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Improvements to acoustic seafloor mapping systems have motivated novel marine
geological and benthic biological research. Multibeam echosounders (MBES) have
become a mainstream tool for acoustic remote sensing of the seabed. Recently,
“multispectral” MBES backscatter, which is acquired at multiple operating frequencies,
has been developed to characterize the seabed in greater detail, yet methods for the use of
these data are still being explored. Here, we evaluate the potential for seabed
discrimination using multispectral backscatter data within a multi-method framework.
We present a novel MBES dataset acquired using four operating frequencies (170, 280,
400, and 700 kHz) near the Doce River mouth, situated on the eastern Brazilian continental
shelf. Image-based and angular range analysis methods were applied to characterize the
multifrequency response of the seabed. The large amount of information resulting from
these methods complicates a manual seabed segmentation solution. The data were
therefore summarized using a combination of dimensionality reduction and density-based
clustering, enabling hierarchical spatial classification of the seabed with sparse ground-
truth. This approach provided an effective solution to synthesizing these data spatially to
identify two distinct acoustic seabed classes, with four subclasses within one of the
broader classes, which corresponded closely with seafloor sediment samples collected at
the site. The multispectral backscatter data also provided information in likely, unknown,
sub-surface substrate differences at this site. The study demonstrates that the adoption of
a multi-method framework combining image-based and angular range analysis methods
with multispectral MBES data can offer significant advantages for seafloor characterization
and mapping.

Keywords: seabed classification, multispectral backscatter, density-based clustering, seafloor mapping, benthic
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1 INTRODUCTION

Technological innovations have advanced many areas of marine science over the past several
decades, including seafloor mapping. Improvements to acoustic seafloor mapping systems have
motivated novel benthic geological and biological research. Recently, seabed mapping science has led
to the development of a number of seabed classification tools (Fonseca et al., 2009; Rzhanov et al.,
2012; Lecours et al., 2016; Ierodiaconou et al., 2018; Masetti et al., 2018), which facilitate
multidisciplinary approaches to environmental management and conservation (Cogan et al.,
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2009; Lee et al., 2015; Kirkman et al., 2019) across a range of
different scientific disciplines (Heap et al., 2014; Mosca et al.,
2016; Brooke et al., 2017).

Over the last 2 decades, multibeam echosounders (MBES)
have become a mainstream tool for acoustic remote sensing of
the seabed (Brown et al., 2011; Menandro and Bastos, 2020).
MBES are now widely used for hydrographic purposes and
applied research on the continental shelf (Innangi et al., 2015;
Rocha et al., 2020) and deep sea (Sen et al., 2016; Picard et al.,
2018; Stewart and Jamieson, 2019). In addition to measuring
bathymetry, acoustic backscatter can be recorded from the MBES
signal. The concept of backscatter is basically the acoustic energy
that returns from the seabed to the receiver of the sonar (Lurton,
2010), while it is still very complex structurally, following
absorption, reflection, and scattering of the signal by the
seabed and water column, and influence of physical properties
such as the acoustic frequency and the angle of incidence.
Backscatter strength measurements have proven highly useful
for discriminating benthic habitats (e.g., Costa, 2019; Harris and
Baker, 2020; Trzcinska et al., 2020) and surficial geology
(McGonigle and Collier, 2014; Montereale-Gavazzi et al.,
2018). Most MBES backscatter seabed mapping analyses can
be divided into two domains: 1) image-based analyses,
whereby backscatter data are compensated for angular
dependence and analyzed as a single raster image (e.g.,
Diesing et al., 2016; Ierodiaconou et al., 2018; Runya et al.,
2021) and 2) angular range analysis, in which the full angular
response of backscatter is retained (Fonseca and Mayer, 2007;
Fonseca et al., 2009; Haris et al., 2011; Lurton et al., 2018). Angle-
varying gain (AVG), which is used to produce the mosaic for
image-based approaches, generally results in a loss of angular
resolution, meaning that information may be lost that is specific
to individual angles of incidence at the seafloor. Angular range
analysis, on the other hand, may be used to preserve angular
detail at the cost of spatial resolution. Fonseca et al. (2009) point
out that angular response and backscatter mosaic analysis can be
considered as complementary methods, and the improvement of
benthic maps through combined approaches has been
demonstrated (Che Hasan et al., 2012; Che Hasan et al., 2014).

Currently, most MBES operate at a single acoustic frequency,
despite acknowledgement that the backscatter response of the
seafloor is frequency dependent. The difference between single-
and multi-frequency backscatter analysis is comparable to mono-
and multi-frequency optical remote sensing (Diesing et al., 2016).
The field of terrestrial remote sensing is well developed with a
fairly long history, and advanced models for image classification
using optical data employ a wide range of electromagnetic
frequencies simultaneously to achieve a more robust
description of the land surface (Lu and Weng, 2007). Multi-
frequency (aka, “multispectral”) acoustic remote sensing of the
seafloor, in contrast, it is not yet as developed—though the
potential advantages of multispectral acoustic data have been
recognized (Huges Clarke, 2015; Tamsett et al., 2016; Feldens
et al., 2018). The recent implementation of multispectral MBES
allows for bathymetry and backscatter acquisition at multiple
frequencies simultaneously. Buscombe and Grams (2018), Gaida
et al. (2018), Brown et al. (2019), and Costa (2019) investigated

and presented the first results of multispectral MBES operating in
this manner. These studies reported improved seafloor
discrimination as a result of the multifrequency dataset, which
provides increased information enabling detailed comparison of
acoustic signatures between different seabed types.

