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Retrievals of ocean color from space are important for better understanding of the ocean
ecosystem but can be limited under conditions such as clouds, aerosols, and sunglint.
Many ocean color algorithms use a few selected spectral bands to perform an atmospheric
correction and then derive the upwelling radiance from the ocean. The limitations in the
atmospheric correction under certain conditions lead to many gaps in daily spatial
coverage of ocean color retrievals. To address these limitations, we introduce a new
approach that uses machine learning to estimate ocean color from top of atmosphere
radiances or reflectance measurements. In this approach, a principal component analysis
is used to decompose the hyperspectral measurements into spectral features that
describe the scattering and absorption of the atmosphere and the underlying surface.
The coefficients of the principal components are then used to train a neural network to
predict ocean color properties derived from the MODIS atmospheric correction algorithm.
This machine learning approach is independent of a priori information and does not rely on
any radiative transfer modeling. We apply the approach to two hyperspectral UV/VIS
instruments, the ozone monitoring instrument (OMI) and the TROPOspheric Monitoring
Instrument (TROPOMI), using measurements from 320–500 nm to show that it can be
used to reproduce ocean color properties in less-than-ideal conditions. This machine
learning approach complements the current atmospheric correction ocean color retrievals
by filling in the gaps resulting from cloud, aerosol, and sunglint contamination. This method
can be applied to the future hyperspectral Ocean Color Instrument (OCI), which will be
onboard NASA’s Plankton, Aerosol Cloud, ocean Ecosystem (PACE) ocean color satellite
set to launch in 2024.
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1 INTRODUCTION

Since the launch of the coastal zone color scanner (CZCS) on-
board Nimbus 7 in 1978, ocean color properties have been
retrieved from space (Evans and Gordon, 1994). One of the
most important of these retrieved properties is chlorophyll
concentration, which is a key photosynthetic pigment in
phytoplankton and has a central role in photobiology, primary
production, and ecosystem health of the marine environment.
Chlorophyll concentration is an important proxy for the
monitoring of harmful algae blooms (HABs) that can grow
quickly and produce toxic chemicals that are harmful to both
humans and marine life (Millie et al., 1997; Sellner et al., 2003). In
addition, long-term monitoring of chlorophyll concentration is
important for understanding the effects of climate change on the
global ocean carbon cycle (Siegel et al., 2005; Tjiputra et al., 2007).

In the late 1990s and early 2000s, several satellite instruments
such as the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)
and the Moderate Resolution Imaging Spectrometer (MODIS)
were launched to continue the heritage of ocean color
instruments. SeaWiFS and MODIS led to great advancement
in ocean color retrievals, enabling global estimates of ocean
properties at high spatial resolution (O’Reilly et al., 1998;
Franz et al., 2005; Wang et al., 2014). In 2011, NASA
launched the Visible Infrared Imaging Radiometer Suite
(VIIRS) onboard the NASA-NOAA Suomi National Polar-
orbiting Partnership (Suomi NPP) satellite, which continues
the history of ocean color measurements from space. The
VIIRS instrument provides similar measurements as those of
MODIS but at a higher spatial resolution and with a larger swath
width (Wang et al., 2013; Wang et al., 2014). More recently, the
European Space Agency (ESA) launched a set of ocean color
instruments known as the Ocean and Land Color Instrument
(OCLI) onboard Sentinel-3A and Sentinel-3B, which launched in
February 2016 and April 2018, respectively (Nieke et al., 2012;
Tilstone et al., 2021).

In order to determine the bio-optical properties of a water
surface, it is important to first retrieve a quantity known as water-
leaving radiance (Lw), which is essentially the radiance leaving the
water body or the radiance the satellite would measure if there
was no atmosphere. An important step of ocean color retrieval
algorithms is to derive an atmospheric correction so that effects
such as Rayleigh scattering, gaseous absorption, ozone, and
aerosol effects can be removed from the radiance measured at
the top of the atmosphere by the satellite (Gordon and Wang,
1994; Gordon, 1997). The typical atmospheric corrections for
ocean color applications use well-calibrated L1 measurements
(Thome et al., 2003) in the near-infrared (NIR) to shortwave
infrared (SWIR), where Lw is negligible and extrapolate the
atmospheric signal to shorter wavelengths where water-leaving
radiance is significant (Gordon, 1997). Atmospheric reflectance
contributions and direct scattering from the water surface are
removed from the top of atmosphere (TOA) signal to retrieve Lw.
A final step, known as the system vicarious calibration, uses in
situ measurements to adjust the retrieved Lw to reduce the
uncertainty of the retrieval (Franz et al., 2007). Given the
retrieved Lw, the remote sensing reflectance (Rrs) is then

calculated, which is the ratio of water-leaving radiance, Lw,
and the downwelling irradiance at the ocean surface, Ed. The
Rrs can then be used to determine information about the bio-
optical properties of a water body such as chlorophyll
concentration either through band ratios or radiative transfer
modeling that assumes information about the scattering and
absorption of a water body (Gordon and Wang, 1994;
Dierssen, 2010; Mobley et al., 2016; Werdell et al., 2018).
Traditional ocean color algorithms, however, have limited
spatial coverage when cloud, aerosol, and sunglint are present
as there can be substantial retrieval errors in these conditions.

