (Left) and ModelE2 (Right). For EPIC,
the ridge of cloud-top altitude maxima for 2017 and 2018 are
persistently located along the 6 GMT (90° E longitude) meridian
running through central Asia (WChina). Similarly, a broad valley
of cloud-top altitude minima for years 2017 and 2018 are
persistently located along the 17 GMT (−75° W longitude)
meridian that runs through New York of the North America

longitude group. Extremes in cloud-top maximum andminimum
altitudes both occur during the NH summer season centered
on July.

A similar pattern in the seasonal and longitudinal variability of
cloud-top altitude appears also to hold for ModelE2, as shown in
Figure 8 Right. The principal difference is a general eastward shift
by about 45° in longitude of the ridge of cloud-top maxima, and
an eastward shift by about 60° in longitude for the cloud-top
minima.

Another difference between EPIC and ModelE2 cloud-top
altitude variability is the more limited range of variability for the
ModelE2 cloud-top maximum altitudes, and a larger range of
variability for the cloud-top minimum altitudes, compared
to EPIC.

Perhaps the biggest difference, but also one of less significance,
is the large difference in the cloud-top altitude depicted in
Figure 7, which shows the mean cloud-top altitude for EPIC
to be about 4 km, while the average cloud-top altitude for
ModelE2 clouds is about 8 km. The reasons for this difference
arise from the limited ability of satellite remote sensing
measurements to detect optically thin clouds, and also the

FIGURE 10 | Left: Hovmöller format ice cloud sky fraction from EPIC Composite analysis results for the year 2018 (Upper Left) and 2017 (Lower Left). Right
Panel: Water cloud sky fraction from EPIC Composite analysis results for the year 2018 (Upper Right), and for year 2017 (Lower Right).
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retrieved, or inferred, cloud-top altitude refers to the optical
depth τ = 1.0 level. For ModelE2 clouds, cloud-top pressure is
known precisely for all of the model generated clouds, which
includes significant numbers of optically thin (τ < 0.1) high
altitude cirrus clouds (that automatically constitute the grid-
box cloud-top). Also, since the ModelE2 diagnostics assign the
cloud layer’s top edge as the cloud-top, this is setting the ModelE2
cloud top at the optical depth τ = 0 level, which further biases
higher the ModelE2 cloud-top results. Since all of the ModelE2
cloud optical depth information is available at the SHS diagnostic
data sampling aggregation, it should be possible to establish a
thin-cloud threshold, compute the optical depth τ = 1.0 level, and
re-define theModelE2 cloud-top altitude to more closely coincide
with the observational cloud-top data.

Also of interest, because the EPIC Composite LE/GEO cloud
products are retrieved separately for liquid water and ice clouds
(Minnis et al., 2021), the differences in the seasonal and
longitudinal variability for the ice cloud the water cloud
altitude can thereby be also examined separately, as done in
Figures 9, 10.

EPIC COMPOSITE: ICE AND WATER
CLOUDS

In addition to the all-cloud category, the EPIC Composite
database also separates clouds into ice cloud and water cloud

categories. The GISS ModelE2 also generates ice and water
clouds, with precise internal knowledge of the ice and water
cloud radiative properties and distribution. But due to
unbridgeable differences in definition, direct comparison of the
EPIC and ModelE2 ice and water cloud properties is not
warranted, as this could lead to false conclusions. The EPIC
Composite ice/water cloud differentiation is tied to the Minnis
et al. (2021) retrieval algorithms that are used in CERES and
MODIS retrievals, and this differentiation would be difficult to
reproduce from within the GCM output data. Accordingly, the
EPIC/ModelE2 cloud property comparisons have been limited
just to the more physically based all-cloud sky fraction and cloud
altitude.

Thus, it makes good sense to intercompare the EPIC
Composite ice cloud and water cloud properties against each
other, with the caveat that an increase in ice cloud fraction could
have come at the expense of a decrease in water cloud fraction,
and vice versa. The same algorithms have been applied uniformly
for years 2017 and 2018, so the relative changes should be
meaningful. Clearly, the La Niña event has significantly
disrupted the cloud distribution, so it is of interest to see how
the clouds have changed between 2017 and 2018, even if just from
the EPIC Composite data. Bender et al.

(2017) have demonstrated the existence of a convincingly
strong positive relationship between cloud albedo and cloud
fraction, i.e., that cloud albedo increases with increasing cloud
fraction, and that the increase in cloud albedo becomes

FIGURE 11 | Top Left: Ice cloud altitude from EPIC Composite analysis results for the year 2017, and Top Right: ice cloud altitude for the year 2018. Bottom
Panel Left: Water cloud altitude from EPIC Composite analysis results for the year 2017, and Bottom Right: water cloud altitude for 2018.
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increasingly greater as the cloud fraction approaches unity,
although this relationship does not have an explicit
dependence on cloud optical depth.

Figure 9 Top shows the seasonal variability of the EPIC ice
cloud fraction, with Figure 9 Bottom showing the
corresponding water cloud variability. Compared to the
roughly uniform all-cloud sky fraction in Figure 5 Top,
counter-acting changes are seen during January-March with
the ice cloud fraction increasing and the water cloud fraction
decreasing in both 2017 and 2018. Interestingly, the longitudinal
ordering of the ice cloud dayurnal variability exhibits similarity
to the ModelE2 all-cloud fraction longitudinal variability
(Figure 5 Bottom) with the East-Asia (3 GMT, black-dot
green) and Central Pacific (23 GMT, black-dot blue) regions
near the top, and the Atlantic region (13 GMT, black-dot light
blue) near the bottom. Also, there is some tendency for the
dayurnal range of the EPIC ice cloud fraction variability to
‘bulge’ in the NH summer months, like the ModelE2 results,
with both the maximum and minimum occurring in July.
Perhaps most notable is the strong constriction in the ice
cloud dayurnal amplitude in November 2018, which again
shows some similarity to the ModelE2 results.

A broad range of longitudes from the Date Line 0 GMT, blue
dot line) to India (7 GMT, long dash magenta line) appear near
the top of the ice cloud sky fraction in Figure 9 Top. It is of
interest that the East-Asia (3 GMT, black-dot green line) and
Central Pacific (23 GMT, black-dot blue) regions also exhibit
some of the sporadic small-amplitude 60-days oscillations during
January-March of 2017 and 2018, and from August to December
of 2017. Longer periods of 4-to-6-months duration, are also
evident in this longitude region. More specifically, the Date
Line longitude (0 GMT, blue dot line) appears to be aliasing
the changing land/ocean fraction, which is being sampled on 1-h
intervals as the Earth rotates (described in more detail in
Figure 15). Also prominent in Figure 9 Top is the long
period ice fraction variability over the West Africa region (13
GMT, black-dot light blue line), which exhibits the lowest cloud
fractions, and is interrupted by some low-amplitude shorter-
period 60–90-days oscillations from November 2017 to
April 2018.