Despite these apparent advantages, the use of multifrequency
MBES for seafloor characterization is not well developed in many
contexts. For example, single frequency backscatter datasets from
both sidescan and MBES systems are useful as exploratory survey
tools to obtain baseline knowledge of the composition of the
seafloor (Augustin et al., 1996; Greene et al., 2013; Lucieer et al.,
2018). Because of the increased information they provide,
multifrequency systems may be well suited to exploratory
tasks, yet the use of multiple frequencies also implies an
increase in dimensionality that must be resolved to realize the
full benefit of these data. Additionally, several techniques may be
used to derive secondary backscatter features for seafloor
characterization, for example, by analyzing the acoustic
angular response of the seafloor or the texture of the
backscatter image (e.g., Blondel and Sichi, 2009; Alevizos and
Greinert, 2018; Fakiris et al., 2019). While highly useful for
classification, these approaches also serve to increase the
dimensionality of the data, and this effect is multiplicative in a
multifrequency context. Furthermore, it is not immediately clear
which of these approaches or which information should be
prioritized for exploratory purposes, especially where there is
little a priori knowledge on the composition of the seafloor or
sparse ground truth coverage.

Building on previous work, here we evaluate the potential for
seabed discrimination using multispectral backscatter data within
a multi-method exploratory framework. We first present a novel
MBES dataset acquired using four operating frequencies (170,
280, 400, and 700 kHz), with ground truth sediment information.
Adopting a geoacoustic approach, image-based and angular range
analysis methods are applied to characterize the multifrequency
response of the seabed. The large amount of information resulting
from these methods is then summarized using dimensionality
reduction and density-based clustering, enabling hierarchical
spatial classification of the seabed with sparse ground-truth.

2 MATERIALS AND METHODS

2.1 Data Acquisition and Processing
The current study focuses on a seafloor area (37 km2) adjacent to
the Doce River mouth, situated on the eastern Brazilian
continental shelf, in the state of Espírito Santo. The Doce
River is one of the main river deltas recognized along the
Brazilian eastern coast (Dominguez, 2006), and is a major
sediment source to the adjacent continental shelf (Bastos et al.,
2015). In terms of sedimentary processes, Quaresma et al. (2015)
characterized a deltaic lobe extending to 30 m depth, with an
accumulation of fine sediments (>75% mud) in a main
depocenter south from the river mouth. Towards offshore
(depths >30 m), sandy facies are predominant (Figure 1)—a
trend also observed and corroborated by Vieira et al. (2019).
Though useful, previous research in this area has been conducted
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at a coarse spatial resolution, and fine scale geomorphological and
substrate characterization are still lacking. The MBES and
sediment sample data sets presented here were analyzed to fill
this knowledge gap.

A multispectral MBES dataset was acquired to provide high
resolution information on the geomorphology and substrate
distribution of the study area. Bathymetry and backscatter
were acquired using an R2Sonic 2024 echosounder, with the
sonar head deployed through a moon pool in the steel-hulled
survey vessel, “Santa Edwiges” (19.6 m in length). The MBES was
configured to collect data by sequentially pinging at 170, 280, 400,
and 700 kHz (true frequency of 697.674 kHz) operating
frequencies in equiangular mode. The 700 kHz frequency did
not operate during the entire survey due to the effects of depth
and water turbidity on data quality. Specifications such as power,
pulse length, gain, and spreading were held constant. A 90°

angular sector and 256 beams were used for all frequencies
except 700 kHz, which is limited to a 70° sector. Because the
receiver array is flat, the size of the receive beam grows with
distance from nadir (i.e., the lower the grazing angle, the larger
the beam footprint; Figure 1). The transmit array is round and
does not suffer the same issue.

The MBES system was paired with a POS MV Wave Master
Inertial Navigation System (INS), with differential positioning.
During the survey, SVP casts were deployed every 3 hours using a
Valeport Mini configured to collect sound velocity, salinity,
temperature, and pressure. These data are essential to ensure
the correction of sound velocity effects and to calculate and apply
the absorption coefficient. Application of absorption coefficients

for each frequency was the only radiometric correction applied
during the data acquisition—all other corrections (e.g., beam
width) were applied during post processing. All systems were
integrated using QPS QINSy 8.18.3 for data acquisition, and the
survey lines were planned with ~30% overlap. The dataset was
assessed during the survey to ensure data quality using QPS
Qimera 2.0, and post-processing was carried out using QPS
Qimera and QPS FMGT 7.9.5 (Fledermaus Geocoder Toolbox,
hereafter FMGT).

In compliance with the International Hydrographic
Organization, bathymetric processing consisted of manually
cleaning erroneous soundings and tidal correction, which was
performed using data extracted from an ADCP moored adjacent
to the study area. The dataset was filtered for each operating
frequency in QPS Qimera. Digital bathymetric models (DBM) for
each frequency were exported at a 2 m horizontal resolution.