The radiative transfer simulations required for atmospheric
corrections are computationally expensive; thus, alternative
approaches using machine learning have been proposed for
ocean color retrievals. In the late 1990s, Schiller and Doerffer
(1999) proposed a technique where a neural network was trained
to learn the relationship between TOA reflectance and ocean
color properties such as chlorophyll that was simulated from a
radiative transfer model. They proposed that this approach can be
applied to the Medium Resolution Imaging Spectrometer
(MERIS) satellite to produce operational ocean color retrievals
with a computationally efficient technique. Ioannou et al. (2011)
applied the approach to MODIS to estimate ocean optical
properties using synthetic data from the NASA Bio-Optical
Marine Algorithm Data Set (NOMAD) to train the neural
network. More recently, Chen et al. (2019) proposed a new
machine learning method that uses the MODIS Color Index
(CI), which is less affected by saturation due to clouds or sunglint,
along with the reflectance from MODIS bands 469, 555, and
645 nm (Chen et al., 2019) as inputs for a neural network to
retrieve chlorophyll concentration. Chen et al. (2019) developed a
neural network usingMODIS from the data in the Yellow Sea and
East China Sea but showed that it could be applicable in other
regions such as the Gulf of Mexico, the Caribbean Sea, and the
Arabian Sea. Through this approach, they showed that there is
potential to increase the spatial coverage of ocean color retrievals
under sunglint and cloud conditions with lower accuracy than
that of the traditional MODIS ocean color retrievals.

Another approach that has been proposed to improve ocean
color retrievals is to fit spectral measurements to polynomial
functions. Steinmetz et al. (2011) developed the POLYnomial-
based algorithm applied to Medium Resolution Imaging
Spectrometer (MERIS) (POLYMER) to retrieve ocean
properties in the presence of sunglint. The POLYMER
algorithm is based on the assumption that a polynomial-based
function can be used to fit the spectral signal of features such as
sunglint using model simulations. Frouin et al. (2014) showed
that the POLYMER algorithm could also be applied to retrieve
ocean color properties in the presence of semi-transparent clouds.
The POLYMER algorithm has been pushed even further to show
that it can improve retrievals affected by cloud adjacency effects
as well as improve retrievals in the presence of absorbing aerosols
(Steinmetz and Ramon, 2018; Zhang et al., 2019).

Other approaches have used principal component analysis
(PCA) to extract spectral features from satellite measurements.
Through this technique, the PCA is used to decompose TOA
reflectance into principal components that can be used to train a
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neural network to estimate water reflectance or chlorophyll with
simulated ocean reflectance for instruments such as MODIS,
SeaWiFS, MERIS, and the Polarization and Directionality of the
Earth’s Reflectances (POLDER) (Gross-Colzy et al., 2007b,a). In
this work, it was shown that decomposed principal components
of TOA reflectance from a radiative transfer model can be used to
a train a neural network to retrieve chlorophyll under semi-
transparent clouds and in sunglint conditions. Frouin and Gross-
Colzy (2016) presented a similar approach using reflectance
simulated for the future PACE mission and showed that
measurements at UV wavelengths are beneficial to
atmospheric corrections.

More recently, Joiner et al. (2021b,a) applied the combined
principal component and machine learning approach to estimate
land surface reflectance under less-than-ideal conditions including
moderately thick clouds and heavy aerosol loading using
hyperspectral measurements. In that work, Global Ozone
Monitoring Experiment–2 (GOME-2) and Hyperspectral Imager
for Coastal Ocean (HICO) hyperspectral reflectances were
decomposed into principal components (PCs) that describe the
various scattering and absorption features in the observed spectra
as well as instrumental effects. The coefficients of the leading PCswere
then used to train a neural network to predict cloud-free land surface
reflectance at red, green, and blue (RGB) wavelengths even in cloud-
and aerosol-contaminated scenes. To further explain the approach,
they performed radiative transfer simulations using an ice cloud
model and C1 cloud model for cloud optical thicknesses of 10 and
20. In those studies, it was shown that even for darker surface albedos,
such as water surfaces, there is still a sensitivity of the TOA reflectance
to the surface albedo.

In this work, we propose an approach to reproduce ocean
properties such as Rrs and chlorophyll from the hyperspectral
instruments, the Ozone Monitoring Instrument (OMI) and the
TROPOspheric Monitoring Instrument (TROPOMI). These
instruments are coarse spatially compared to MODIS and
SeaWiFS but with much higher spectral resolution, making
them good instruments for atmospheric trace gas retrievals.
While not originally designed for ocean color measurements,
recent work has shown that the hyperspectral measurements can
be used to retrieve apparent optical properties in water such as the
diffuse attenuation coefficient (Kd) and Chl-a fluorescence
(Dinter et al., 2015; Wolanin et al., 2015; Joiner et al., 2016;
Oelker et al., 2019; Köhler et al., 2020; Oelker et al., 2022). Some
works have even applied the atmospheric retrieval technique
known as differential optical absorption spectroscopy (DOAS)
to retrieve phytoplankton groups using UV measurements from
the hyperspectral Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography (SCIAMACHY) satellite instrument
(Vountas et al., 2003; Vountas et al., 2007; Bracher et al., 2009;
Sadeghi et al., 2012). More recently, Oelker et al. (2022) applied a
similar technique to retrieve underwater light attenuation from
TROPOMI at UV and blue wavelengths.

The approach used is similar to that which was used by Joiner
et al. (2021b,a) to estimate land surface reflectance, but in this
work, we reproduce ocean color properties using principal
components that were decomposed from hyperspectral sun-
normalized radiances. Since Rrs and chlorophyll concentration

are not typically retrieved from OMI or TROPOMI, we co-
located MODIS-retrieved chlorophyll and Rrs to the OMI and
TROPOMI Field of View (FoV). Using the decomposed principal
components, a neural network is trained such that the coefficients
of the leading eigenvectors are used to predict the MODIS ocean
color data. In this sense, the neural network is essentially learning
the relationships between the decomposed radiances and the
ocean properties from MODIS. Through this approach, the
neural network is able to learn how to perform the
atmospheric correction under many conditions including
moderate cloud optical thickness and sunglint.