On the other hand, for the water cloud sky fraction in Figure 9
Bottom, shows that for the most part, the North America region
Iowa (18GMT, black-dot orange line) exhibits the largest water
cloud sky fraction from 2017 through 2018, and that similarly the

FIGURE 12 | Left: Hovmöller format ice cloud altitude from EPIC Composite analysis results for the year 2018 (Upper Left) and 2017 (Lower Left).Right Panel:
Water cloud altitude from EPIC Composite analysis results for the year 2018 (Upper Right), and for year 2017 (Lower Right).
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Africa-Asia, East Iran region (8 GMT, black-dot magenta line)
displays the lowest water cloud sky fractions. Both of these
regions also exhibit a couple of the low-amplitude 60-days
oscillations from October 2017 to April 2018, with the Date
Line longitude (0 GMT, blue dot line) also popping up to the top
during this time period. Figure 9 Bottom shows a strong decrease
in the water cloud sky fraction centered on March in 2017 for
essentially all longitudes, broadening toward April in 2018. The
EPIC water cloud fraction accounts for ~ 2/3 of the all-cloud sky
fractions.

Figure 10 shows the seasonal and longitudinal variability of
the ice cloud (Left) and water cloud (Right) sky fraction expressed
in Hovmöller format. The Hovmöller plots show a clear

separation in longitude of the ice cloud and water cloud sky
fraction regions of maximum concentration, with the ice cloud
sky fraction favoring the longitudes spanning the Indian Ocean,
East-Asia, and Central Pacific Ocean, from roughly 45E to 135W.
The water cloud sky fraction dominates from the Eastern Pacific
(135W to the North and South America continent longitude
(45W). The maximum in ice cloud sky fraction occurs in March,
with March 2018 being considerably more intense than March
2017. Consistent with the counteractive nature of the ice/water
cloud phase determination, the ice cloud maxima coincide with
the prominent breaks in the column of the water cloud sky
fraction in March 2017 and again in March 2018. As noted in
Figure 9 Top, the ice cloud sky fraction increased by nearly 5%

FIGURE 13 | Hovmöller ratio contour plots of the percent change for year 2017 relative to reference year 2018 of the EPIC Composite cloud property data for:
Upper Left: the ice cloud sky fraction for years 2017/2018 from Figure 10 left; Upper Right: the water cloud sky fraction for 2017/2018 from Figure 10 right; Lower
Left: the ice cloud altitude (km) for years 2017/2018 from Figure 12 left; Lower Right: the water cloud altitude (km) for 2017/2018 from Figure 12 right.
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from 2017 to 2018, In contrast, Figure 9 Bottom shows essentially
no change in the annual mean of the water cloud sky fraction
from 2017 to 2018, though there are substantial changes in the
longitudinal distribution of the water cloud sky fraction. There is
the appearance of a parallel longitudinal column along the
Central Pacific Date Line (0 GMT) with less intensity but
greater seasonal variability than along the principal water
cloud longitudinal column along 90W (18 GMT). Also of note
is the relative minimum in the ice cloud longitudinal column
occurring in May of 2017 and 2018 when the DSCOVR
Spacecraft is at its northern-most position viewing the
maximum in land fraction. During December-January, when
the Spacecraft is viewing maximum ocean fraction (at 0
GMT), the water cloud sky fraction appears to have a local
maximum.

Figure 11 Top shows the seasonal variability in ice cloud
altitude for the years 2017 and 2018. There is an overall
smoothness and symmetry in the seasonal cloud-top altitude
change with a broad NH summer maximum occurring in July
and a small secondary SH summer maximum in January, with
remarkably little change between 2017 and 2018. The Africa-Asia
region, as epitomized by India (7 GMT, long-dash magenta) and
East Iran (8 GMT, black-dot magenta), has the highest ice cloud
altitude. This is followed by East-Asia (3 GMT, green), Pacific (22
GMT, blue), and Atlantic (13 GMT, light blue), with the North
America (18 GM, orange) exhibiting the lowest cloud-top
altitude. The same longitudinal order holds for 2018, but with
some distortion in the winter months.

Figure 11 Bottom shows the corresponding seasonal
variability of the water cloud-top altitude, which, in contrast
to the ice cloud altitude, exhibits more chaotic variability,
especially for year 2017, which has been identified as the La
Niña year. The water cloud altitude has a broad NH summer
maximum with a secondary SH summer maximum in January,

thus exhibiting what appears to be a biannual oscillation in global
cloud structure. Theminima in the water cloud-top altitude occur
in March-April and in October, which is the same as the ice cloud
seasonal pattern. In 2018, the water cloud summer maximum
narrows, and the minima become deeper and broader.

The longitudinal ordering of the water cloud-top maximum
has East-Asia region as represented by Cambodia (5 GMT, green)
and East China (4 GMT, dash green), at top, followed by
neighboring West China (6 GMT, dot-dash magenta) and
India (7 GMT, dash magenta), with the minima in water
cloud altitude occurring over the East Pacific region, as
represented by West Alaska (23 GMT, black-dot blue). The
raggedness in the 2017 water cloud altitude variability might
be indicative of potential La Niña related activity that is not
present in 2018, but the ice cloud shows no such change.

Figure 11 shows some traces of low-amplitude 60-days
oscillations in ice cloud altitude, at a number of longitudes
from October 2017 to April 2018, with many being 180° out
of phase with each other. Perhaps the most persistent are the low-
amplitude oscillations over the North America region (18 GM,
black-dot orange) beginning in April 2017 and continuing
through 2018. Figure 11 Bottom shows similar 60-days
oscillations at multiple longitudes, but with a somewhat larger
amplitude, the most prominent of those being over the longitude
range from New Zealand (1 GMT, solid blue) to India (7 GMT,
long dash magenta) from June to August of 2017. There are also
oscillations in the January-March time period that might be
related to the EPIC La Niña planetary albedo variability. In
any case, there are far more of the low-amplitude 60-days
oscillations in the 2017 water cloud altitude variability than in
non-La Niña 2018.

Nevertheless, representing the water cloud altitude variability
in Hovmöller format in Figure 12 does not significantly enhance
its discrimination capability to distinguish between the 2017 La

FIGURE 14 | Left: Hovmöller ratio plot of the percent change for year 2017 relative to reference year 2018 for the all-cloud sky fraction, combining the results of the
separate ice cloud and water cloud sky fractions in Figure 13, top left and top right, respectively. Right: All-cloud sky fraction, combining the results of the separate ice
cloud and water cloud altitude in Figure 13, bottom left and bottom right, respectively.
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Niña conditions and the 2018 non-La Niña conditions the same
way that the Hovmöller format could enhance the EPIC planetary
albedo in Figure 3 relative to Figure 2. The purported La Niña
discrimination in Figure 12 Bottom Right panel does exhibit
more variability in 2017 than in 2018, but that variability occurs
more along the time dimension than in longitude.

However, what does seem to be more unusual about
Figure 12, is the near-vertical alignment along longitude lines,
as well as also the strong seasonal alignment. The ice cloud
altitude in Figure 12 Left shows islands of secondary cloud
altitude maxima occurring in December-January along the 7-
to-8 GMT and the 22-to-23 GMT longitudes. December-January
is the time when the EPIC-view is focused most strongly on
Antarctica. The 7-to-8 GMT and the 22-to-23 GMT time periods

correspond to the longitudes of maximum and minimum
planetary albedo in Figure 2 Top, respectively. The seasonal
islands of the strong NH summer maxima in 2017 and 2018 both
exhibit a steep rise to maximum in May, and an equally steep
decline in August-September. There is a similarly steep
longitudinal gradient for these NH summer maxima the
extends from May on to September at their eastern edge at
120° W longitude, while tapering off more gradually at their
western edge, after spanning nearly the entire globe. Broad
regions of ice cloud minimum altitude extend from October to
April of the following year. They appear to be offset from the
longitude of ice cloud maxima by essentially 180°. The ice cloud
altitude variability shows little change between 2017 and 2018,
except for the increase in June over England (0 GMT).