Although there is still no unified standard for processing
backscatter, the multispectral data were processed following
recommendations in Lamarche and Lurton (2018) and
Schimel et al. (2018). The main steps involve the frequency
filtering, correction of acquisition parameters for each
frequency (gain, transmit power, pulse length, beam width)
and AVG correction. Backscatter mosaics were exported at
1 m resolution. All backscatter processing was completed
using FMGT.

2.2 Multispectral Backscatter Analysis
Elements of both image-based and angular range approaches
were used to analyze backscatter data and explore the

FIGURE 1 |Map of the study area (bathymetry adapted from Bastos et al., 2015), with sand content estimated by Quaresma et al. (2015). On the right-hand side,
an illustration of multispectral MBES acquisition indicates frequency changes between sequential pings, and the nadir beam footprint sizes for each frequency.
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multispectral response of the seabed. The methodological
framework of the analysis is summarized in Figure 2,
outlining each approach and its expected results.

2.2.1 Image-Based Analysis
The image-based analysis can be subdivided into three steps. The
first step consists of visual interpretation of the mosaics and
assessment of the uncalibrated backscatter values for each
frequency using profiles, graphs, and descriptive statistics. This
step is critical for obtaining baseline understanding of the data
and is often combined with other analyses (Parnum and Gavrilov,
2011). General data exploration and visual comparisons were
performed using ArcGIS and R. In the second step, textural
parameters were extracted from the mosaics, which is a common
technique for classifying acoustic data (Diesing et al., 2016;
Diesing et al., 2020). Here, textural analyses were based on
grey-level co-occurrence matrices, using the GLCM v 1.6.5
package available in R (Haralick et al., 1973). For each mosaic,
GLCM variance measurements were extracted, based on how
frequently different combinations of neighboring pixels occur (in
a 5x5-pixel window). The third step was the generation of a
multispectral composite image (i.e., a false-colour RGB) using
each frequency as a spectral band. This approach has not yet been
widely applied, likely as a function of the recent development of
multispectral MBES, but has great potential to improve habitat
discrimination in combination with other terrain attributes.

2.2.2 Angular Range Analysis
The second approach applied to the multifrequency corrected
backscatter dataset was angular range analysis (ARA). The
backscatter angular dependence (the acoustic response across
the range of ensonification grazing angles), provides information
that can be used for improved seabed classification (Che Hasan
et al., 2014; McGonigle and Collier, 2014; Fezzani and Berger,
2018), or the inference of seafloor physical properties such as
grain size and acoustic impedance (Fonseca and Mayer, 2007).

Fonseca et al. (2009) suggested that the angular response curve
can be sectorized according to the angular range—comprising, for
example, the near range region (near nadir) from 0 to 25°, the far
range region from 25 to 55°, and the outer range region from 55 to
85°. Angular response curves were extracted at each ground truth
sample site through swath profiles for comparison with
geophysical models and comparison between frequencies.
Additionally, corrected and georeferenced soundings were
extracted from FMGT outputs for each 10° sector from the
nadir (i.e., 1°–10°, 11°–20°, 21°–30° and 31°–40°) using a custom
R script. These results were rasterized and integrated with the
layers from with other approaches within ArcGIS for further
analysis.

2.3 Density-Based Clustering
The large amount of information from the different analysis
approaches (Multispectral Backscatter Analysis) was summarized
spatially using density-based clustering. Unlike many clustering
methods that rely on measures of multivariate distance to identify
clusters, these approaches identify clusters using estimates of
multivariate data density (Hahsler et al., 2019; Hashler and
Piekenbrock, 2021). Density-based clustering offers several
advantages compared to many other approaches, such as the
automatic identification of cluster numbers, rejection of outliers
that do not fall within any dense regions, and clustering of data of
arbitrary multivariate shape (Ester et al., 1996; Kriegel et al.,
2011). Ordering Points to Identify Clustering Structure (OPTICS)
is a method that can additionally identify clusters of varying
density (Ankerst et al., 1999). OPTICS is an extension of the
DBSCAN algorithm (Ester et al., 1996), which facilitates data
exploration through “reachability plots”—one-dimensional
representations of the “reachability distance” between points
(Hahsler et al., 2019). These can be used to inform the
clustering outcome, and enable additional flexible solutions
such as hierarchical density-based clustering. Despite the
widespread application of unsupervised approaches for seabed

FIGURE 2 | Flow indicating the steps of the methodological framework.
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mapping and classification, and the potential benefits offered by
density-based clustering, it has received relatively little attention
in this field (but see Le Quilleuc et al., 2021).

