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Weeds are among the significant factors that could harm crop yield by invading crops and
smother pastures, and significantly decrease the quality of the harvested crops. Herbicides
are widely used in agriculture to control weeds; however, excessive use of herbicides in
agriculture can lead to environmental pollution as well as yield reduction. Accurate
mapping of crops/weeds is essential to determine weeds’ location and locally treat
those areas. Increasing demand for flexible, accurate and lower cost precision
agriculture technology has resulted in advancements in UAS-based remote sensing
data collection and methods. Deep learning methods have been successfully
employed for UAS data processing and mapping tasks in different domains. This
research investigate, compares and evaluates the performance of deep learning
methods for crop/weed discrimination on two open-source and published benchmark
datasets captured by different UASs (field robot and UAV) and labeled by experts. We
specifically investigate the following architectures: 1) U-Net Model 2) SegNet 3) FCN (FCN-
32s, FCN-16s, FCN-8s) 4) DepLabV3+. The deep learning models were fine-tuned to
classify the UAS datasets into three classes (background, crops, and weeds). The
classification accuracy achieved by U-Net is 77.9% higher than 62.6% of SegNet,
68.4% of FCN-32s, 77.2% of FCN-16s, and slightly lower than 81.1% of FCN-8s, and
84.3% of DepLab v3+. Experimental results showed that the ResNet-18 based
segmentation model such as DepLab v3+ could precisely extract weeds compared to
other classifiers.
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INTRODUCTION

The world’s population will increase by 30% by 2050, with a need for requiring a 60% increase in food
production to meet the increasing crop demand arising from food and biofuel consumption (Pingali,
2007). Commitment to supply the amount of food demanded using sustainable modules could also
facilitate the achievement of the FAO goal of providing food security to undernourished people (FAO
and IFAD, 2012). However, as the agricultural sector focuses on increasing productivity, there is the
need to solve issues arising concurrently such as weed management, climate change (Radoglou-
Grammatikis et al., 2020), and reduction in arable lands, irrigation, and fertilizer application. Among
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the challenges in crop production, weed control is ranked as one
of the influencers of crop yield (Raja et al., 2020). Weeds are any
undesirable plants that grow amongst agricultural crops or
available surface interfering with crop growth and human
activities (Alsherif, 2020). They compete with crops for
valuable nutrients, water, sunlight, and carbon dioxide
profoundly affecting farm productivity by invading crops and
smother pastures and leading to significantly decrease in the
quality of harvested crops (Milberg and Hallgren, 2004).
Herbicides are widely used in agriculture to control weeds.
However, uncontrolled herbicides application in agriculture
can lead to environmental pollution as well as yield reduction
(Horrigan et al., 2002). Therefore, minimizing the amounts of
herbicides and creating a rotational routine calendar are essential
steps towards sustainable agriculture. In the conventional weeds
control methods, the herbicide is applied over the whole field,
even for the area without weeds where no treatment is required.
To improve weed and crop control in modern agriculture, it is
essential to extract and map weeds locations and locally treat
those areas. Precision agriculture techniques should regularly
monitor crop growth to maximize yield while minimizing the
use of resources such as chemicals and fertilizer and reducing the
side effects of herbicides on the environment (Duckett et al.,
2018).

Remote sensing technology has been widely used for the
classification and mapping purposes in agriculture including
soil properties (Coopersmith et al., 2014), classification of crop
species (Grinblat et al., 2016), detection of crop water stress
(Mehdizadeh et al., 2017; Dorbu et al., 2021), monitoring of weeds
and crop diseases (Milioto et al., 2017), and mapping of crop yield
(Ramos et al., 2017). Recently, unmanned aerial systems (UASs)
have become effective platforms for crop and weeds monitoring
due to their abilities to hover close to crops and weeds to acquire
high-resolution imagery at a low cost. Compared to other remote
sensing platforms such as satellites and aircraft, UASs also offer a
higher spatial resolution, are less dependence on weather
conditions, and have flexible revisit time (Gebrehiwot et al.,
2019; Vinh et al., 2019; Hashemi-Beni et al., 2018). Several
studies used weed maps obtained from UAS for variable
application with ground sprayers, finding no difference in crop
biomass between blanket and precision spraying, while
decreasing herbicide use (Castaldi et al., 2017; Pelosi et al.,
2015). Despite the increased use of UASs in precision
agriculture applications, efficiently processing of the high-
resolution imagery data remains a challenge.