FIGURE 15 | Upper Left: Line plot of the ModelE2 ocean fraction for the year 2017. Upper Right: Line plot of the ModelE2 ocean fraction for the year 2018.
Lower Left: Hovmöller contour map of the ModelE2 ocean fraction for year 2017. Lower Right: Hovmöller contour map of the ModelE2 ocean fraction for year 2017.
The seasonal change in ocean fraction is due to the DSCOVR Spacecraft Lissajous orbital motion as denoted by the Sub-Satellite latitude at figure bottom. The tiny
differences in the line and Hovmöller plots between years 2017 and 2018 arise from the slow orbital drift of the DSCOVR Spacecraft in its Lissajous orbit.
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On the other hand, it is the water cloud altitude (Figure 12
Right) that exhibits the more significant features that differentiate
the La Niña year 2017 from 2018. Most noticeable are the 60-days
(time dependent) oscillations that occur during March to August
of 2017 over a broad swath of longitudes reaching from the
Central Pacific to the Indian Ocean (0–9 GMT). These are the
same time dependent oscillations that were readily identifiable in
the line plot in Figure 11 Bottom. There appears to be some
degree of correlation of this time dependent variability of the
water cloud altitude with the water cloud sky fraction variability
in Figure 9 Bottom Left, and in Figure 10 Bottom Right, but not
with the EPIC planetary albedo variability in Figure 3 Bottom
Left. Also, the prominent February-March longitudinal
variability feature in the EPIC planetary albedo, is absent in
the water cloud altitude plot, but still coinciding the overall space-
time location of this feature.

There is the additional June-July longitudinal wave feature in
Figure 9 Bottom Right, appearing over the Eastern Pacific Ocean
with peak-to-peak variability (17–21 GMT) extending over
7,000 km. Similar variability in water cloud altitude also
appears in the year 2018 in March-April, also over the Eastern
Pacific Ocean region.

However, the most curious feature of the water cloud altitude
variability is the apparent longitudinal discontinuity at the 0
GMT Date Line, with the water cloud altitudes rising steeply to
the west, and decreasing steeply to the east. If this were really real,
it would require an explanation as to the underlying cause. It is
also possible that this demarcation might be a selection criteria
artifact in the EPIC Composite data matching process that
switches between the different LEO/GEO data sources to select
the closest match to the EPIC image time and viewing geometry.

The artificial-looking demarcation and longitudinal alignment
along the 0 GMT meridian that stands out prominently in
Figure 12 Right, is evident, a least to some extent, in previous
Hovmöller plots of EPIC data, such as the sharp longitudinal
gradient in the planetary albedo near the 0 GMTmeridian during
January-March of 2018 in Figure 3 Left, but is not reproduced in
the Hovmöller ratio plot in Figure 4 Left. This appears to be an
interpolation bias that arises from interpolating EPIC image data
points to a uniform GMT grid. Due to telemetry limitations, there
are only 13 EPIC images on some days, instead of the normal 22
images per day, which creates wider data gaps in the 0 GMT
vicinity that need to be bridged. This interpolation bias persists
from year to year and appears to be more pronounced for larger
gradients near 0 GMT.

The basic objective of the Hovmöller ratio plots is to isolate the
atmospheric and cloud property changes that take place between
the 2017 (La Niña) and 2018, by removing the common seasonal
and longitudinal variability due to the Lissajous orbital
perspective, as well as the surface contributions from
Antarctica and continental boundaries that undergo little
change. In the process, data artifacts common to both years
are also eliminated.

The Hovmöller ratio plots in Figure 13 show little evidence of
longitudinal demarcation for the EPIC Composite ice cloud and
water cloud sky fraction and cloud altitude results from Figures
10, 12. Figure 10, with cloud fraction uniformity near 0 GMT,

had little evidence of longitudinal artifacts from the start. The
presence of strong cloud fraction gradients and longitudinal
artifacts near 0 GMT in Figure 12, and their elimination by
the Hovmöller ratioing tends to confirm their nature as
interpolation biases.

The Hovmöller ratio plots for the individual EPIC Composite
ice cloud sky fraction and altitude (Figure 13 Left, Top and
Bottom), and the water cloud sky fraction and altitude (Figure 13
Right, Top and Bottom), are directly comparable to the Figure 3
EPIC planetary albedo Hovmöller ratio. These four individual
cloud components show significant variability and have only
several features that coincide with the EPIC planetary albedo
features. Moreover, they have but a few features that coincide
with each other, and show nothing that might resemble a La Niña
signature. Yet, acting together, they must reproduce the space-
time variability of the planetary albedo, demonstrating
convincingly that independent component comparisons are no
substitute for a wholistic quantity.

The Hovmöller ratio plot in Figure 14 Left is the 2017/2018
ratio of the all-cloud EPIC Composite sky fraction from Figure 6
Left, which is also the combined result of the individual ice cloud
and water cloud sky fraction components from Figure 13 Top.
The EPIC Composite database contains only the all-cloud and the
ice cloud components. Given that it is a binary choice for database
clouds to be either ice or water cloud, the water cloud variable is
defined as a separate entity by the difference between the all-cloud
and the ice cloud categories.

Interestingly, the all-cloud sky fraction ratio in Figure 14 Left
compares far more favorably with the EPIC planetary albedo ratio
(Figure 3 Left) than the ice cloud and water cloud sky fraction
ratios considered separately as in Figure 13 Top. The two most
prominent features of the EPIC planetary albedo ratio are the
strong February albedo decrease stretching from 180° W to 0° W
longitude, and the strong October increase in albedo that
stretches from 90° E to 135° W longitude. Both of these year-
2017 “La Niña” features are reproduced in the all-cloud sky
fraction ratio plot, especially the February strong decrease in
sky fraction, also stretching from 180° W to 0° W longitude. Since
cloud fraction correlates well with cloud albedo (Bender et al.,
2017), these changes in cloud fraction are consistent with the
space-time changes in the EPIC planetary albedo variability.
However, there is an additional “strong decrease in all-cloud
sky fraction” occurring in July from 135° W to 45° W longitude in
the all-cloud fraction ratio, which has no similar feature in the
EPIC planetary albedo ratio.

Similarly, the all-cloud altitude ratio in Figure 14 Right also
compares far better with the EPIC planetary albedo ratio pattern
of variability than the separate ice cloud and water cloud altitude
ratios shown in Figure 13 Bottom. The improved agreement is
not specifically in achieving a closer match-up for the principal
features, but rather in a more general alignment of the peripheral
pattern of variability surrounding a more or less quiescent Pacific
Ocean region during the April to September time period. Since
the cloud altitude change by itself has only minimal impact on the
planetary albedo, the actual improvements in agreement with the
planetary albedo variability patterns must originate from
radiative effects that arise from changes in the other
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accompanying cloud properties. The cloud altitude changes
would more directly affect the outgoing LW thermal radiation,
which may potentially have its own unique “La Niña” response
signature.