Results from both image-based and angular range approaches
were used for clustering, with the exception of the frequency of
700 kHz, which has a smaller coverage area and was not
considered for this analysis. These layers included AVG
backscatter mosaics for each frequency (170, 280, and
400 kHz), GLCM variance for each frequency (170, 280, and
400 kHz), and backscatter values from four different angular
sectors (1–10°, 11–20°, 21–30°, 31–40°) for each frequency
(170, 280 and 400 kHz), totaling 18 rasters (3 AVG mosaics, 3
rasters from GLCM results, and 12 rasters from ARA). We
applied the methods presented in Che Hasan et al. (2012) in
order to aggregate the acoustic data to object-based image
segments. The three-band RGB backscatter mosaic was
segmented using the “mean shift” algorithm (Yizong, 1995;
Comaniciu and Meer, 2002) in ArcGIS Pro using the
maximum spatial and spectral detail, but a minimum segment
size of 2000 pixels. The mean shift is a “mode-seeking” algorithm
that assigns data points to clusters based on their position relative
to the local maxima of a multivariate kernel density estimate. The
values of the 18 rasters were stacked and averaged over the
resulting segments, which allowed for continuous estimates of
the angular backscatter values across the full extent of the study
area, and a reduction of data volume by several orders of
magnitude, producing 6902 segments (step 2 of Figure 3). The
values for each segment (18 acoustic variables) were converted to
matrices in R, and principal component analysis (PCA) was
applied to eliminate collinearity and reduce dimensionally.
The first two components explained 95.4% of the total
variance and were retained for clustering.

Principal components of the image-based segments were
clustered using OPTICS to identify acoustically distinct seabed
types across the study area. OPTICS was implemented using the
DBSCAN package in R (Figure 3; Ester et al., 1996, Campello et al.,
2013; Hahsler et al., 2019). The reachability distance was first plotted

using the parameters (the density search radius) and (a threshold
number of points used for reachability calculations) to visualize the
data density and estimate the number of clusters. The reachability
plot suggested a hierarchical data structure, and two sets of clusters
were extracted at coarse and fine levels of detail. These indicated
broad data groupings, which contained smaller sub-clusters at a
higher level of detail. The clustering results were exported to GIS
format to generate benthic map predictions.

2.4 Ground Truth Information
After preliminary analysis of the backscatter mosaics, samples of
surficial sediments were collected at 12 sites within the survey
area (Figure 1). Sediments were collected using a Van Veen grab
sampler in July 2021 (nearly 2 years after the acoustic data
survey). To account for the temporal offset between the
collection of sediment samples and acoustic data, we verified
the differences and the general trend from the sediment
distribution (Quaresma et al., 2015; Vieira et al., 2019). The
grain size analysis provides results as percentage gravel, coarse
sand, medium sand, fine sand, silt and clay, which were used to
ground-truth results from the multiple backscatter analysis
approaches and density-based clustering.

3 RESULTS

3.1 Multispectral Bathymetry
The DBM outputs, which contain all processed depths from all
frequencies combined, ranged from 10 to 32 m, and revealed a
predominantly flat bottom with locally steep features. These were
evident in maps of local slope and roughness, and ridges oblique
to the coast were visible at the deep end of the profile (Figure 4).

The spatial distribution of depth differences was also
investigated. DBM surfaces generated for each operating
frequency were subtracted from each other using raster
algebra to visualize the distribution of depth differences
across the study area (Figure 5). In general, regions close to

FIGURE 3 |Workflow for density-based clustering of the highly dimensional multi-method backscatter analysis. Illustrative scheme of density-based clustering was
adapted from Hahsler et al. (2019).
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FIGURE 4 | (A) Digital bathymetric model; (B) bathymetric profile; (C) slope; (D) ruggedness.

FIGURE 5 | Bathymetric difference surfaces (in meters) computed from the subtraction between the digital bathymetric models of each frequency.
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higher slope values (steep feature and the edges of oblique
ridges) show higher bathymetric difference between
frequencies. Differences between 170 and 280 kHz were, on
average, 0.1 m greater than the differences between 280 and
400 kHz, and differences between 170 and 400 kHz were
greater still. The differences between 700 and 170 kHz were
the greatest observed, whereas differences between 400 and
700 kHz were three times lower. The bathymetric differences
(which can reach up to 0.2 m) observed between the
frequencies largely conformed to expectation given the
current understanding of substrate-frequency response and
the bottom type in the study area.

3.2 Multispectral Backscatter
3.2.1 Image-Based Analysis
3.2.1.1 Assessment of Mosaics and Uncalibrated Backscatter
Values
Figure 6 presents the uncalibrated backscatter mosaics for each
frequency at 1 m resolution using the same range of values for the
greyscale (−10 and −38 dB). Overall, the shallower region presents
the lower backscatter values, and the oblique elongated bathymetric
features correspond with higher backscatter values.

From visual analysis, differences between the frequencies
appear greater in low backscatter regions, while over the high

backscatter feature running south-north through the survey area
all frequencies show high backscatter values, and differences are
not apparent (Figures 6, 7). The 700 kHz mosaic appeared
oversaturated. Figure 7 suggests a general trend of increasing
backscatter and greater agreement between frequencies with
increasing distance from northwest to southeast across the
survey area.

Uncalibrated backscatter values for the frequencies of 170, 280
and 400 kHz were plotted as violin plots for the whole area
(Figure 8A) and also for all frequencies using only the 700 kHz
coverage area (Figure 8B). These plots present the kernel
probability density of the data. Considering the entire area, the
lowest median backscatter values (−30.63 dB) were observed
using the 400 kHz frequency. The 170 kHz backscatter median
was greater (−24.97 dB), with the smallest interquartile range of
values (between Q1 and Q3), which is also reflected in the
concentration of data observed in the kernel density curve
with leptokurtic tendency and positive asymmetry (see
Figure 8B). The 280 kHz data presented a higher median
value (−26.54 dB) than the 400 kHz, and both frequencies
presented similar data distributions (Figure 8A), recognizing
two distinct sets of backscatter values (the main one having a
modal value close of −27.80 dB for 280 kHz and −31.89 dB for
400 kHz). The better recognition of two main groups of

FIGURE 6 | Backscatter mosaics for each operating frequency.
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FIGURE 7 | Top: comparison of differences in multispectral backscatter intensities along the transect shown in the mosaic (top left). Bottom: comparison of
differences in multispectral backscatter intensities along the transect shown in the mosaic inset (bottom left).