While previous studies utilizing machine learning or
polynomial regression approaches to retrieve ocean color use
radiative transfer models to produce synthetic TOA reflectance
spectra (Steinmetz et al., 2011; Frouin et al., 2014; Gross-Colzy
et al., 2007b,a; Frouin and Gross-Colzy, 2016), our approach is
based on decomposed principal components from measured
radiances. This allows the neural network to learn not only
the spectral features related to scattering and absorption by
the atmosphere and underlying surface but also the
instrumental artifacts in the spectra that can impact retrievals.
In addition, whereas the approach by Chen et al. (2019) requires
additional information such as the MODIS Color Index, this
approach requires no additional inputs beyond measured TOA
radiances along with view and solar geometries. Like these other
studies, our approach can be applied to less-than-ideal conditions
including under clouds, aerosols, and sunglint. This work is one
of the first to take advantage of UVmeasurements for ocean color
as other methods use information from blue and longer
wavelengths. Measurements at UV wavelengths can help to
discern chlorophyll from colored dissolved organic matter
(CDOM) and also provide more information about the
aerosols in the atmosphere. In addition to extending the ocean
color data record to include cloud-, aerosol-, and sunglint-
contaminated scenes, this method allows us to create new
chlorophyll and Rrs products from hyperspectral instruments,
which typically are not used for ocean color monitoring.

2 DATA AND METHODS

2.1 OMI and TROPOMI
OMI is a Dutch–Finnish hyperspectral instrument launched in
2004 on-board NASA’s Aura satellite and was designed to
measure trace gases and aerosol composition (Levelt et al., 2006;
Levelt et al., 2018). The Aura satellite flies with other Earth-observing
satellites with similar local equator crossing time in a constellation
known as the A-train, which includes the Aqua satellite that has a
MODIS instrument on-board. Aqua and Aura have local equator
crossing times near 13:30 and 13:45, respectively. OMI measures
hyperspectral radiances and irradiances in three spectral channels
imaged on two charged-coupled devices (CCDs), one with two UV
channels and the other with a vis channel. The columns of these two-
dimensional CCD detectors collect spectral information and the rows
record spatial information in the across-track dimension. Since each
spectral measurement in the across-track dimension is imaged onto a
different row of the detector, they may exhibit some row-to-row

Frontiers in Remote Sensing | www.frontiersin.org May 2022 | Volume 3 | Article 8461743

Fasnacht et al. Machine Learning Ocean Color Retrievals

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


spatial variability across the swath and these features are known as
detector striping. OMI has a full width half maximum (FWHM) of
0.45–0.6 nm, which is a higher spectral resolution compared to most
ocean color instruments, but the instrument has a comparatively
coarse spatial resolution of 13 × 24 km at nadir. The MODIS
instruments take measurements in discrete bands with a spectral
resolution of 10–50 nm but take very high spatial resolution
measurements of 0.25–1 km in the FoV. For this work, we use Rrs
retrievals from MODIS ocean bands 8 (405–420 nm), 9
(438–448 nm), and 10 (483–493 nm) to train the neural network
as those bands are in the OMI and TROPOMI spectral regions
(MODIS ocean bands 8–10 shown in Figure 1B). In addition to these
MODIS blue bands, there are six other longer MODIS ocean bands
that are not used in this study (band 11: 526–536 nm, band 12:
546–556 nm, band 13: 662–672 nm, band 14: 673–683 nm, band 15:
743–753 nm, and band 16: 862–877 nm). The UV-1, UV-2, and vis
channels on OMI are measured on separate UV and vis detectors
covering a total spectral range of 264–504 nm. Only the
measurements from the UV-2 (306–380 nm) and vis
(350–500 nm) channels are used in this work. We focused this
study on OMI data between 2005 and 2007 to avoid the so-called
row anomaly that began to affect the quality of data in some of the
OMI rows beginning in 2007 (Schenkeveld et al., 2017).

TROPOMI is a higher spatial resolution spectrometer
launched in 2017 on the Sentinel-5P (S5P) polar orbiting
satellite as a part of the Copernicus program of the European
Commission (Veefkind et al., 2012). The S5P satellite was the first
of the Copernicus missions dedicated to measuring trace gases
and aerosols for air quality, climate, and ozone science. It is in a
different orbit than Aura and Aqua but has a similar afternoon
local equator crossing time at 13:30. The TROPOMI instrument
has three CCDs that cover the wavelength range of 270–775 nm

(UV, vis, and NIR) and one CCD that measures at longer
wavelengths in the SWIR. It has a spectral resolution of
0.25–0.5 nm, which is similar to OMI, but the spatial
resolution is much improved with a nadir spatial resolution of
5.5 × 3.5 km (prior to 6 August 2019, the spatial resolution was
7 × 3.5 km), which is closer to typical ocean color instruments.
Here, we use TROPOMI bands 3 (320–405 nm) and 4
(405–500 nm) as there are geo-location differences between
the UV-vis and NIR bands, making it difficult to use all the
wavelengths from these bands simultaneously (Ludewig et al.,
2020). The TROPOMI L1b processor was updated in July 2020
but at that time, the mission record before then had not been
reprocessed. For this reason, we only used TROPOMI data after
August 2020 in this study.