Several studies have attempted to address the problem of
vision-based crops and weeds classification (Wu et al., 2021;
Osorio et al., 2020). Vision-based weed control systems should
detect weeds and map their location to effectively use herbicides
only for those areas where weeds are present in the field.
Vegetation color index, such as the normalized difference
vegetation index (NDVI) is an approach to segment weeds in
an agricultural field (Dyrmann and Christiansen, 2014; Osorio
et al., 2020). The main challenge of this method is dealing with
overlapping plants to separate weeds and crops. Texture-based
models have shown promising results in detecting and
discriminating plants from images with overlapping leave

(Pahikkala et al., 2015). Machine learning (ML) approaches
have gained attention for detecting weeds and crops (De
Rainville et al., 2014; Haug and Ostermann, 2014; Gašparović
et al., 2020; Islam et al., 2020). De Rainville et al. (2014) proposed
a Bayesian unsupervised classification method and
morphological analysis for separating crops from weeds. Thir
method achieved 85% accuracy on segmenting of the weeds
without any prior knowledge of the species present in the
field. ML algorithms such as Support vector machines (SVMs)
and Random Forest (RF) have demonstrated a good performance
in remote sensing classification tasks including weed detection for
small datasets. Haug and Ostermann (2014) employed a RF
classifier method to classify carrot plants and weeds from RGB
and near-infrared (NIR) images and achieved an average
classification accuracy of 93.8%. Some studies prove that deep
convolutional neural networks (CNNs) are efficient methods to
deal with the limitations of handcrafted features on classifying
weeds, crops and seeds (Lee et al., 2015; Loddo et al., 2021). In
recent times, there has been considerable progress in the
classification and segmentation of remote sensing data using
deep learning for different applications (Chen et al., 2020 and
Zhang et al., 2021). Unlike the conventional ML approaches,
CNNs have become an increasingly popular approach for remote
sensing tasks due to their ability to extracts and learns feature
representation directly from big datasets (Ma et al., 2020). This
allows extensive learning capabilities and, thus, higher
performance and precision (Afza et al., 2021). Several
researchers used CNNs in agricultural applications including
weed and crop classification (Mortensen et al., 2016; Potena
et al., 2016; Di Cicco et al., 2017; Milioto et al., 2017; Grace,
2021; Siddiqui et al., 2021). Mortensen et al. (2016) employed a
modified version of the VGG-16 CNN model to classify weeds
using mixed crops of an oil radish plot with barley, weed, stump,
grass, and background soil images. Milioto et al. (2017) proposed
a method that combines vegetation detection and deep learning
to classify weeds in an imagery dataset (about 10,000 images)
captured by a mobile agricultural robot in a sugar beet field and
achieved more than 85% accuracy. Siddiqui et al. (2021) studied
data augmentation for separating weeds from crops using a CNN.
Potena et al. (2016) presented a perception system for weed-crop
classification that uses shallow and deeper CNNs. The shallow
network was used to detect vegetation, while the deeper CNNwas
used to classify weeds and crops. Di Cicco et al. (2017) used an
encoder-decoder architecture such as SegNet to procedurally
generate large synthetic training datasets randomizing the key
features of the target environment (i.e., crop and weed species,
type of soil, light conditions). This research aims to employ and
compare the performance of state-of-the-art deep learning
models such as U-Net Model, SegNet, FCN and DepLabV3+
based on transfer learning for crop and weed separation using a
small optical training data and data augmentation methods. The
problem of limited labelled images in RS can potentially be
overcome by adapting techniques from transfer learning to RS
image classification problems for different applications including
Agriculture. Transfer learning can reuse the knowledge gained
while classifying a dataset and applying it to another dataset
having different underlying distributions. In addition, to make
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the different approaches comparable, which is a major issue in the
field of RS data analytics and to identify promising strategies, two
different open-source benchmark UAS datasets were used for this
research.

DEEP LEARNING MODELS

Several CNN architectures such as AlexNet (Krizhevsky et al.,
2012), VGGNet (Simonyan and Zisserman, 2014), ResNet (He
et al., 2016) have been developed and successfully used for image
classification tasks. Krizhevsky et al. (2012) developed the first
deep CNN in 2012 and showed a large, deep CNN can achieve
high-performance results on a big, diverse dataset by using
supervised classification. VGG-16 was developed by Simonyan
and Zisserman, 2014 to increase the depth to 16 to 19 weight
layers while making all filters with 3 × 3 sizes to reduce the
number of parameters in the network. However, increasing the
number of CNN layers do not simply improve the network’s
performance due to the vanishing and exploding gradients
issues in deep learning networks. He et al. (2016) introduced
skip connection or residual block to overcome this problem and
introduced ResNet using residual blocks as basic building
blocks allowing training deeper CNN with improved
performance. The following sections provide a brief
overview about four important deep learning architectures
that were trained and employed for crop and weed
separation from the UAS datasets: namely SegNet, FCN,
U-Net, and DeepLabV3+.