FIGURE 8 | (A) Violin plots presenting backscatter data (170, 280, and 400 kHz) for the whole area, and (B) for all frequencies, spatially restricted within the
700 kHz coverage area.
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FIGURE 9 | Composite image (RGB) representing the three frequencies (A) For the whole study area; (B) Frame over the sandy feature. Pixels are stretched to the
minimum and maximum values for each band. No changes of color rendering parameters were applied (hue, saturation and contrast).

FIGURE 10 | GLCM variance results for each frequency.

Frontiers in Remote Sensing | www.frontiersin.org March 2022 | Volume 3 | Article 8602829

Menandro et al. Multispectral Seafloor Acoustic Response

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


FIGURE 11 | Angular range analysis results obtained by extraction of backscatter values for each 10° angular sector.

FIGURE 12 | Angular dependence curves for each frequency extracted in each sample site.
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backscatter values by the higher frequencies can also be observed
by the standard deviation of the dataset for each frequency
(170 kHz: 3.35 dB, 280 kHz: 4.64 dB, 400 kHz: 5.09 dB).

Over the 700 kHz coverage (Figure 8B), the lowest median
backscatter values (−33 dB) were observed for the 400 kHz data.
The similar shape of the density curves (Figure 8B) is expected, once
the seabed appears to be more homogeneous in this area in
accordance with visual analysis of the mosaics. Considering the
oversaturated mosaic, and that little is currently known concerning
the acoustic response of 700 kHz frequency, we reserve a detailed
image-based interpretation of the 700 kHz data. Further
investigation would be useful to inform on the effects of a turbid
water column on such high-frequency MBES soundings.

3.2.1.2 Multispectral Composite Image
The backscatter mosaics were combined to produce a three-band
composite RGB image (Figure 9). In the RGB mosaic, it is
possible to recognize zones where all frequencies show
similarly high backscatter values (white regions), which
coincide with the elongated and oblique features. Darker zones

indicate low backscatter values for all frequencies. The greatest
differences between the bands are indicated by red shades, which
indicates higher values for the 170 kHz signal, and in light blue
areas, which indicate higher values for the combination of the two
higher frequencies (280 and 400 kHz).

3.2.1.3 Textural Analysis (GLCM)
The general trend of textural variations can be visualized using
the GLCM variance (Figure 10). Higher values occurred over the
high backscatter feature, especially at 280 kHz. Lower values
occurred in the low backscatter region, mainly at 400 kHz.

3.2.2 Angular Range Analysis
The angular range analysis provides results that can be explored
using geophysical and empirical approaches, including physical
model comparison and empirical parameters to distinguish
seafloor types, and also angular dependence curves of different
substrates (Lurton and Lamarche, 2015). The angular backscatter
values were interpolated spatially using Inverse Distance
Weighting (IDW) in ArcGIS Pro to produce grids of 1 × 1 m

FIGURE 13 |Reachability plot of a hierarchical clustering with (A) two main clusters (reachability distance = 0.88) and noise; and (B) clusters at detailed hierarchical
level (reachability distance = 0.475).
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cells (Figure 11). The results demonstrated that, for most of the
area, decreasing backscatter was associated with increased
incidence angle and frequency. The exception occurs over the
high-backscatter feature, which marks a region with high
scattering across the entire swath.

The 1–10° sector shows high backscatter values throughout the
area and similar results for all frequencies. Compared to results
presented for the lower frequencies at 11–20° sector, the 400 kHz
frequency seems to achieve a better power of seafloor
discrimination for the shallower region. Three distinct regions
are clearly visible using the 21–30° sector. Additionally, the
400 kHz data within this sector may suggest that the shallow
region is composed of different material than the elongated
feature, even though they appear similar at other frequencies
and angular sectors. Lower backscatter was observed using the
outermost angular sector over much of the study area—primarily

at 400 kHz—but high values were still observed at the elongated
feature.

Angular response curves were extracted for all frequencies to
characterize the acoustic response of the seabed at each sample
site (Figure 12). The angular response curves can be broadly
described in three main groups. The curves at sample sites Doce
01 and Doce 02 show similar shapes for all frequencies, with
decreasing backscatter values as the frequency increases (with
exception of 700 kHz). The shape shows low backscatter level loss
for the first 20° from the nadir, followed by a greater decrease in
backscatter with increasing incidence angle. The curves extracted
at Doce 07, 09, 11, and 12 are comparatively flat, with high
backscatter values and very slight differences between
frequencies. The third group is characterized by a high
backscatter level loss for all frequencies from nadir to the
outer beams, and lower values at 400 kHz.