Despite the apparent agreement of the all-cloud sky fraction in
reproducing the principal February decrease in planetary albedo,
there is a potentially significant difference in that the prominent
30° period longitudinal oscillations in the EPIC planetary albedo
variability, which, except for the interval from 45° E to 180° E,
effectively span the entire globe, but which are not reproduced in
the all-cloud sky fraction variability. It may be that the reason for
this is due to differences in data resolution. The EPIC planetary
albedo, or rather the reflected solar SW radiance measurements at
the pixel level are unitary wholistic measurements that record and
tabulate the reflected radiances at a high digital resolution. Cloud
cover, on the other hand, is the result of a binary decision of clear
of cloudy, depending on some arbitrary threshold. There is no
way for the retrieval algorithm to know if at the sub-pixel level,
the entire pixel is filled with an optically thin cloud, or if it is only
a small fraction of the pixel that may contain an optically thick
cloud. Thus, it may be that for reflected solar SW radiation, as a
unitary wholistic measurement, tiny changes that contain the
global-scale oscillation signal can be reliably tabulated and
recorded across the entire sunlit hemisphere, whereas such
tiny changes that might be present in the different cloud
properties, never get a chance to be tabulated by getting wiped
out by the clear/cloudy threshold.

From the foregoing, it appears that it may be the unitary
wholistic nature of the EPIC radiance measurements that enable
the planetary albedo data to provide the best representation for
comparing the year-to-year space-time variability that may be
contained within the sunlit hemisphere EPIC measurements.
Such comparisons of year-to-year changes in the EPIC data
planetary albedo are being examined here to see if
characteristic differences can be identified between 2 years of
data, such as the 2017 La Niña year and 2018, which is
representative of more ENSO-neutral conditions. While cloud
radiative properties may be the fundamental building blocks of
the planetary albedo, cloud properties do not vary lockstep as
clouds change in the climate system. Thus, selection of a cloud
property to serve as an indicator in the year-to-year comparisons
does not lead to greater clarity in interpretating the comparison
results, but rather serves to magnify the diversity of the different
cloud property radiative effects. Knowing quantitatively how the
different cloud properties contribute toward the planetary albedo
is important in itself, but the planetary albedo is also robust as a
measure of the Earth’s global energy balance.

The changing DSCOVR-view Lissajous orbital perspective of
the EPIC data is a significant contributing factor to the seasonal
and longitudinal variability that is seen in the longitudinal slicing
comparisons of EPIC and ModelE2 data. Averaging data over the
Earth’s sunlit hemisphere averages out meteorological weather
noise as well as the latitudinal and longitudinal information. The
rotation of the Earth retrieves the longitudinal component of the
planetary scale variability via longitudinal slicing. Likewise, some
significant fraction of the latitude dependent information is
retained by the combined change in solar declination and the

Lissajous orbital motion of the DSCOVR Satellite as depicted by
the sub-satellite latitude at figure bottom (Figure 15 Top) that is
varying from its southern extreme position in January, to its
northern extreme in May, and then back to its southern extreme
in December.

The land/ocean fraction is another significant contributor to
the seasonal and longitudinal variability in the longitudinal
slicing comparisons of EPIC and ModelE2 data. Except for a
small seasonal change in sea ice, the ocean fraction is static in
time. Hereby, we identify and quantify the net effect that these
otherwise invariant contributors have on the line format and
Hovmöller contour map comparisons between the EPIC
observational, and the ModelE2 climate GCM results for
planetary albedo and cloud properties.

Figure 15 Top is the line plot of the (static) ocean fraction for
years 2017 and 2018. As to be expected, the Pacific Ocean region
(black-dot blue) corresponds to the largest ocean fraction, and the
Africa-Asia region (black-dot magenta) the smallest with the
Atlantic region (black-dot light blue) nearby. The East Asia
(green) and the North and South America regions (orange)
undergo significant seasonal variability, showing time
dependent oscillations of 4-to-6 months duration, in particular
during the July to November time frame. More importantly, the
dayurnal and seasonal variability of the ocean fraction does not
generate the higher frequency 60–90 days oscillations that are
abundantly present in the EPIC planetary albedo and cloud
property data.

Figure 15 Bottom shows the Hovmöller contour map of the
(static) ocean fraction for year 2017 (Left) and for 2018 (Right).
The objective of these plots is to show that while the seasonal
effects of the Lissajous orbital and solar declination motion are
significant, the effect of the year-to-year Lissajous orbital shift is
practically imperceptible. The minimum ocean fraction occurs in
May over Iraq (9 GMT). With world map superimposed, the time
dependent oscillations in the line plot are visible in the East Asia
region from May to September, as is the constriction in ocean
fraction near the 0 GMT Date Line. No longitudinal oscillations
are discernable.

DISCUSSION

The current model/data comparison study arose from a brute-
force effort to calibrate the NISTAR Band-B full-disk sunlit
hemisphere measurements. Fully calibrated; with the ability to
reliably convert near-backscattered radiances into SW fluxes,
NISTAR data would, on their own, be able to reproduce the
EPIC planetary albedo results in Figures 2, 3. To this end, Su et al.
(2018) converted the EPIC image 1024 × 1024 narrow-band,
backscattered radiances into the 12 × 24 tables of monthly-mean,
SW reflected hemisphere-mean fluxes for years 2017 and 2018,
that constitute the planetary albedo comparisons of this study.

Spectral radiances from 5388 EPIC images for 2017, and 5,351
for the year 2018 were processed and converted into the 12 × 24
(monthly-mean, GMT-hourly) tables of reflected SW fluxes. The
EPIC-viewable sunlit-hemisphere fractions generated annual-
means of 204.63 and 202.90 Wm−2, respectively, with ~ 1.0
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Wm−2 standard deviation. The EPIC Composite cloud properties
have similar data reliability out to the third decimal. Because of
Lissajous orbital motion, the EPIC-viewable fraction of the sunlit
disk varies from ~ 92 to ~ 97 percent of the full disk, introducing
some uncertainty as to the total full disk reflected radiation.
Accordingly, both the EPIC and the ModelE2 annual-mean
planetary albedo have been normalized to the 29.1% CERES
value (Loeb et al., 2018) to focus more on comparing the space-
time patterns of variability rather than interannual change.

Moreover, it is important to note that planetary albedo
contains both atmospheric and surface contributions. The
DSCOVR vantage point combined with the seasonal change in
the tilt of the Earth’s rotational access results in a time changing
contribution from the polar regions which maybe further
enhanced in the EPIC observations due to the backscatter
viewing geometry. Explicit treatment of the scattering
enhancement at near back-scattering angles introduces an
uncertainty in both the calculation of the shortwave flux from
the EPIC observations and the model. Thus, while the signature
of these surface contributions is apparent in the figures shown in
this paper, quantitative evaluation of these surface driven model/
observation differences requires additional research and is
beyond the scope of this investigation. To ensure that we are
not mixing this type of surface contribution into our analysis, we
examine the ratios two individual years since orbital and surface
contributions will be minimized allowing us to focus on the
atmospheric changes.