SegNet
SegNet is a CNN architecture proposed by Badrinarayanan et al.
(2017) for pixel-wise segmentation applications. It consists of an
encoder, decoder, and pixel-wise classification layers (Figure 1).

The encoder network of SegNet has 13 convolutional layers
similar to VGG-16. Convolutions and down-sampling (max
pooling) operations are performed at the encoder network.
While at the decoder network, convolutions and up-sampling
are performed and then, using the probability layer, softmax
classifier, each pixel is assigned to a class. This decoder network
upsamples the low-resolution feature maps to full resolution
using memorized max-pooling indices. The SegNet has a
smaller number of trainable parameters and can be trained
end-to-end using stochastic gradient descent.

FCNs Models
The FCNs was developed by Long et al. (2015) for semantic
segmentation applications by replacing the three fully connected
layers of VGG16 with fully convolutional to maintain the 2-D
structure of images. Thus, unlike VGG-16, FCNs can take any
arbitrary input image size and produce an output with the
corresponding size. Furthermore, the FCNs are composed of
locally connected layers, such as convolution, pooling, and
upsampling, without having any dense layer. This allows
reducing the number of parameters and computation time.

Many FCN models were proposed: FCN-8s, FCN-16s, and
FCN-32s. The models differ from each other in the last
convolution layer and skip connection, as shown in Figure 2.

U-Net Model
The U-Net is the convolutional neural network proposed by
Ronneberger et al. (2015) for biomedical image segmentation. It is
based on FCNs, and its architecture was modified to work with
fewer training data to give more precise segmentation results. As
shown in Figure 3, the U-Net architecture has a “U” shape as
implies its name.

U-Net consists of two structures: a shrinking (contracting)
structure and an expanding structure. The shrinking
(contracting) structure (also called the encoder) is used to
extract more advanced features and reduce the size of feature
maps. On the other hand, the expanding or decoder structure is
used to map the encoder’s low-resolution features to high
resolution.

DeepLabV3+
Deeplab is an encoder-decoder network that was developed by a
group of researchers from Google (Chen et al., 2018). It uses
Atrous convolutions to overcome the issue related to the excessive
downsizing in FCNs due to consecutive pooling operations.
DeepLabV3+ has few changes to its predecessors, which are
spatial pyramid pooling and encoder-decoder structure
(Figure 4). The spatial pyramid pooling module is useful for
encoding multiscale object information through multiple atrous
convolutions with different rates. With this spatial information,
the encoder-decoder can capture the boundary of an object more
precisely.

DeepLabv3+ uses Xception as the backbone instead of ResNet-
101 as the encoder. The input image is down-sampled by a factor
of 16. Instead of using bilinear up-sampling by a factor of 16, the

FIGURE 1 | SegNet architecture (Badrinarayanan et al., 2017).
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decoder up-samples encoded features by a factor of 4 and
concatenated with corresponding low-level features. To reduce
the number of channels of low-level features, 1 × 1 convolutions
are applied before concatenating. After concatenation, the
decoder performs few 3 × 3 convolutions, and the features are
up-sampled by a factor of 4.

UAS IMAGERY DATASETS

Two published benchmark UAS datasets were used to train and
evaluate the deep learning methods: Crop/Weed Field Image

Dataset (CWFID) (Haug and Ostermann, 2014) and the Sugar
Cane Orthomosaic datasets (Monteiro and Von Wangeheim,
2019).

1. The CWFID dataset was acquired with an autonomous field
robot Bonirob mounted with multi-spectral camera in an
organic carrot farm in Northern Germany before applying
manual weed control in 2013. The CWFID consists of
60 top-down looking images of 1,296 × 966 pixel size
during crop growing stages where crop leaves, intra- and
inter-row weeds were present. The dataset was fully
annotated by experts into three categories: soil or

FIGURE 2 | FCNs architecture (Long et al., 2015).