FIGURE 14 | (A) Density-based clusters predicting for the study area showing two main clusters; (B) clusters at detailed hierarchical level; (C) grain size results on top of
clustering solution; (D) results of each grain size fraction for each sample; (E) sediment sample at Doce 07 sample site; (F) sediment sample at Doce 10 sample site.
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3.3 Density-Based Clustering and Mapping
The combination of PCA and density-based clustering enabled
synthesis of a large number of backscatter data layers to inform
seabed classification. PCA reduced the 18 backscatter-derived layers
to two principal components that explained the majority of variance
(>95%) in the dataset, suggesting substantial collinearity among the
variables. The OPTICS reachability plot from these principal
components (Figure 13) enabled identification of clusters at two
hierarchical levels. Low reachability distances, represented as valleys
in the plot, indicate dense data regions, which are separated by
“peaks” representing regions of low data density. First, two broad,
well-defined clusters were evident at a reachability distance of 0.88
(Figure 13A). These results agree with general trends observed for
many of the backscatter layers (Figures 6, 10, 11), in which the study
area is separable into distinct areas of low and high backscatter
intensity and variance. Cluster 1, which occurred across the full
extent of the study area (Figure 14A), could be further divided at a
reachability distance of 0.48 to produce four sub-clusters. Unlike the
broader Cluster 1, the four sub-clusters show a distinct gradient from
the coast (Figure 14B), which was not immediately apparent from
visual analysis of the various backscatter layers. Outliers appear in
regions of extreme high and low backscatter values.

3.4 Grain Size
The results from grain size analysis (Figures 14C,D) show that
samples Doce 01 and Doce 02 are composed primarily of fine
sand. Doce 03 and Doce 04 share a similar mud content and both
stations are close to bathymetric anomalies (high slope and high
ruggedness sites). Samples Doce 05, Doce 08 and Doce 10 (Figure
14F) had an increased mud content, while sample sites at the high
backscatter features (Doce 07, 09, 11, 12) - e.g., Figure 14E - had
higher proportions of medium and coarse sand fractions, with
low amounts of mud.

Although there not enough samples to estimate the
classification accuracy, the classes seem to distinguish benthic
clusters through the multivariate combination of the results.
Table 1 summarizes the main properties for each cluster defined.

Cluster 1 contained the greatest number of sediment
samples and can be characterized as muddy fine sand.
Cluster 2 is medium sand, with a smaller coarse sand
fraction. Cluster 1a contains no ground truthing validation,
but seems to indicate a transition between clusters 1 and 2.
Cluster 1b seems to have characteristics close to cluster 1a,
likely with higher mud content, or morphological
characteristics that provide a soft backscatter response.

Cluster 1c also does not have sediment samples, but it can
be interpreted as similar to cluster 1b, according to the angular
sector maps (Figure 11). Cluster 1d has two samples and can
be defined as fine sand. Some areas were left unclassified but
may comprise two additional substrate types—one with higher
coarse sand/gravel contents (sample Doce 07) and the other
with extremely low backscatter values, indicating a muddy
bottom. It is possible that the latter has undergone
modifications during the time between the collection of
acoustic data and ground truthing.

4 DISCUSSION

Backscatter data has been analyzed in a variety of ways for
seafloor classification, including interpretation of backscatter
mosaics, textural analysis (Runya et al., 2021), image-based
analysis (Ierodiaconou et al., 2018), and techniques involving
angular range analysis (Fonseca and Mayer, 2007). Advantages
and disadvantages of each make the choice of methodology
challenging, and their combined use may achieve better results
by uniting the spatial resolution of the mosaics with the
enhanced information supplied from angular analysis
(Fonseca et al., 2009; Che Hasan et al., 2014). Several
supervised and unsupervised techniques have been applied
in seabed classification (Stephens and Diesing, 2014; Diesing
et al., 2020) and incorporated in segmentation algorithms,
including different clustering approaches (Le Bas, 2016;
Masetti et al., 2018). Density-based clustering has received
little attention for seabed classification, and was successfully
applied here to synthesize different analysis approaches to
produce a classified output.

4.1 Benthic Map Prediction
Highly dimensional input data resulting from multiple analysis
approaches can be difficult to synthesize spatially, especially given
sparse ground truth information, yet density-based clustering
provides an objective means to identify well-defined seabed units
under such circumstances. Here, backscatter mosaics (Figure 6)
and the composite RGB (Figure 9) potentially suggest two or
three seabed classes, while the angular response curves at the 12
sample sites (Figure 12) suggest at least three classes. GLCM
products and spatial analysis of different angular sectors further
confound a unified manual seabed segmentation solution. The
combination of image-based segmentation, dimensionality

TABLE 1 | Characteristics of each cluster.