With quasi-chaotic meteorological weather-scale noise
averaged out, the EPIC and the similarly sampled ModeE2
data are uniquely positioned for a climate-style model/data
comparison with excellent space-time data sampling self-
consistency. EPIC image acquisition on the near-hourly basis
coincides closely with the climate GCM (GISS ModelE2) 1-h
radiation time-step radiation calculations that are performed
‘instantaneously’ for all GCM grid boxes.

The only real requirement on the part of the GCM in the sunlit
hemisphere averaging of output data, is to use Solar and
DSCOVR Satellite Ephemeris information to impose Lissajous
orbital viewing geometry and projected area weighting of the
individual grid box contributions to the sunlit hemisphere
average. All this ensures that the diurnal cycle is sampled the
same way by the GCM as by EPIC, with high noon sub-satellite
meridian, and sliding noon-to-dusk, and noon-to-dawn, diurnal
contributions from neighboring longitudes to east and to the
west, properly aggregated.

In this way, weather noise and the latitudinal and longitudinal
dependence in the sunlit hemisphere are averaged out.
Differences in spatial resolution between the EPIC and GCM
data are similarly side-stepped. Remaining in the data is the
seasonal and planetary scale variability. Longitudinal dependence
is made accessible by the rotation of the Earth. Some latitudinal
dependence is captured by the seasonal change in solar
declination and also as a result of the Lissajous orbital motion
of the DSCOVR Satellite.

The Figure 2 line plots are the first longitudinal slicing EPIC
and ModelE2 planetary albedo comparisons, showing the
seasonal change in dayurnal variability of the planetary albedo

in 1-hourly time-steps as the Earth rotates. The immediate take
away of this comparison is that while the overall envelope of
planetary albedo variability is comparable, the ModelE2 dayurnal
amplitude is too large during the northern hemisphere (NH)
summer months and too small during the winter months, and it is
only during the winter months that the longitudinal ordering of
the dayurnal variability matches that of EPIC.

The biggest mismatch is that during the NH summer months,
ModelE2 significantly overestimates the planetary albedo, hence
clouds, over the ocean areas, and underestimates clouds over the
continental land areas. This was a problem stemming from the
use of a globally uniform relative humidity threshold in ModelE2
that the GISS GCMmodeling group had been aware of, and have
already implemented a rigorous physics-based cloud treatment
for the GISS ModelE3 version. The Figure 2 comparison makes
this a quantitative climate GCM performance diagnostic showing
the largest overestimate to be over the East-Asia region (3 GMT,
black-dot green line), while the EPIC data show t the maximum
NH summer planetary albedo to be occurring instead over the
continental Africa-Asia region (8 GMT, black-dot magenta line).

The model used in this study was the GISS coarse-grid coupled
atmosphere-ocean 4° x 5° ModelE2 version (Schmidt et al., 2014),
utilizing a mass-flux cumulus parameterization that is based on a
cloud base neutral buoyancy flux closure originally described by
Del Genio and Yao (1993), with stratiform clouds based on a
Sundqvist-type prognostic cloud water approach, with diagnostic
cloud fraction (Del Genio et al., 1996). Tuning is used to bring the
empirical parameterizations of physical processes in acceptable
agreement with observations (Schmidt et al., 2017). This involves
establishing a critical relative humidity criteria for the onset of
cloud condensation in a GCM grid box, based on the statistical
overlap of water vapor and temperature probability distributions
to achieve relative humidity conditions for cloud condensation.

Replotting the planetary albedo data in Hovmöller format in
Figure 3 Left produced an unexpected result by bringing out
detail in the EPIC planetary albedo variability that was not
apparent in the Figure 2 line plots. It turns out that there is
far more of the characteristic (monthly, and 30° longitude)
variability in planetary albedo in year 2017, compared to the
more quiescent appearance in 2018. Most notable it the strong
decrease in planetary albedo during February 2017 over the
Central Pacific Ocean longitudes.

This difference in planetary albedo variability between the
years 2017 and 2018 is further enhanced and isolated to
atmospheric changes by the 2017/2018 Hovmöller ratio plot in
Figure 4 Left, by canceling out the seasonal variability patterns
that are common to both years (e.g., the surface contribution
from Antarctica shown by the magenta areas in Dec/Jan evident
in the upper left of the two right panels of Figure 3). The sharp
February decrease in the EPIC planetary albedo stretches from
180° W to 0° W longitude, which exhibits superimposed (30°

extent) longitudinal oscillations. There is also a strong October
increase in the planetary albedo that stretches from 90° E to 135°

W longitude.
Year 2017 has been identified as a La Niña year (Zhang et al.,

2019), which is typically associated by the appearance of colder
sea surface temperatures (SSTs) in Central and Eastern Pacific,
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with strong winds blowing ripples of warmwater westward. Thus,
there is reason to associate the increased variability in the EPIC
planetary albedo occurring in the year 2017 relative to 2018 with
ongoing La Niña activity. Since clouds are principal contributors
to planetary albedo, it then becomes pertinent to investigate is
there are characteristic cloud changes that might be associated
with La Niña conditions. This is where the EPIC Composite
database of cloud properties generated in the Sue et al. (2018)
conversion of the EPIC spectral radiances into radiative SW
fluxes, provide the essential context of how the cloud radiative
properties might have changed between the 2017 La Niña year
and 2018.

Figure 5 Top shows a 1.5% increase in the EPIC all-cloud sky
fraction, with most of it occurring in March of 2018, and some in
December of 2018. Also, Figure 7 Top shows the corresponding
increase by 1.3% in the all-cloud cloud-top altitude. The EPIC
Composite database breaks down of the cloud properties into ice
and water cloud categories. Thus, Figure 9 shows the ice and
water cloud changes in cloud fraction to be a 4.8% increase for the
ice cloud fraction, and a 0.25% decrease for the water cloud
fraction in going from 2017 to 2018. Similarly, Figure 11 shows
the ice cloud altitude increasing by 0.7%, and the water cloud
altitude decreasing by 1.9% from 2017 to 2018.

Hovmöller contour plots of the EPIC cloud property
variability for years 2017 and 2018, along with the
corresponding ModelE2 cloud property variability, are shown
in Figure 6 and Figure 8 for the all-cloud sky fraction and the all-
cloud altitude, respectively. There is general agreement between
the EPIC and ModelE2 cloud fraction variability, although
impacted by the ModelE2 longitudinal land/ocean cloud
distribution differences relative to the EPIC data. However, the
all-cloud altitude comparison in Figure 8 shows an eastward shift
by ~ 45° in longitude of the longitudinally aligned all-cloud
altitude maximum and minimum all-cloud altitude ridges in
the ModelE2 data compared to EPIC. It is possible that this
might also be related to the ModelE2 land/ocean cloud
distribution problem.

However, the apparent shift by nearly 90° between the EPIC ice
cloud and water cloud longitudinal sky fraction distribution
maxims and minima locations in the Figure 10 Hovmöller
plots could well be real, since the cloud ice and water phase
separation in the EPIC Composite database is a binary
differentiation. On the other hand, the apparent longitudinal
demarcations in the Figure 12Hovmöller plots along the 0 GMT
meridian for the ice and water cloud altitude, in both 2017 and
2018, appear to be interpolation artifacts arising from
interpolation between sparse EPIC data points in the 0 GMT
vicinity where wider data gaps exist due to telemetry limitations.
The fact that these longitudinal discontinuities are all eliminated
in the Figure 13 by the Hovmöller 2017/2018 ratio plots, which
cancel out any variability that is common to both years.

