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Land cover maps are essential for characterizing the biophysical properties of the Earth’s
land areas. Because land cover information synthesizes a rich array of information related
to both the ecological condition of land areas and their exploitation by humans, they are
widely used for basic and applied research that requires information related to land surface
properties (e.g., terrestrial carbon models, water balance models, weather, and climate
models) and are core inputs to models and analyses used by natural resource scientists
and land managers. As the Earth’s global population has grown over the last several
decades rates of land cover change have increased dramatically, with enormous impacts
on ecosystem services (e.g., biodiversity, water supply, carbon sequestration, etc.).
Hence, accurate information related to land cover is essential for both managing
natural resources and for understanding society’s ecological, biophysical, and resource
management footprint. To address the need for high-quality land cover information we are
using the global record of Landsat observations to compile annual maps of global land
cover from 2001 to 2020 at 30m spatial resolution. To create these maps we use features
derived from time series of Landsat imagery in combination with ancillary geospatial data
and a large database of training sites to classify land cover at annual time step. The
algorithm that we apply uses temporal segmentation to identify periods with stable land
cover that are separated by breakpoints in the time series. Here we provide an overview of
the methods and data sets we are using to create global maps of land cover. We describe
the algorithms used to create these maps and the core land cover data sets that we are
creating through this effort, and we summarize our approach to accuracy assessment. We
also present a synthesis of early results and discuss the strengths and weaknesses of our
early map products and the challenges that we have encountered in creating global land
cover data sets from Landsat. Initial accuracy assessment for North America shows good
overall accuracy (77.0 ± 2.0% correctly classified) and 79.8% agreement with the
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European Space Agency (ESA) WorldCover product. The land cover mapping results we
report provide the foundation for robust, repeatable, and accurate mapping of global land
cover and land cover change across multiple decades at 30 m spatial resolution from
Landsat.

Keywords: land cover, land cover change, Landsat, training data, reference data, accuracy assessment

1 INTRODUCTION: CONTEXT,
JUSTIFICATION, OUTLINE

Land cover plays a key role in the Earth’s climate, ecological, and
socio-economic systems (Bonan, 2008; Foley et al., 2011), and
maps of land cover provide the single most important basis for
characterizing the ecological state and biophysical properties of
the Earth’s land areas (Feddema et al., 2005; Foley et al., 2005).
Land cover and land surface properties influence biosphere-
atmosphere interactions and the role of land cover and land
use in the global carbon cycle is both well-documented and
profound (Houghton, 2020). Accurate information related to
the global distribution of global land cover is therefore
required to parameterize land processes in regional-to-global
scale Earth system models (Bonan et al., 2002; Fuchs et al.,
2018). In addition, as the Earth’s population has surged over
the last several decades, the global area of land dominated by
humans has rapidly expanded, ecologically important regions
have been degraded, the area available for new land use (e.g., cities
and croplands) has decreased, and land resources have become
increasingly scarce (Goldewijk, 2001; Sanderson et al., 2002; Foley
et al., 2005; Ellis and Ramankutty, 2008). Hence, accurate and
timely information related to land cover and land cover change is
essential for managing natural resources and for understanding
the ecological, biogeographic, and resource management
footprint of society (Song et al., 2018).

Remote sensing has been used to map land cover for over four
decades (Strahler, 1980; Loveland et al., 1991; Townshend et al.,
1991). Until relatively recently global land cover and land use data
were only available at coarse spatial resolution from data sets such
as the Global Land Cover Type product (Friedl et al., 2010; Sulla-
Menashe et al., 2019) produced by NASA, and the GlobCover
(Arino et al., 2008) and Climate Change Initiative Land Cover
data sets (Plummer et al., 2017) produced by the European Space
Agency (ESA). Because these products are based on coarse spatial
resolution imagery (nominally at 500 or 300 m), the
representation of land cover they provide is highly generalized.
Further, because spatio-temporal variation in most land cover
occurs at spatial scales well below the resolution provided by
coarse spatial resolution remote sensing, these products do not
meet the needs of the large, diverse, and growing community of
scientists and applied stakeholders who require high quality and
high spatial resolution information related to land cover, and
ultimately land cover change, over large areas.