Ground truth samples Angular response curve Sediment properties

Cluster 1 Doce 04, 05, 08 and 10 High backscatter level loss Mostly mud or fine sand
Cluster 1a — — —

Cluster 1b Doce 06 High backscatter loss Predominantly fine sand, with more than 10% mud
Cluster 1c — — —

Cluster 1d Doce 01 and 02 Increased backscatter loss past 20° More than 95% fine sand
Cluster 2 Doce 09, 11 and 12 Low backscatter loss Predominantly medium sand, with less than 10% gravel
Noise/Outlier Doce 03 and 07 High (Doce 03) and low (Doce 07) BS level loss Fine sand with less than 30% mud (Doce 03) and gravelly sand (Doce 07)
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reduction, and density-based clustering provide an objective
solution to synthesizing these data spatially to identify distinct
seabed types. Similar solutions have applied PCA for
dimensionality reduction of backscatter data followed by
k-means clustering for unsupervised classification (e.g.,
Alevizos et al., 2018), and other approaches towards similar
ends have included combinations of self-organizing maps and
fuzzy clustering (Chakraborty et al., 2015), and Bayesian
probability estimation (Amiri-Simkooei et al., 2009; Simons
and Snellen, 2009). Several properties of density-based
clustering are desirable in an exploratory context though,
including automatic identification of number of clusters,
enhanced data visualization and hierarchical clustering
solutions, and rejection of outliers that are dissimilar from
other well-defined clusters. These qualities are lacking in many
other common approaches, which may be well-suited to
classifying gradational or poorly defined seabed types (e.g.,
k-means, ISO, agglomerative clustering).

Quantifying the advantages of using multispectral backscatter
data as a predictor for different seafloor types is beyond the scope
of the current study, but the findings suggested that the
multifrequency acoustic data provided greater discrimination
of muddy and fine sand sediments than coarser sediments,
aligned with findings from other studies (Gaida et al., 2018;
Brown et al., 2019; Costa, 2019). Part of the data identified as
noise by the OPTICS algorithm is located in the region of highest
backscatter, where the sediment shows the higher gravel and
coarse sand content. Conversely, multiple distinct clusters were
identifiable in muddy sediments. We believe this to be a property
of the acoustic data, which were highly variable and
inhomogeneous at the high backscatter regions. Further
investigations using multispectral backscatter for a greater
range of seabed types is necessary to determine the potential
of this technology for substrate discrimination. This is also the
first application of density-based clustering methods in this
context as far as we know, and further comparison with other
clustering methods in various environments would be of great
interest.

4.2 Exploring Multispectral Backscatter
Response Through Image-Based and
Angular Range Analysis Approaches
Despite limitations associated with the use of uncalibrated
backscatter data (Lurton and Lamarche, 2015; Schimel et al.,
2018; Malik et al., 2019), the results provided basic information
for interpretation of different seafloor types, and provided useful
information on the acoustic response of the seabed. For most
areas, the median uncalibrated backscatter values from the
mosaics for all frequencies were low (slightly higher for lower
frequency), which is characteristic of soft muddy deposits (Brown
et al., 2019; Diesing et al., 2020). It is also worth noting that the
characteristics of sub-bottom deposits can influence the acoustic
response, especially for lower frequencies (Jackson and
Richardson, 2007; Williams et al., 2009; Feldens et al., 2018).
The acoustic response from sandy features (both for image-based
and ARA results) is largely influenced by interface scattering, but

could be further investigated by observing the influence of survey
azimuth (Lurton et al., 2018), presence of bedforms, the variety of
microtopography, and even more ground truthing to check
lateral variability.

The use of multispectral technology offered increased
seafloor discriminatory power based on the different
frequency response of the seafloor across the frequency
range, achieving a benthic prediction in agreement with
earlier studies in this region (Quaresma et al., 2015; Vieira
et al., 2019), and making it possible to improve the seafloor
classification. Quaresma et al. (2020) found lower seabed
density values in the shallow region close to the mud
depocenter (Figure 1), and high density values (>1400 kg/
m³) in regions with depths greater than 30 m. Here, the
lower uncalibrated backscatter values appear close to the
steep feature (i.e., high slope–see Figure 4) and on the edge
of the sandy elongated feature, where the bathymetric
differences (Figure 5) between the frequencies reached up to
10 cm, indicating a mud accumulation partially driven by the
seafloor morphology. In these regions, the lower frequency was
presumably detecting the sub-surface sediment characteristics,
while the higher frequency reflected primarily off the surface
sediments of the seafloor, potentially indicating a thick, muddy
deposit in this area. Although results from the bathymetric data
(e.g., slope, ruggedness, bathymetric differences) played a
secondary role compared to the backscatter here, they can
serve as important predictors for seabed classification
(Walbridge et al., 2018; Lucatelli et al., 2019), and some
derivatives may be more important than bathymetry itself
(Trzcinska et al., 2020).

The analysis of the composite band image proved to be an
interesting tool to visualize the results in an integrated way,
making it possible to observe regions where all frequencies
indicated similar characteristics for distinct seabed types (for
example, darker tones indicating more muddy bed, and whiter
tones indicating more sandy sediment). Nevertheless, the
observation of the RGB mosaic also allowed to recognize
differences in acoustic responses in some regions, such as in
the redder region near to the sample sites Doce 01 and Doce
02–indicating higher backscatter values for the lower frequency,
and a lighter bluish region near to sample site Doce 11)–coloring
that indicates higher backscatter values for the combination of the
higher frequency bands (280 and 400 kHz). Quantifying the gain
due the use of such methodology is beyond the scope of this work,
but the result brings new information about the spectral signature
of certain types of bottoms, and helps to consolidate the potential
to improve the distinction and classification of the seafloor using
multispectral backscatter (Costa, 2019).