The Hovmöller ratio plots in Figure 13 for the ice and water
clouds properties and Figure 14 for the all-cloud cases, of year
2017 relative to 2018, are designed to extract changes in cloud
properties of the 2017 La Niña year relative to 2018 ENSO-
neutral conditions. These Hovmöller ratio plots, along with the
Figure 4 Left Hovmöller ratio plot of the EPIC planetary albedo,

describe the relationship of planetary albedo, and the La Niña
impact, with respect to variability changes in Earth’s global
energy balance, where the planetary albedo has a unitary
wholistic relationship to the global energy balance, and so
apparently does the La Niña impact. This makes the planetary
albedo an adequate representative of the La Niña impact, and thus
a convenient indicator of La Niña activity. Individually, cloud
properties are only partial contributors to the planetary albedo,
and thus can only account for a part of the La Niña impact on
planetary albedo, and in proportion to their contribution.

Thus, the all-cloud sky fraction Hovmöller ratio in Figure 14
Left shows remarkable similarity to the EPIC Hovmöller ratio in
Figure 4 Left, in agreement with the Bender et al. (2017) results
that show a close relationship between cloud fraction and cloud
albedo. The all-cloud altitude Hovmöller ratio in Figure 14 Right
also shows some similarity to the EPIC Hovmöller ratio results,
even though the cloud altitude, by itself, makes no significant
contribution to the planetary albedo. The cloud altitude is
however a principal contributor to the outgoing LW thermal
radiation. Hence, the reason for the similarity of cloud altitude
Hovmöller ratio to the planetary albedo variability must be
implicit though its LW thermal impacts, which are not
addressed in this study.

On the other hand, the Hovmöller ratio plots in Figure 13
show little resemblance to the EPIC Hovmöller ratio in Figure 4
Left, thus confirming their role as minor independent
contributors to the EPIC planetary albedo, or as indicators of
La Niña activity. Still, like the planetary albedo, they continue to
have their unique role as observational constraints in climate
GCM diagnostic comparisons. But even in this role, the
contributing constituents are not equal. Having precise self-
consistent space-time sampling is not enough. There must also
exist a close agreement in the physical definition of the climate
variables that are being compared in the longitudinal slicing
comparisons between the observational retrieval results and
their corresponding climate GCM equivalents.

Cloud fraction and cloud-top altitude are undoubtedly the
most robust of the cloud properties, as has also been corroborated
by the intercomparison of the principal satellite and ground-
based cloud datasets using comprehensive spectral analysis
techniques (Li et al., 2015). Yet even for these cloud
properties, there are substantial issues regarding the self-
consistency of the operational definition of these quantities
between observational limitations and climate GCM
representations. For example, in observational retrievals,
arbitrary thresholds are involved in deciding whether a given
pixel might be mostly clear or cloudy, or if some optically thin
atmospheric layer is really a cloud, or an aerosol.

Thus, the EPIC/ModelE2 cloud fraction and cloud altitude
comparisons are only partially successful due to threshold and
physical definition differences that still persist in the
comparisons. The large difference in cloud-top altitude in
Figure 7, where the ModelE2 mean cloud altitude is ~ 7 km,
compared to ~4 km for the EPIC results, is one such example. The
cloud-top altitude in satellite retrievals is typically determined by
the pressure level where the cloud optical depth is unity. In
ModelE2, the pressure level of the top-most cloud is known
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precisely. But that top-most cloud is often an optically thin cirrus
cloud that might not even be recognized as a cloud in satellite
retrievals. Knowing whether the cloud altitude is being defined
relative to sea level, or to the surface topography is another source
of uncertainty.

The cloud water/ice phase is another important cloud property
in tracking the dynamically active storm regions that are typically
accompanied by the presence of ice clouds. However, the ice
cloud identification, by means of cloud-top temperature, or other
means, refers only to the cloud-top region, with no information
available on the rest of the cloud structure. Thus, whatever is
inferred at the top-cloud level, is what is used to separate the all-
cloud sky fraction into its ice cloud and water cloud components.
Differentiating clouds from aerosol also impacts the cloud
fraction definition.

In ModelE2, differentiating between clouds and aerosols is no
problem. However, as for the ModelE2 cloud fraction, clear and
cloudy grid-boxes are accurately tabulated. But, ModelE2 uses a
fractional-in-time vs fractional-in-space cloud radiative fraction
definition that go back to the early days of GCM development
(Hansen et al., 1983) whereby (to save computing time) grid-box
level fractional clouds are interpreted as being fractional-in-time
with a random number selection deciding when to perform
radiative calculations (with 100% cloud cover). On a monthly-
mean basis, the fractional-in-time approach achieves the same
effective cloud fraction as the fractional-in-space approach, but at
a significantly reduced computing cost.

The cloud optical depth and cloud particle size are the more
difficult cloud properties to determine by remote sensing. Optical
depths for ice clouds in particular are difficult to retrieve from
remote sensing radiance measurements. The radiative transfer
calculations are tractable only for plane-parallel geometry and for
homogenous clouds, thus requiring numerous approximations
and assumptions. Also, ice clouds come in many shapes and sizes
that range from rosettes to columns to oriented flat plates.

The cloud properties from EPIC cloud composite data are
compiled from multiple GEO and LEO imagers (Minnis et al.,
2008, Minnis et al., 2021), and are dominated by GEO
contributions because they are most closely matched to the
EPIC image time especially within 60°S-60°N. Thus, the cloud
properties within EPIC cloud composite data are subject to
changes in GEO imagers that occur from year-to-year, as in
early 2018, when Meteosat-10 switched to Meteosat-11, and
GOES-13 switched to GOES-16. Since these changes in GEO
imagers also involve retrieval algorithms, some of the changes in
cloud properties between 2017 and 2018 could be due to changes
in GEO imagers and algorithms.

The EPIC Composite cloud optical depths and particle sizes
show suspiciously large discontinuous decreases between 2017 and
2018. Also, the physical definition of the cloud optical depths and
particle sizes between the EPIC Composite cloud data andModelE2
results differ significantly. Accordingly, we have not included these
cloud properties in the EPIC/ModelE2 comparisons.

We have examined this type of problem previously by using
empirical orthogonal function spectral analysis techniques (e.g.,
Li et al., 2015 for cloud properties; and Li et al., 2014a, Li et al.,
2014b for aerosol space-time variability), which are specifically

designed to quantitatively establish correlations, and to identify
and quantify data artifacts in global datasets that may arise from
calibration and algorithm changes. The Li et al. (2015) study
verified that cloud fraction and cloud-top altitude variability was
robust among the different cloud property determinations, but
that the cloud optical depth and cloud particle size
determinations were problematic. Such spectral analysis
techniques should also be applied to the EPIC composite
cloud property data, especially since they are all independently
retrieved, to identify possible data artifacts.