FIGURE 3 | U-Net architecture (Ronneberger et al., 2015).
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background, crops (162 samples), and weeds (332 samples).
An image example is demonstrated in Figure 5. The dataset
published for phenotyping and machine vision problems in

agriculture and is available through http://github.com/cwfid;
more details on the data collection can be found in Haug and
Ostermann, 2014.

FIGURE 4 | DeepLabV3+ architecture (Chen et al., 2018).

FIGURE 5 | Sample training images of CWFID dataset. (A) training image; (B) annotated image.

FIGURE 6 | Sample training images of sugarcane dataset. (A) training image; (B) annotated image.
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2. The sugarcane orthomosaic data was captured by a UAV from
a sugarcane plantation in Northern Brazil. The orthomosaic
was acquired and generated from a Horus Aeronaves fixed-
wing UAV employing a visible light RGB Canon G9X camera.
The UAV captured the data from a flight height of 125–200 m,
which resulted in imagery with a spatial resolution of 5 cm/
pixel approximately. The dataset was annotated by experts
into three categories: soil or background (black), crops (green),
and weeds (red). We split this single orthomosic into 60
images for the training purpose. An image example is
demonstrated in Figure 6. The Sugar Cane Orthomosaic
dataset is available via http://www.lapix.ufsc.br/weed-
mapping-sugar-cane.

IMPLEMENTATION AND RESULTS

The research implemented and compared the four deep learning
models in Matlab for crop and weed separation. The computer
was configured with 32 GB memory, an Intel(R) Xeon(R) ES-
2620 v3 @ 2.40 GHz × 2 processors memory, and a single
NVIDIA Quadro M4000 GPU.

Training the Network Architectures
The provision of training data is a limiting factor for practical
applications in remote sensing, however, this problem can be
alleviated by exploiting techniques from transfer learning to
adapt a classier trained on an image set to another dataset
having different underlying distributions. As one approach to
transfer learning, we fine-tuned the deep learning models
discussed in Deep Learning Models i.e., SegNet, FCN-32s,
FCN-16s, FCN-8s, U-Net, and DeepLabV3+ with the both
UAS datasets using the same setting parameters. The
sugarcane orthomosic was patched into 50 images of 540 ×
540 pixels size each for training and testing purposes. We
trained the models using Stochastic Gradient Descent (SGD)
with a minibatch size of 2, a learning rate of 0.001, and a
maximum epoch of 10. A 10-fold cross-validation procedure
was used to assess the performance of these models. The
significance of this procedure is to assess the predictive
performance of the classifiers for classifying a new data set,
also known as test data. For this purpose, we partitioned the
training images randomly into ten equal parts. At each run, the
union of nine parts was put together to form a training set, and
the remaining one-part was used as a validation set to measure

FIGURE 7 | Sample qualitative results were achieved for CWFID. (A) input images; (B) groundtruth, (C) SegNet, (D) FCN-32s, (E) FCN-16s, (F) FCN-8s, (G) U-Net,
(H) DeepLabV3++.
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FIGURE 8 | Sample qualitative results were achieved for sugarcane dataset. (A) input images; (B) groundtruth, (C) SegNet, (D) FCN-32s, (E) FCN-16s, (F) FCN-
8s, (G) U-Net, (H) Deeplabv3++ result.

TABLE 1 | Confusion matrix of U-Net classification for CWFID dataset.

TABLE 2 | Confusion matrix of U-Net classification for sugarcane dataset.
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the classification errors. We repeated the above steps ten times,
using a different fold as the testing set each time. Finally, the mean
error from all folds was used to estimate the performance of the
classifier. We applied the median frequency balancing method to
deal with the imbalance problem in the training datasets. A class
imbalance in the training images can affect the learning process
since the learning is biased in favor of the dominant classes. As a
result, the instances that belong to the minority group are
misclassified more often than those of the majority group. In
the median frequency balancing approach, the weight assigned to
each category (ac) in the loss function is the ratio of the class
frequencies’ median (median_freq(c)) computed on the entire
training set divided by the class frequency (freq(c)). The class
frequency is calculated by dividing the number of pixels for each
class by the total number of pixels in the image. Therefore, the
dominant labels were assigned with the lowest weight, which
balances the training process. We also employed data
augmentation techniques including random cropping, rotation,
and reflection to artificially generate new training data from the
existing annotated data and increase the model’s performance
during the training stage. We extracted a total of 32 patches (512
p512) per image. The patches were inserted into the networks
with a batch size of 4. Random translation and rotation data

augmentation techniques were implemented by randomly
translating the images up to 10 pixels horizontally and
vertically and rotating the images with an angle up to 10°.