Unlike the SeaWiFS and MODIS instruments, future ocean
color missions such as PACE will be hyperspectral and have
higher spectral resolution. However, the spectral resolution of
OMI and TROPOMI exceed that of PACE considerably. One of
the goals of this study is to demonstrate that our approach will be
effective if applied to PACE OCI measurements. We, therefore,
have convolved UV and vis sun-normalized TOA radiances from
OMI and TROPOMI used in this study with a triangular function
of 2.5 nm FWHM sampled every 2.5 nm, which is similar to the
PACE FWHM of 5 nm and spacing of 2.5 nm. For OMI, we use
TOA radiances every 2.5 nm from 320–500 nm (74 wavelengths
total) including those in the overlap between UV-2 and vis
channels near 355 nm. The measurements in the overlap
region between TROPOMI channels have greater noise as
well, so only TROPOMI data between 320–400 nm and
405–497.5 nm (70 wavelengths total) are used. We note that
we do not use the PACE noise, which could degrade our results.
In the supplement, the RMSE of Rrs and chlorophyll shows little

FIGURE 1 | Satellite observations over the Mediterranean Sea from 15March 2005. (A)MODIS daily 4 km chlorophyll concentration co-located to the OMI Fields of
View (FoVs), stars correspond to radiances plotted in bottom; (B) cloud-free TOA radiances from OMI for several random locations plotted as a function of wavelength
with the color representing the MODIS chlorophyll concentration. The lines on the plot represent the MODIS bands that are in OMI’s spectral range.
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to no change when using the nominal high spectral resolution
measurements from OMI. However, when smoothing to the
PACE FWHM of 5 nm, the 443 nm Rrs RMSE increases from
8.21e-4 to 8.88e-4 and log (CHL) RMSE increases from 0.101
to 0.102.

Figure 1 shows an example of OMI-smoothed measured
radiances for a few random locations across the Mediterranean
Sea on 25 March 2005. In the top panel, the MODIS-retrieved
chlorophyll concentration is mapped on the OMI FoV with the
stars denoting the locations of the spectra that are plotted in the
bottom panel and color coded based on the retrieved MODIS
chlorophyll concentration. In this figure, similar chlorophyll
concentration measurements have very different UV–vis
measured spectra indicating that the atmospheric signal is
much larger than the signal from the ocean surface.

2.2 MODIS Ocean Color Data
Ocean color retrievals of chlorophyll concentration and Rrs at 412 nm,
443 nm, and 488 nm from the AquaMODIS instrument (Franz et al.,
2005) are used to train the neural network. The MODIS Rrs data are
normalized for bi-directional reflectance (BRDF) effects, but we note
that any error in this BRDFnormalization could lead to an error in the
approach (Mobley et al., 2016). Since OMI and TROPOMI
measurements have lower spatial resolution than MODIS, 4 km
ocean color products from MODIS are averaged over the OMI
and TROPOMI FoV. This collocation allows us to train the neural
network to retrieve ocean color properties under cloud, aerosol, and
sunglint conditions as a portion of the coarser OMI and TROPOMI
FoVs contains these effects. If less than 50% of valid coverage from the
daily Aqua MODIS product is available for an OMI or TROPOMI
FoV, it is gap-filled using the MODIS 8-day composite to provide
more full global coverage under cloud, aerosol and sunglint
conditions. If neither the daily or 8-day MODIS retrievals can
provide 50% coverage in the OMI or TROPOMI FoV, that pixel
is not considered.

There is another MODIS instrument onboard NASA’s Terra
satellite which has a morning overpass time. Terra is in a different
orbit than Aura or Aqua so we do not include the data from the
MODIS Terra instrument in the training. However, we do show
ocean color retrievals from MODIS Terra in the validation to
show the daily coverage of ocean color available from both
MODIS instruments.

We do note that there are some accuracy issues with the
MODIS ocean color retrievals being used in this work. As
discussed in the work by Franz et al. (2012), absorbing
aerosols are not easy to distinguish from non-absorbing
aerosols; thus, the impact of absorbing aerosols is not
included in the MODIS atmospheric correction. Also, the
work by Chaves et al. (2015) showed that the MODIS
chlorophyll concentration is biased particularly at higher
latitudes due to the effects of absorption of colored dissolved
organic matter on Rrs. In addition, it has been shown that the
MODIS ocean color properties have large uncertainty at higher
solar angles due to effects such as BRDF (particularly for low
chlorophyll concentrations) and uncertainties about
phytoplankton absorption properties at high latitudes (Suzuki
et al., 1998; Li et al., 2017, 2019). We note that these biases and

uncertainties in the MODIS retrievals would likely carry over to
our results from OMI and TROPOMI, and as a neural network
estimate can only be as good as the data that were used in the
training.

2.3 SeaBASS Ocean Color Data
Through independent validation of our results, we compare the neural
network (NN)-derived chlorophyll concentration and Rrs from OMI
with in situ measurements from various field campaigns available in
NASA’s SeaWiFS Bio-optical Archive and Storage System (SeaBASS).
Given thatOMI onlymeasures to 500 nm,we comparewith in situRrs
at 412, 443, and 488 nm. The validation data available from the
SeaBASS webpage are co-located to MODIS and are the best match-
ups for validating MODIS (Bailey andWerdell, 2006). These data are
from different campaigns and cover different oceanic and coastal
regions. There are no in situ measurements available in this dataset
during the TROPOMI record; thus, in situ comparisons are only done
for OMI.

As per the recommendations by EUMETSAT (2019), we only use
OMI scenes where the solar zenith angles are less than 60° and view
zenith angle is less than 70°. While it is recommended to use multiple
pixels from the satellite measurements in the in situ comparison, the
OMI FoV is significantly larger than instruments such asMODIS that
are typically used; thus, we instead compare individual OMI pixels
with the in situmeasurements. Any OMI scenes that satisfy the solar
and view zenith angle conditions and are within 10 km of the in situ
measurements are used in the comparison. Several statistics are used
in this comparison including the root mean square error (RMSE), R2,
and bias as defined by Brewin et al. (2015).

2.4 Pre-Processing of Inputs
A key part in the development of a machine learning model is to
use only the highest quality and most representative data in the
training. For this reason, we apply several quality control steps
before performing the training of our ocean color neural
network.

Since the spectral dependence of land surface reflectance is
quite different from that of water surface reflectance, we ignore
pixels with mixed land and water. For OMI, only pixels with
greater than 90% coverage of water are used in the training.
However, TROPOMI only has a binary land water flag available,
so the training is simply done wherever that flag is set to water.
The TROPOMI L1b data also provide a land classification flag
that is used to remove any pixels considered to be water mixed
with land or coastline. We also do not use pixels classified as
shallow inland water as the focus of this work is mainly on open
ocean water and deep inland lakes.