Also relevant to the 2017 La Niña is the finding by Loeb et al.
(2021) of a decrease in the Earth’s absorbed solar radiation by
about 0.8 Wm−2 going from 2017 to 2018 (which translates to a
global-mean planetary albedo increase by about 0.23% in going
from 2017 to 2018). Loeb et al. attribute most of the global
decrease in absorbed solar radiation to clouds, noting that the
Niño 3.4 SST index was decreasing in 2017, and increasing during
2018. The EPIC Composite all-cloud sky fraction increase by
1.5% is fully consistent with an increase in planetary albedo. The
increase in all-cloud altitude by 1.3 % would have no significant
impact on the planetary albedo. But the possible decrease in the
cloud optical depth, if true, would imply a planetary albedo
contribution in the downward direction.

On the climate GCM side of the ledger, a basic closure exists
naturally since the GCM planetary albedo automatically includes
the radiative contributions from all contributors from the ground
on up. Moreover, the GCM explicit radiation modeling capability
would make attribution calculations possible, which would make
the model/data comparisons a two-way street. But there toomany
missing pieces of information from the observation side to make
reliable closure calculations a reality.

For successful longitudinal slicing comparison, the key factors
that assure self-consistent space-time sampling are to replicate the
viewing geometry of the DSCOVR/EPIC imaging of the Earth’s
sunlit hemisphere in the GCM output data sampling, and to align
the timing of the model/data comparison for the same identical
GMT longitudinal sequencing. Also, the closer the match between
the model and data of the physical definition of the variable that is
being compared, the more effective the comparison. But there is
also a more subtle factor, and that is a numerical detail in how the
integration over the sunlit hemisphere is performed. As a case in
point, there is a large difference in planetary albedo between EPIC
and ModelE2 during December-January when the DSCOVR view
is turned most strongly toward the Antarctic ice cap. Both Figures
2, 3 show the ModelE2 albedo in this region to be significantly
lower than that of EPIC. Does this mean that the surface albedo of
Antarctica in ModelE2 is much too low, or is EPIC overstating the
Antarctic contribution? The Hovmöller ratio plot in Figure 4 does
not show any interannual variability, suggesting either a surface
contribution, or artifact in the model, or data processing, common
to both years, that cancels out in the Hovmöller ratio.

The most plausible explanation is some mismatch in the sunlit
hemisphere integration. Once the EPIC image pixels and GCM
grid boxes corresponding to the DSCOVR-view geometry are
determined, how specifically the integration over the viewable
area is performed is not a sensitive issue, as long as it is the
same for both EPIC and ModelE2. This may not be the case and
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could be further investigated by comparing the EPIC sunlit
hemisphere-mean to the NISTAR full-disk measurements, since
NISTAR sees the sunlit hemisphere as a projected area. Still further,
there is also a small correction to the viewable fraction of the sunlit
hemisphere due to the changing Earth-Satellite distance because of
the radial component of the Lissajous orbital motion. Being beyond
the scope of this investigation, these details will be examined in
future studies of EPIC and NISTAR data comparisons.

LOOKING AT DATA: WHAT IS THERE
TO SEE?

Different views of data stem from different capabilities and point
to different objectives to extract information that may be
submerged. The relatively coarse (4° x 5°) resolution planetary
albedo and cloud cover maps of the GISS ModelE2 in Figure 1,
and of the corresponding observational data, illustrate the
qualitative nature of these comparisons. Nevertheless, they
demonstrate the fact that climate GCMs, like the real world,
operate in quasi-chaotic fashion. Not shown are the 1024 × 1024
higher resolution full-disk EPIC images of the sunlit hemisphere
of the Earth, which are all readily available on the internet at
https://epic.gsfc.nasa.gov.

No two EPIC images are alike. They show the evolving quasi-
chaotic nature of the climate system. Figure 1 Bottom addresses
the energy balance of the climate system in response to the
seasonal changes in solar radiative forcing, but only in a
global-mean sense. This is where the unique DSCOVR
Mission viewing perspective makes significant improvement in
model/data comparison possible.

For Figures 2, 3, the input data are identical, i.e., the same 12 ×
24 monthly-mean tables of the longitudinally sliced, climate-
quality planetary albedo with the weather noise averaged out.
The plotted results look very different, but are complementary.
They show different aspects of the climate system variability with
optimized focus directed to isolating these different aspects.

The important feature in the Figure 2 line plots is the
quantitative nature of comparison for the seasonal dependence
of the dayurnal amplitude variability. In Figure 2, there are
24 color-coded curves, one for each hour of GMT, or every
15° of longitude (far beyond the canonical line limit that can be
counted on the fingers of one hand). These longitude curves are
grouped into five contiguous regions, with individual liens further
differentiated by their line structure, and tagged by a geographic
location in addition to their GMT tag. The results show that the
highest planetary albedos occur over the Western China to Egypt
(6–10 GMT, magenta) region during NH summer months, while
the GISS ModelE2 has the highest planetary albedos occurring
over the East Asia and Western Pacific (2–5 GMT, green) region,
implying unequivocally that MoelE2 overestimates clouds over
the ocean areas, while underestimating clouds over the
continental land areas.

The Figure 5 EPIC cloud fraction line plot shows low
amplitude oscillations for virtually the entire year of 2017 to
February 2018 over the Central Pacific (23 GMT, black-dot blue
line), and perhaps also over the Indian Ocean (8 GMT, black-dot

magenta line). Also noticeable are the October 2017 to October
2018 cloud fraction oscillations over the North America
longitudes (18 GMT, black-dot orange line). The EPIC cloud
altitude plot in Figure 7 also exhibits low amplitude oscillations
from roughly October 2017 to June 2018 at nearly all of the
longitudes. Most prominent are the December 2017 to April 2018
oscillations over Japan (3 GMT, black-dot green line) and West
Africa (13 GMT, black-dot light blue line) that are virtually 180°

out of phase.
This is where the Hovmöller (1949) contour maps

demonstrate their worth. They are designed to display and
study the principal patterns of the climate system variability
by averaging out the latitudinal dimension over its range, and
plotting the results as contour maps with time running downward
along the Y-axis, and with the X-axis displaying the longitudinal
dependence. The EPIC data also get averaged over the
longitudinal dimension in the sunlit hemisphere averaging
(which eliminates the weather noise). But the rotation of the
Earth preserves the longitudinal dependence of the large intra-
seasonal changes that occur in the climate system. By accounting
explicitly for the longitudinal location of the same 12 × 24 data
points used in the Figure 2 line plots, a remarkably different
picture emerges in the Figure 3 Hovmöller contour maps for the
2017 and 2018 planetary albedo variability. There is now a much
more structured difference in the EPIC seasonal variability of
planetary albedo that clearly differentiates the 2017 La Niña year
from the more quiescent variability that is the characteristic norm
for 2018.

The Hovmöller ratio plots in Figure 4 cancel out the basic
seasonal climatological variability to further isolate the La Niña
signature. This clearly identifies February over the Central Pacific
(21–24 GMT), and October over the Western Pacific Ocean (0–5
GMT), as the months exhibiting the largest change in planetary
albedo based on the EPIC data.