Prediction Results
This Section Presents the Results of the Weeds/Crops
Classification Obtained for all the Networks Trained in
This Study
A confusion matrix was used to analyze the performance of the
deep learning models for weed/crop classification and the overall
accuracy was calculated from the confusion matrix. The accuracy
indicates the percentage of correctly identified pixels for each
class, while the overall accuracy shows the percentage of correctly
identified pixels for all classes. Also, the kappa coefficient (Fleiss
et al., 1969) was used in this study to summarize the information
provided by the confusion matrix. The Kappa index is a metric
that compares an observed accuracy with an expected accuracy or
random chance.

The qualitative classification results of the models are shown
in Figures 7, 8. Table 1 is a confusion matrix example evaluating
the U-Net prediction for soil, weeds, and crops classification. The
U-Net classifier achieved an overall accuracy of 76% on
classifying the weed/crop images. As shown in Figure 7, the
qualitative evaluation results of DeepLabV3++ obtained a better
accuracy in comparison with other models prediction for the
CWFID dataset.

As shown in Figure 8, the qualitative evaluation results of
FCN-8s obtained better accuracy than other models prediction
for the sugarcane dataset. Table 1 shows the correspondence
between the classification results and the validation images for the
CWFID dataset using U-Net. The cells of the confusion matrix
represented the percentage of correct and incorrect predictions
for all the possible correlations. The cell in the ith row and jth
column means the percentage of the ith class samples, which is

TABLE 3 | Overall accuracy and kappa index for the classifiers.

Overall accuracy (%) Kappa index

SegNet 62.6 0.69
FCN-32s 68.4 0.72
FCN-16s 77.2 0.74
FCN-8s 81.1 0.78
U-Net 77.9 0.76
DeepLab v3+ 84.3 0.82

FIGURE 9 | Segmentation results for each of the individual classes for the CWFID dataset.
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classified into the jth class. The diagonal cell of the matrix
contained the number of correctly identified pixels for each
class. As we see from the above table, the U-Net model
achieved the classification accuracy of 99.3% for soil, 60.48%
for crops, and 66.72% for weeds. The experimental results also
show that about 32% of weeds are wrongly classified as crops.
This is because weeds and crops have a similar spectral response,
which makes it hard to separate them using the U-Net classifier
solely from optical imagery.

Table 2 shows the correspondence between the classification
results and the validation images for the sugarcane dataset using
U-Net. The U-Net model achieved the classification accuracy of
96.63% for soil, 39.19% for crops, and 86.17% for weeds.

Comparison between Classifiers for CWFID
Dataset
Table 3 illustrates the overall accuracy and Kappa index values
for all classifiers on the CWFID dataset. On the other hand,
Figure 9 shows the accuracy of the classification approaches for
each of the classes for the CWFID dataset.

Based on the results in Table 3, in overall, DeepLabV3+ has a
better classification performance than FCN-8s, U-Net, FCN-16s,
FCN-32s, and SegNet for weeds and crops discrimination.

Figure 9 shows the individual classification accuracy of each
class (background or soil, crops, and weeds) for the CWFID
dataset. The DeepLabV3+ achieved an accuracy of 90.5% on
accurately segmenting weeds compared to 85.8% of FCN-8s,
76.1% of FCN-16s, 66.7% of U-Net, 63.6% of FCN-32s, and
52% of SegNet. The results show that DeepLabV3+ has a better
performance on detecting weeds from the CWFID dataset. The
result shown as FCN-16s and DeepLabV3+ performed better on
detecting crops from the input image. However, weeds and crops
have a similar spectral response, making it hard to separate them
using these classifiers accurately from optical imagery. Using
multispectral images might improve segmentation performance
using these models.

Comparison Between Classifiers for
Sugarcane Dataset
Table 4 presents the overall accuracy and Kappa index for all
classifiers for the sugarcane dataset. On the other hand, Figure 10
shows the classifier’s accuracy for each class for the same dataset.

Based on the results in Table 4, FCN-8s has a better overall
classification performance (74%) than SegNet (62.8%), FCN-32s
(69.8%), FCN-16s (71.6%), U-Net (74%), and DepLabV+
(70.99%) for weeds and crops discrimination.

Figure 10 shows the individual classification accuracy of each
class (background or soil, crops, and weeds) for the sugarcane
dataset. The U-Net achieved an accuracy of 86.17% on accurately
segmenting weeds compared to 85.89% of FCN-8s, 71.04% of
FCN-16s, 80.16% of deeplab v3+, 80.16% of FCN-32s, and 64.5%
of SegNet. The results showed that U-Net has a better

TABLE 4 | Overall accuracy and kappa index for the classifiers.