While the main focus of this study is to reproduce ocean
properties under clear and cloudy conditions, there are some
optically thick clouds for which this approach does not work, so
we used an effective cloud fraction (ECF) to remove optically
thick clouds. Unlike more commonly used geometric cloud
fractions, the ECF is radiometrically based so that it better
represents not only the two-dimensional spatial distribution of
clouds but also the optical depth of the cloud. Stammes et al.
(2008) showed that an ECF of 0.5 corresponds to a cloud optical
thickness of approximately 10. Scenes with ECF > 0.5 are
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excluded from this study (25% of OMI scenes and 28% of
TROPOMI scenes were excluded due to optically thick
clouds). In addition, we exclude any data with a UV aerosol
index (AI) greater than three as this indicates the presence of
optically thick absorbing aerosols (0.06% of OMI scenes and
0.05% of TROPOMI scenes were excluded due to heavy aerosol
loading) (Torres et al., 2013; Torres et al., 2020).

Ocean color retrievals are not performed over snow or ice so
these data are removed based on co-located snow and ice flags
using the National Snow and Ice Data Centers (NSIDC)
Interactive Multisensor Snow and Ice Mapping System (IMS)
in the northern hemisphere and the Near-real-time Ice and Snow
Extent (NISE) data in the southern hemisphere (Brodzik and
Stewart, 2016; U.S. National Ice Center, 2008). In addition, we
ignore data below 70S as an extra measure for possible sea ice in
case it is missed by the NISE flags.

2.5 Principal Component Analysis and
Machine Learning Approach
A principal component analysis is performed on the measured
hyperspectral radiances to extract empirical orthogonal
functions (EOFs) in the form of a covariance matrix. The
measured radiances are not corrected for any Rayleigh

scattering or gas absorption as we assume that the principal
component analysis can concentrate the relevant information
content from the spectra and the neural network will learn to
minimally weigh the information related to atmospheric
absorption or scattering. The principal component analysis
was performed for all OMI or TROPOMI samples that had
available daily or 8-day composite co-located data fromMODIS.
For OMI, the principal component analysis is performed using
2 days from each month (1st and 15th) in 2005 with March being
excluded so that it can be used to validate the technique. The
TROPOMI principal component analysis is again based on
2 days a month from August–December 2020 with October
excluded for validation. We note that for TROPOMI, we do
not use the full year as the TROPOMI data were reprocessed
with a new L1b processor beginning August 2020 but data from
earlier in the mission have not yet been reprocessed. Figure 2
shows some of the principal components of the EOF
decomposed from OMI-measured radiances. The leading
principal component captures broad features due to Rayleigh
scattering. Other leading principal components such as PC 4
and PC 5 appear to have information about other absorbers such
as NO2 and chlorophyll. The sharp discontinuity observed in
several PCs at 355 nm is due to the disagreement between the

FIGURE 2 | Orthogonal functions decomposed from OMI measurements from 2 days each month in 2005 (excluding March). The leading 10 EOFs are shown as
well as lower ranked EOFs 17 and 24.
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OMI UV and vis channels. Lesser important PCs that account
for less than 0.03% of the total variance seem to provide
information on the instrumental effects.

The leading eigenmodes of the covariance matrix can provide
coefficients such that the linear combination of the PCs recreates
the measured spectra. If the inputs to the principal component
analysis are representative of most typical conditions, the
principal components can be applied to extract coefficients
from other spectra. Figure 3A shows an example of the
coefficients of the principal components decomposed from
OMI radiances on 15 March 2005, which was not included in
the principal component decomposition performed on the
training dataset. It shows that the amplitude of PC 1 is
strongly correlated with the observed features in the OMI
400 nm TOA reflectance shown in Figure 3B. While the first
few PCs provide information about the atmosphere, Figures
3C,D show that coefficients of the fourth PC are correlated
with chlorophyll concentration.

Once the coefficients of the PCs are extracted from the measured
radiances, a neural network is trained to predict the ocean color
properties for OMI/TROPOMI pixels that are co-located with the
MODIS retrievals of Rrs and chlorophyll. Given the relatively coarse
spatial resolution of OMI/TROPOMI measurements, there will be
subgrid clouds in many of the co-located data points. Thus, the NN
training is effectively confronted both with clear and cloudy
observations. The PCA is able to transform the information from
the measured spectra and provide it to the neural network in a way
that makes it easier for the neural network to learn. The PC
coefficients based on the satellite measured radiances are the
inputs to the neural network, and the collocated MODIS-retrieved
chlorophyll concentration and Rrs are the targets. A single neural
network is used to reproduce chlorophyll concentration and Rrs. For
this work, only the coefficients of the leading 30 PCs are used as inputs
to the neural network, which account for 99.69% of the variance in the

training data and 99.73% of the variance in the test data (further
discussed in the Supplementary Material). In addition to using the
coefficients of the principal components as inputs to the NN, the solar
zenith, view zenith, and relative azimuth angles are also provided as
inputs to the neural network to account for any dependence on view
or solar geometry. In this approach, we assume that through the
principal components, the neural network learns how to normalize for
the BRDF effects in the OMI and TROPOMI measurements
(Supplementary Material S1). We also include the across-track
position in the training to help the NN learn about possible
striping effects. As shown in Figure 4, the neural network used is
a simple six-layer network (one input layer, four hidden layers, and
one output layer) that uses the sigmoid activation function. The neural
network was trained for 500 iterations and each of the four hidden
layers has 32 nodes. The inputs and outputs are all scaled to the range
of 0–1 for the training. When training the neural network, we use a
random 50% of the samples that were used in the principal
component analysis. The histograms in Figure 5 show the
different conditions that are included in the training of the
TROPOMI NN. This figure shows that a majority of the scenes
include at least some partial clouds. In addition, approximately 40% of
the input data potentially include sunglint-contaminated scenes as a
glint angle less than 40° is generally used to classify potential sunglint-
affected retrievals (Gupta et al., 2019).