Results from the GLCM analysis provide information that may
aid in interpreting geoacoustic properties of the seabed. Jackson
and Briggs (1992) found that the scattering interface may be a
dominant factor controlling backscatter in sandy bottoms, while
volume homogeneity is increasingly important in bottoms of
higher mud (and lower medium-coarse sand) content. Here, the
highest GLCM variance values were observed at the oblique and
elongated sandy features, indicating higher uncalibrated
backscatter values due to mosaic grey-level values—particularly
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at the 280 kHz operating frequency (Figure 10). Hughes Clarke
(2015) also noted an increase in backscatter intensity over sand
sheets with increasing frequency, yet retained uncertainty
regarding textural classification, as the bottom ruggedness
measurement depends on the acoustic wavelength. Closer to
the river mouth, differences in GLCM variance may be
associated with other variables that influence the backscatter
response, such as the thickness and homogeneity of the
muddy subsurface deposit. In addition to informing
classification, the GLCM variance contributed to visual
interpretations, providing results that assist with backscatter
analysis and classification of the seabed (Samsudin and Hasan,
2017; Runya et al., 2021).

While the 30–60° angular range is ideal for many seabed
mapping applications (Lucieer et al., 2018), the utility of
angular sector may change with frequency, and therefore, the
extraction of backscatter values for different angular sectors may
provide increased information with which to inform seabed
classification. The 1–10° sector contains the most specular
reflection, and here, appeared to show low contrast between
different seabed types. The 11–20° data provided useful
information at the fine sandy region, primarily at the higher
frequencies. The angular response curves for this region show low
backscatter loss for the first 20°, followed by a higher backscatter
loss with increasing incidence angle. The 21–30° angles allowed
for distinguishing bottom types using the lower frequencies. The
400 kHz data at these angles allows for visually distinguishing
differences in bottom type close to the river mouth, which were
not apparent at lower angles. The 31–40° sector showed high
contrast between the sandy feature and the rest of the region.
While the distinction between fine sand and muddy regions was
not always clear using image-based methods, the use of
backscatter at different angular sectors and frequencies
enabled their discrimination, further indicating the benefits of
combined analysis approaches for enhanced seafloor
discrimination (Che Hasan et al., 2012; Ierodiaconou et al., 2018).

The ARA results appeared to correspond to the composition of
sediment samples. Those with a large proportion of mud showed
a greater rate of backscatter decrease with incidence angle than
samples describing coarser sediments (Figure 12), and the
greatest differences between frequencies. This trend was most
apparent from the 400 kHz data, which is consistent with lower
uncalibrated backscatter values mapped by the image-based
results and with the acoustic influence of the muddy deposit
homogeneity. Gaida et al. (2018) observed an increasingly flat
angular response curve at 400 kHz in soft sediments compared to
lower frequencies, which they attributed to an increased
sensitivity to roughness at higher frequencies. Here, the
angular response curves observed for sandy sample sites (Doce
07, 09, 11, and 12) exhibited flatter shape, similar to acoustic
model curves (Applied Physics Laboratory, 1994). Combining
with the other results, it can be concluded here that the flatter the
angular response curve, the recognition of medium/coarse sandy
bottoms is better observed in the image textural analysis,
corroborating the greater influence of the scattering interface.
Deriving consistent trends between backscatter and frequency
over a range of seabed types remains difficult, yet Trzcinska et al.

(2021) summarized backscatter values and angular response
curves extracted from different studies over a range of seabed
types. Multispectral backscatter facilitated this relationship with
the results presented in the angular response curves: higher
backscatter values were observed for higher frequencies in fine
sand bottoms here, which appeared in a similar shape to the very
fine sand in Trzcinska et al. (2021). Higher backscatter values for
280 kHz on a medium sand bottom here also appeared similar to
their findings for sandy gravel (Trzcinska et al., 2021). For muddy
bottoms, this relationship is made difficult by the suspected
presence of a heterogeneous subsurface. For a better
understanding of the results, it would certainly be interesting
to include some subsurface analysis (e.g., sub bottom profiler or
even subsurface sediment samples) and observe the ARA results
at smaller angular intervals with more ground truthing.

The seafloor variability within the swath is one of the
difficulties related to the angular range analysis, but the use of
RGB image segmentation before clustering the variables of both
approaches was an effective way to combine the methods and
explore the dataset more adequately. The combination of such
approaches applied to multispectral backscatter is still scarce in
the scientific literature, but showed potential to better explore the
advantages of each method using multifrequency dataset, even
not involving bathymetric predictors.

5 CONCLUSION

Density-based clustering enabled the integration of results from
multiple approaches to produce a comprehensive unsupervised
classification of the seabed using multispectral acoustic data. Both
image-based and ARA approaches produced input components
for the final classification, and the combined use of both helped to
ensure that all relevant information was included. While
backscatter mosaics, the composite RGB and angular response
curves potentially suggest two or three seabed classes, the final
clustering identified two distinct acoustic seabed classes, with four
subclasses within one of the broader classes, which corresponded
closely with seafloor sediment samples collected at the site. In
addition, angular range analysis suggested that information from
different angular sectors may be informative for different seabed
types, and using different frequencies. Therefore, multispectral
backscatter appeared to offer greater advantages in terms of
discrimination seafloor in mud and fine sand bottom types
than in coarser sediments.
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