The EPIC data are unique in several important ways. First, the
EPIC measurements from the DSCOVRmission vantage point at
the Lagrangian L1 point provide a clear view of the Earth’s sunlit
hemisphere, including a full view of the daytime diurnal cycle of
cloud changes across the entire sunlit hemisphere. Second, the
EPIC backscattered spectral radiance measurements are highly
leveraged against other more specialized satellite data sources.
The internal information content of the EPIC spectral radiances
is not sufficient to deduce full-spectrum radiative fluxes and cloud
properties from just the internal information, but it has been
more than sufficient to successfully select and incorporate the
ancillary satellite data to generate a physically more complete
EPIC data product. As a result, it makes sense to analyze together
the EPIC planetary albedo and the EPIC composite cloud
products since they are intimately related, though not on a
closure basis, as would be the case for the MoelE2 counterparts.

SOME FUTURE CONSIDERATIONS

It has been known since the early days of satellite measurements
that, on an annual basis, the reflected solar SW radiation from the
Northern and Southern hemispheres is nearly identical despite
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the large difference in the hemispheric land-ocean distribution
(Vonder Haar and Suomi, 1971). Given the major differences in
land-ocean surface albedo, this implies significant compensation
by the climate system in order to achieve the hemispheric
symmetry in reflected solar SW radiation. This SH-NH
hemispheric conundrum has been further analyzed and
quantified (e.g., Voigt et al., 2013, Voigt et al., 2014; Stephens
et al., 2015). The Bender et al. (2017) analysis, based on 13 years
of CERES and MODIS data, finds differences in tropical,
subtropical, and midlatitude cloud fraction, as well as cloud
albedo distributions that exhibit zonal dependence.

As amply demonstrated, the longitudinal slicing of the EPIC
cloud fraction and planetary albedo data retains the longitudinal
and intra-seasonal variability. Integration over the sunlit
hemisphere to suppress the weather noise, has also averaged
out latitudinal information. However, much of that latitudinal
information can be retained by piecewise integration over the
sunlit hemisphere, setting up, as a minimum, longitudinal slicing
over the southern and northern hemispheres, and preferably,
with even higher zonal resolution.

The sunlit hemisphere data sampling could also be conducted
separately over specified land and ocean regions for a more
precise characterization of the differing cloud property and
radiative flux correlations over land and ocean areas noted by
Stephens et al. (2015). With such coordinated data sampling
between EPIC and the GCM, the self-consistent space-time
sampling will provide a more quantitative assessment of cloud
interactions in the climate system.

As another significant topic, ice clouds tend to have a bi-
modal distribution in optical depth, given that they are
associated both with the dynamic meteorological activity, and
also with fair-weather conditions. This typically involves large
optical depths in the former case, and small optical depths in the
latter. Since all-cloud optical depths are available at the EPIC
Composite data level, separating the ice clouds into their small
optical depth (τ < 1.0) fair-weather cirrus categories, and large
(τ > 1.0) optical depths characteristic of storm systems, should
be feasible. Such considerations are equally applicable for
separating ice cloud optical depth categories in the climate
GCM output data.

From the GCM perspective, virtually all of the climate
diagnostic variables are available for sunlit hemisphere
sampling. The sunlit hemisphere averaging and longitudinal
slicing offer a unique and quantitative way to compare directly
the space-time variability of climate system variables with their
observational counterparts on regional and planetary spatial-
scales, as well as intra-seasonal and inter-annual time scales.

Longitudinal data slicing provides a convenient platform with
a uniform perspective for a broad range of climate GCM
performance assessments, including model numerics. Would
ModelE2, using a higher horizontal resolution of 1° x 1°, fare
better than the current 5° x 4° version? Or the GISS ModelE2.2
version, with more than double the vertical resolution, that is
optimized for middle atmosphere simulations (Rind et al., 2020)?
For the rectangular grid, polar grid-boxes become smaller than
those along the equator, with undesirable dynamic consequences.
As a potential remedy, there is also the GISS icosahedral grid

(Russell et al., 2018), which utilizes equal-sized triangular grid-
boxes. Basically, the SHS DSCOVR-view sampling can be
implemented in any climate GCM setting to accumulate a
year’s worth of longitudinal slicing data.

CONCLUSIONS

This paper describes a new model/data comparison technique
that uses sunlit hemisphere averaging to average out the
weather-scale noise, and longitudinal slicing by the rotation
of the Earth, to conduct self-consistent space-time sampling of
observational and model-generated data. For observational data
this comparison technique uses EPIC images of the sunlit
hemisphere of the Earth collected by the DSCOVER Mission
spacecraft from its Lissajous orbit around the Lagrangian L1
point. The climate GCM comparison data are similarly
compiled, using identical space-time sampling, based on
DSCOVR-view viewing geometry, to aggregate GCM
diagnostic output data over the Earth’s sunlit hemisphere for
the longitudinal slicing comparison. The standard line plots and
Hovmöller contour maps bring out the different aspects of
variability that are present in the same hemisphere averaged
input data.

Comparison of the seasonal and dayurnal variability of Earth’s
planetary albedo derived from EPICmeasurements with the GISS
ModelE2 generated planetary albedo shows unequivocally that
the GCM results are significantly overestimating cloudiness over
ocean areas, while underestimating clouds over the continental
land areas. The longitudinal slicing comparison also shows that
the overall seasonal dayurnal amplitude of the daily-mean
planetary albedo of ModelE2 is less than half of the EPIC
planetary albedo, but that during the northern hemisphere
winter months, the GCM does reproduce the longitudinal
ordering and the seasonal slope of the EPIC planetary albedo
variability.

With the weather-scale noise averaged out, seasonal line plots
and Hovmöller contour and ratio maps of the EPIC longitudinal
slicing data for the years 2017 and 2018 appear to detect
60–90 days Madden-Julian-type (MJO) oscillations within the
planetary albedo variability patterns. The most notable in the
2017/2018 Hovmöller ratio map is the stand-alone feature of a
sharp decrease in planetary albedo that appears in February-
March 2017 over Central Pacific longitudes, exhibiting
longitudinal oscillations that are 30° in extent, spanning ~
3,000 km peak-to-peak, in strong support of identifying 2017
as an active La Niña year.

EPIC planetary albedo data, augmented by the EPIC
Composite database, form a solid foundation for a unique type
of model/data comparison. Sunlit hemisphere-averaging removes
weather-scale noise, allowing model/data comparisons to target
planetary-scale variability. Currently, the EPIC Composite
database contains cloud property information for cloud
fraction, altitude, optical depth, and particle size, as well as
water/ice phase, which can be compared to climate GCM
equivalents in longitudinal slicing comparisons with self-
consistent space-time and diurnal sampling.
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In the current configuration, the longitudinal slicing is applied
to data that have been averaged over the entire sunlit hemisphere.
Aside from averaging out the weather-scale noise, the
hemispheric averaging also averages out the latitude and
longitude dependent information. The longitudinal slicing
approach is able to retrieve not only the longitudinal
dependence of climate system variability, but it also has the
flexibility to accommodate conducting the sunlit hemisphere
averaging with specified latitudinal resolution to retain
separately the seasonal variability information over the
northern and southern hemispheres.

Furthermore, the sunlit hemisphere sampling is also flexible
enough to sample data separately over continental land and
ocean regions, enabling self-consistent space-time
characterization of global-scale cloud properties separately
over land and ocean regions. Including these improvements,
as well as adding additional climate system variables to
compare, will greatly enhance the utility of the longitudinal
slicing approach as a new model/data comparison tool for
climate system analysis.
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