Overall accuracy (%) Kappa index

SegNet 62.8 0.63
FCN-32s 69.8 0.71
FCN-16s 71.6 0.73
FCN-8s 76.62 0.76
U-Net 74 0.72
DeepLab v3+ 70.99 0.74

FIGURE 10 | Segmentation results for each of the individual classes for the sugarcane dataset.
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performance on detecting weeds from the sugarcane dataset than
other models.

DISCUSSION

The accurate segmentation of crops and weeds has always been
the center of attention in precision agriculture. Many methods
have been proposed, but it is difficult to properly and sharply
segment crops and weeds in images with a high presence of
weeds. In this research work, we explored different segmentation
models. The SegNet architecture has offered the least promising
performance compared to other approaches. This architecture is
slower than others because it contains an encoder-decoder
structure. On the other hand, FCN-32s and FCN-16s achieved
better performance than SegNet but slightly less than U-Net and
DeepLab. One of the main issues here is the excessive downsizing
operation due to many consecutive pooling operations. Due to
this, the input image is downsampled by 32x and then upsampled
again to get the classification; this results in loss of information,
which is vital for getting a great result in a classification task. Also,
the deconvolution to up the sample by 32x is a memory expensive
operation. U-Net performed better than SegNet and FCNs- 16s
and FCN-32s, but slightly less than DeepLabV3+. Because,
unlike the FCNs, U-Net architecture has skip connections
from the output to the corresponding input convolution
block at the same level to avoid the information loss
problem. Also, a key component of this architecture is the
operation of connecting the first and second paths. This
association allows the network to get very accurate
information from the contraction path, producing a
segmentation mask that is as close as possible to the desired
output. This allows gradients to flow better and give
information from multiple scales of the image size, which
can help the model classify better. In addition, this
architecture uses atrous/dilated convolutions, Atrous Spatial
Pyramid Pooling (ASPP), and fully connected CRF, which
allows the model to achieve better segmentation results. In
general, FCN-8s and DeepLabV3+ showed a great performance
in classifying weeds and crops compared to other approaches.
DeepLabV3+ uses both the encoder-decoder and the spatial
pyramid pooling modules thus arriving at better results.

In terms of the dataset, the study results confirmed that
networks trained on the CWFID dataset produced better
results than those trained on the sugarcane dataset. This is
due to CWFID’s highest image resolution compared to the
sugarcane image quality. Although the overall average
performance improvement for all models using CWFID was
about 6% compared to the sugarcane dataset, it is essential to
note that when these models are used to detect weeds for large
farms, where thousands of pictures can be taken of the field, this
can have a significant impact on handling weeds. Even though we
achieved promising results on fine-tuning these pre-trained
models using small sample data, they should be trained and
tested using more sample data to evaluate their performance
further. In addition, more studies should be done to evaluate the

effects of image spatial and spectral resolutions on training
machine learning models for crop and weed detection.

CONCLUSION

To improve weed control and precision agriculture, it is
essential to extract and map the location of the weeds and
locally treat those areas. The similarities between the types of
data addressed with classical deep learning applications and RS
data, as well as the need for fast processing of huge datasets
captured by UAS for smart and precision agriculture, make a
compelling argument for integrating deep learning methods
into UAS remote sensing. This research explored the
application of a deep learning method to quickly process and
transform UAS imagery into accurate maps for precision field
treatment. The U-Net model, which was initially proposed to
segment medical images, was fine-tuned to classify the CWFID
and sugarcane orthomosiac UAS datasets into three classes
(background, crops, and weeds) and compared its
performance with SegNet, FCN-32s, FCN-16s, FCN-8s and
DeepLabv3+ deep learning models to discriminate crop from
weed. The fine-tuning approach allowed us to overcome the
problem of small dataset sizes. The DeepLab v3+ model
achieved the classification accuracy of 99.34% for
background, 63.24% for crops, and 90.55% for weeds classes
for the CWFID dataset. On the other hand, U-Net achieved an
accuracy of 86.17% on accurately segmenting weeds compared
to 85.8% of FCN-8s, 71.04% of FCN-16s, 80.16% of Deeplab
v3+, 80.16% of FCN-32s, and 64.5% of SegNet. In future
research, we will incorporate crop geometry constraints to
the model to improve classification accuracy.
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