3 RESULTS

3.1 TROPOMI Ocean Color
Here, we present a case study of the approach applied to
TROPOMI for 15 October 2020. The TROPOMI data from
October 2020 were excluded from the PCA and neural
network training so that it could be used for validation.
Figure 6 shows a comparison of chlorophyll between the

FIGURE 3 | OMI measurements and MODIS ocean color retrievals for 15 March 2005. (A) Coefficient of the first PC; (B) 400 nm OMI-measured TOA reflectance;
(C) coefficient of the fourth PC; (D) MODIS chlorophyll concentration co-located to OMI.
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TROPOMI machine learning–based chlorophyll and the MODIS
standard retrieval for 15 October 2020. There is generally good
agreement between the TROPOMI chlorophyll and MODIS

chlorophyll with a MAE of 0.09 and RMSE of 0.148 when
comparing with daily MODIS Chl. The disagreement seems
worse for the higher chlorophyll concentrations possibly due

FIGURE 4 | Flowchart showing how hyperspectral TOA radiances from OMI and TROPOMI are used to train a neural network to predict ocean color information
using ocean color data from MODIS as the training dataset. A single neural network is used to predict all four outputs (details discussed in text).

FIGURE 5 | Cumulative histograms of the conditions that are included in the input data to the TROPOMI NN training. (A) shows the ECF for the input data and (B)
shows the glint angle of the NN training inputs.
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FIGURE 6 |Comparisons of chlorophyll from the TROPOMI NN-based method and MODIS atmospheric correction-based retrieval for 15 October 2020. Statistics
are shown for Log10 of Chl. (A) Comparisons of TROPOMI NN-based chlorophyll with MODIS daily chlorophyll co-located to the TROPOMI FoV, (B) same as left but
comparing with MODIS 8-day composite chlorophyll retrievals co-located to TROPOMI FoV.

FIGURE 7 | Same as Figure 6 but for comparisons of Rrs. (A) shows 412 nm Rrs, (B) shows 443 nm Rrs, and (C) shows 488 nm Rrs.
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to the limited amount of high chlorophyll available in the
training. The TROPOMI comparison to both the daily and 8-
day MODIS retrievals is similar, suggesting that using the 8-day
composite for gap filling works well for training the neural
network where clouds, aerosols, or sunglint conditions exist.
Similar comparisons are shown in Figure 7 for Rrs at 412,
443, and 488 nm. TROPOMI and MODIS are in excellent
agreement at 412 and 443 nm with an R2 of 0.910–0.926. The
comparison is a little worse at 488 nm possibly because it is near
the edge of the TROPOMI vis detector.

Since the aim of this research is to retrieve ocean color properties
in cloud, aerosol, and sunglint conditions, we present Figure 8,
which shows a comparison of the TROPOMI and MODIS Rrs

retrievals for 20 October 2020 as a function of these variables. These
plots were created using MODIS 8-day composite retrievals so that
there would be MODIS data to compare with under cloud, aerosol,
and sunglint conditions. The mean error in the TROPOMImachine
learning–based chlorophyll grows above an ECF of 0.8 because there
is a very low sensitivity to the surface. The middle panel of Figure 8
shows the difference between TROPOMI and MODIS Rrs as a
function of glint angle with sunglint generally having glint angles of
less than 20°. There is no significant dependence of the error on glint
angle, suggesting that this method is working even for sunglint
conditions. Finally, there is some dependence on AI with error
increasing for AI < -2 andAI > 1, but we also note that the AI from

TROPOMI is centered around -1.75. This suggests that the approach
could work well for evenmoderate absorbing aerosol loading scenes.

Figure 9 shows how the difference between TROPOMI and
MODIS Rrs changes compared with the 412 nm measured TOA
reflectance from TROPOMI. For TOA reflectance < 0.7, the
MODIS Rrs is about 0.001 higher than TROPOMI at 412 and
443 nm, while at 488 nm, the mean difference is almost 0. The
mean difference increases to 0.002 for TOA reflectance > 0.7,
which is likely due to increased cloudiness in the TROPOMI FoV
that limits the signal from the surface. This suggests that the
technique is limited for TOA reflectance at 412 nm greater
than 0.7.

In Figure 10, the TROPOMI machine learning–based
chlorophyll and MODIS-retrieved chlorophyll are mapped
for 15 October 2020 at a spatial resolution of 4 km. We
include chlorophyll retrievals from both the Aqua-MODIS
and Terra-MODIS instruments in the MODIS daily
chlorophyll concentration map to show the total possible
coverage available from MODIS on a daily basis. The
differences in chlorophyll between TROPOMI and MODIS
are generally less than 25%, with some larger differences
particularly in higher latitude regions. The TROPOMI daily
chlorophyll has coverage for about 47% of the global ocean while
the MODIS daily chlorophyll and MODIS Aqua 8-day composite
only have 16 and 42% coverage, respectively. For example, the

FIGURE 8 | Difference on 15 October 2020 between TROPOMI and MODIS Rrs at 412 nm (top), 443 nm (middle), and 488 nm (bottom) as a function of ECF (A),
glint angle (B), and aerosol index (C). The black line represents the mean error with the error bars showing +/− 1 standard deviation. The data in this figure were not
screened for clouds, aerosols, or sunglint.
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TROPOMI chlorophyll is elevated just off the western coast of
Saharan Africa, but this region is missing in both the MODIS daily
and 8-day composite images. This is true for several coastal regions
globally since the TROPOMI neural network algorithm is able to
retrieve under partial clouds. This suggests that themachine learning
approach would have better ability to monitor global chlorophyll
and HABs in near real-time. In addition, there is no noticeable
degradation or discontinuities in the sunglint region from the
TROPOMI chlorophyll in Figure 10, whereas the MODIS daily
chlorophyll retrieval has a large area missing in each orbit due to
sunglint conditions. Supplementary Figures S2–S5 show analogous
comparisons of OMI neural network retrievals to MODIS on 15
March 2005 with comparable results as shown with TROPOMI.

Next, we will show comparisons of TROPOMI and MODIS
chlorophyll retrievals over specific regions. Figure 11 shows a
case study in the Gulf of Mexico on 10 October 2020, which had
considerable cloudiness. While the MODIS daily chlorophyll
retrievals are quite limited on this day, the TROPOMI
machine learning approach has very few gaps in coverage on
this day. The general patterns in the TROPOMI NN-based
chlorophyll compare well with the MODIS-Aqua daily
chlorophyll where available. In the central Gulf of Mexico,
both the TROPOMI chlorophyll and MODIS daily chlorophyll
appear higher than in theMODIS 8-day composite as it seems the
8-day composite likely smoothens a lot of the dynamic gyre-like
features. In addition, there is no noticeable contamination in the
TROPOMI chlorophyll from sunglint features.

In Figure 12, we show the results for a final case study of the
TROPOMI chlorophyll in the Arabian Sea on 13 October 2020.
There is considerable cloudiness across much of the Arabian Sea
significantly limiting the spatial coverage from the MODIS daily
chlorophyll. The TROPOMI machine learning–based
chlorophyll, however, provides nearly full spatial coverage
across the Arabian Sea and captures many of the chlorophyll
features in the region. While the MODIS Aqua 8-day chlorophyll
composite has better spatial coverage than the daily MODIS
chlorophyll, it does not capture well the large gyre-like
chlorophyll features in the central Arabian Sea. These gyre-like
features can be seen well in the TROPOMI chlorophyll despite the
clouds in the region.

Finally, in Figure 13, we present another example in northern
Brazil near the mouth of the Amazon River. In this case, the
MODIS daily chlorophyll is very limited due to a combination of
sunglint and cloud cover across the region. While the Aqua
MODIS 8-day composite has better coverage than the MODIS
daily chlorophyll, it still has many gaps including at the outflow of
the Amazon River, where there is a large region of elevated
chlorophyll. The TROPOMI chlorophyll has much better
coverage than both the MODIS daily chlorophyll and Aqua
MODIS 8-day chlorophyll composite. The plumes of
chlorophyll that extend into the ocean look nearly identical
between the TROPOMI NN-based chlorophyll and the Aqua
MODIS 8-day composite chlorophyll. The structure of the
elevated chlorophyll along the coast in the TROPOMI looks

FIGURE 9 | Difference on 15 October 2020 between TROPOMI and MODIS Rrs at 412 nm (top), 443 nm (middle), and 488 nm (bottom) as a function of 412 nm
TOA reflectance. The black line represents the mean error with the error bars showing +/− 1 standard deviation. The data in this figure were not screened for clouds,
aerosols, or sunglint.
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very similar to that of the Aqua MODIS 8-day chlorophyll
composite but slightly lower. It is worth noting that the
coastal waters in the region may also include suspended
particles and elevated CDOM concentrations, which could also

impact the measured TOA radiance. In the open ocean, the
TROPOMI chlorophyll has much more complete coverage
than the MODIS daily chlorophyll and Aqua MODIS 8-day
composite chlorophyll.

FIGURE 10 | Retrievals of chlorophyll for 15 October 2020 gridded to 4 km. (A) TROPOMI machine learning–based chlorophyll; (B) Aqua MODIS daily chlorophyll
retrieval gap-filled with the Terra-MODIS daily chlorophyll retrieval; (C) Aqua-MODIS 8-day chlorophyll retrieval; (D) percent difference between the TROPOMI machine
learning–based chlorophyll and the Aqua MODIS daily chlorophyll gap filled with Terra MODIS.
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FIGURE 11 | Chlorophyll retrievals in the Gulf of Mexico for 10 October 2020. (A) shows a true color image fromMODIS Aqua, (B) shows MODIS-Aqua daily 4 km
retrieval, (C) shows TROPOMI machine learning–based chlorophyll, and (D) shows MODIS-Aqua 8-day composite of chlorophyll.

FIGURE 12 | Chlorophyll retrievals in the Arabian Sea on 13 October 2020. (A) shows a true color image from MODIS Aqua, (B) shows MODIS-Aqua daily 4 km
retrieval, (C) shows TROPOMI machine learning–based chlorophyll, and (D) shows MODIS-Aqua 8-day composite of chlorophyll.
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3.2 OMI In Situ Comparison
To further evaluate the machine learning–based approach, we
compare the machine learning–based chlorophyll with in situ
measurements from SeaBASS in Figures 14, 15. As previously
noted, this comparison is done with OMI as there is limited in
situ data available during the TROPOMI mission. Here, we

include comparisons of in situ data with OMI machine
learning approach (left panel), MODIS at its native
resolution (middle panel), and MODIS co-located to the
OMI FoV (right panel) in order to examine the impact of
OMI’s coarser spatial resolution in the validation. Optically
thick clouds (ECF > 0.5) and heavy aerosol loading scenes

FIGURE 13 | Chlorophyll retrievals for the coast of northern Brazil on 10 October 2020. (A) shows true color image from MODIS Aqua, (B) shows MODIS-Aqua
daily 4 km retrieval, bottom (C) TROPOMI machine learning–based chlorophyll, and (D) shows MODIS-Aqua 8-day composite of chlorophyll.

FIGURE 14 | Retrievals of chlorophyll compared with in situmeasurements. (A) is the OMI machine learning–based chlorophyll, (B) is the MODIS-Aqua chlorophyll
at the native resolution, and (C) is the MODIS-Aqua chlorophyll retrieval co-located to the OMI FoV. There are 163 co-located points in the comparison.
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(|AI|> 3) were excluded, but ultimately, we found there were
no such cases for the in situ validation data anyway. The in situ
comparisons of chlorophyll are quite similar for both OMI and
MODIS, which is expected since the OMI NN is trained for
retrievals from MODIS. The OMI machine learning–based
chlorophyll had an RMSE of 2.38 while MODIS chlorophyll
on the OMI FoV had an RMSE of 2.43. This is not the case in
the Rrs retrievals shown in Figure 15; however, the MODIS Rrs

retrievals at the native resolution compared better with the in
situ measurements than those on the OMI FoV. The OMI
machine learning–based Rrs comparison to in situ data is
a little worse than the MODIS comparisons with the in
situ data.

4 CONCLUSION

We have proposed a method for filling in the gaps of multi-
spectral satellite ocean color retrievals from instruments such as
MODIS when clouds, aerosols, and sunglint interfere with

traditional methods. We demonstrated our approach using
hyperspectral data from the OMI and TROPOMI instruments,
which have lower spatial resolution but serve as a useful proxy for
PACE OCI measurements. Our approach is based on performing
a principal component analysis on hyperspectral radiances to
extract spectral features and then training a neural network to
predict MODIS standard ocean color retrieval data from the
coefficients of the leading PCs of OMI and TROPOMI radiances.
We used daily MODIS ocean color retrievals and MODIS 8-day
ocean color composites collocated to OMI and TROPOMI
observations to provide training data to the neural network
globally, which provided a variety of conditions such as
clouds, aerosols, and sunglint contamination for training.

The approach has been applied to spectrally smoothed OMI and
TROPOMI high spectral resolution measurements from
320–500 nm. Results from this approach compare well with the
standard retrievals fromMODIS that utilize atmospheric correction.
In addition, the method on the coarse OMI and TROPOMI pixels
shows little degradation compared to daily and 8-day MODIS
composites, suggesting that the approach performs well for

FIGURE 15 | Similar to Figure 14 but for Rrs. (A) are for 412 nm, (B) are 443 nm, and (C) are 488 nm. There are 340 co-located points in the comparison.
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clouds, aerosols, and sunglint, which are less-than-ideal conditions
for standard multi-spectral ocean color retrievals. Comparisons
between the OMI ocean color estimates and in situ
measurements show very similar results with MODIS, suggesting
that the approach has similar accuracy to the traditional MODIS
retrievals. We do note, however, for heavy absorbing aerosol loading
and optically thick clouds, the approach does not work quite as well.

Even though the approach is shown to be promising for OMI
and TROPOMI, there are some uncertainties that could provide
areas for future improvements. In this work, aerosol index based
on UV wavelengths was used to remove potentially heavy aerosol
loading scenes. It is known that there are some uncertainties in
separating the aerosol signal from the ocean color signal; thus,
improved aerosol information could help to improve the selection
of input data for the PCA and NN (Torres et al., 2013). It can be
assumed that the BRDF effects are different for MODIS and OMI
or TROPOMI, and while principal component analysis and
neural network may learn how to correct for some of these
BRDF effects, there likely is still error due to these effects. It
would be beneficial to use training data from the same satellite the
approach is being applied to in order to avoid such errors due to
BRDF differences between two instruments. This will be possible
with some of the future ocean color instruments such as PACE
that will provide much higher spectral resolution than the
heritage ocean color missions. In addition, many of the
upcoming hyperspectral missions will have measurements
through the red band, which could provide additional spectral
information that could improve the atmospheric correction. In
future works, this will be tested using TROPOMI, assuming the
geo-location mismatch between the TROPOMI bands can be
corrected. Future works will also further evaluate the
performance of this approach for case 1 and case 2 waters.

Since OMI has been in flight for over 17 years, the
development of an ocean color product from OMI could
provide useful information by increasing global daily coverage
of ocean color retrievals. While it would not provide the high
resolution information available from MODIS, it could be
beneficial in frequently overcast regions where MODIS-based
retrievals are limited. In addition, TROPOMI could be used to
gap fill MODIS retrievals starting in 2018 and provide
measurements of ocean color properties that are only slightly
coarser resolution than MODIS.

This approach also provides a method for near real-time
monitoring of ocean color properties such as chlorophyll.
Over the next few years, there will be several new
hyperspectral instruments launched for which this
approach could be applied. In 2022, NASA’s geostationary
Tropospheric Emissions: Monitoring of Pollution (TEMPO)
will launch taking measurements across North America
hourly with a 5 km spatial resolution (Zoogman et al.,
2017). TEMPO will provide a unique opportunity to
capture the diurnal changes in the ocean biology of coastal
regions including the Gulf of Mexico and the Pacific and
Atlantic coasts. The OCI instrument onboard PACE will
launch in 2024 as the first hyperspectral instrument
dedicated to ocean measurements. Given enough overlap

with a well-calibrated L2 ocean color product from an
instrument such as MODIS, VIIRS, or OCLI, it may be
possible to use this approach to produce an early mission
product even with an imperfect L1 calibration. In future
works, we will examine whether such an approach is
possible with early mission L1 calibration. Both of these
instruments will take measurements from the UV through
the red edge to allow for possible improvements of this
method with the increased spectral information. This
approach will also be applicable to NASA’s
Geosynchronous Littoral Imaging and Monitoring
Radiometer (GLIMR) instrument, which will launch in
2026–2027 taking hourly hyperspectral measurements in
the Gulf of Mexico, southern U.S. coastline, and tropical
Atlantic Ocean.
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