To address this need, global land cover products at medium
spatial resolution based on imagery from Landsat and other
sensors such as Sentinel 1 and 2 have started to become
available. The most widely used of these products tend to be
focused on specific themes including urban land use or

impervious surface mapping (Liu et al., 2018; Gong et al.,
2020; Liu et al., 2021), forest cover (Hansen et al., 2013; Kim
et al., 2014; Feng et al., 2016), or surface water (Pekel et al., 2016),
and therefore support a focused community of end-users. In
parallel, several general-purpose land cover maps that depict a
finite set of discrete classes (generally ~10) have also been created.
The GlobeLand30 data set provides maps of global land cover at
30 m for 10 classes for 2000, 2010, and 2020 (Chen et al., 2015).
The iMap World data set provides land cover data and maps at
30 m for the period 1985–2020 based on Landsat imagery (Liu
et al., 2021). The GLC_FCS30 product provides maps of global
land cover for 2015 in three different land cover schemes with 9,
16 and 24 classes (Zhang X. et al., 2021) and, most recently, ESA
created the WorldCover data set for 2020, which includes 11 land
cover classes and is produced at 10 m spatial resolution using data
from Sentinel 1 and 2 (Zanaga et al., 2021). Significantly, these
two latter products do not provide information related to land
cover change, which is required for many applications and is
essential for characterizing and modeling changes in global land
cover that have occurred over the last several decades.

To address the need for high-quality long-term records of land
cover and land cover change we are using the Landsat archive to
create a global record of 21st Century annual land cover and land
cover change at 30 m spatial resolution. In this context, the goal of
this paper is to describe the methods, data sets, data products, and
early results from this project. The paper specifically focuses on
land cover mapping results, which provide the foundation and
first step towards a broader goal of robust, repeatable, and
accurate mapping of global land cover change across multiple
decades from Landsat.

2 MAPPING PROCESS

The Global Land Cover Estimation (GLanCE) mapping process
includes five distinct elements: 1) a global land cover classification
legend; 2) a global data set of training data used for classification
model estimation; 3) algorithms for fitting models to pixel-scale
time series of Landsat reflectance values; 4) classification of land
cover at each pixel; and 5) post-processing adjustments applied to
annual classification products to correct errors in the raw
classification results. In the sections that follow, we provide a
concise description for each of these elements.

2.1 Classification Legend
The GLanCE land cover classification scheme includes two nested
sets of classes. Currently we are only mapping classes included in
Level 1 (Table 1). The classes are mutually exclusive and are
similar (but not identical) to the land cover classes used in the
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United States Geological Survey (USGS) Land Change
Monitoring and Assessment Program (LCMAP; Brown et al.,
2020). A key attribute of the legend is that it is designed to map
land cover, not land use, although it does include a “Developed”
class for land areas composed of buildings, roads, and other
features associated with the built environment. Another feature of
the legend is that it corresponds to the IPCC top-level land
categories for greenhouse gas inventory reporting (GFOI, 2020).
A variety of additional land cover attributes (e.g., leaf type,
phenology, agricultural land use; Figure 1) are being recorded
by interpreters as they compile the training site database that will
support the GLanCE Level 2 classification scheme. In the long
term, we plan to add this level to our mapping system. In the near
term, we are focusing on mapping the Level 1 classification.

2.2 Training Data
The GLanCE training site database is derived from four sources.
First, a team of research assistants at Boston University is using a
dichotomous key and online tools for efficiently interpreting high

resolution imagery developed to support this project (Arévalo
et al., 2020a) to collect training data. As a starting point, we
adapted the training site database developed in support of the
MODIS Collection 6 Land Cover Type Product (MCD12Q1),
which includes 3,395,500 m MODIS pixels selected to provide a
representative sample of land cover in all major ecoregions of the
world (Sulla-Menashe et al., 2019). To incorporate these data into
the GLanCE training database, 10 Landsat pixels located within
each MCD12Q1 training pixel were randomly selected, visually
interpreted using high resolution imagery, and labeled by
research assistants using the dichotomous key shown in
Figure 1. Second, to augment these sites, we developed a
procedure that performs unsupervised clustering on spectral-
temporal features estimated from Landsat image time series using
the Continuous Change Detection and Classification (CCDC)
algorithm (Zhu andWoodcock, 2014). Clustering was performed
at the scale of World Wildlife Fund (WWF) ecoregions (Olson
et al., 2001). 14 to 482 pixels were selected in each ecoregion
(median = 327 sites/ecoregion) based on this clustering (i.e., using

TABLE 1 | Land cover classes included in the GLanCE Level 1 classification scheme. Note that in addition to these layers, the product includes a variety of complementary
information (see Table 3).

Name Description

Water Areas covered with water throughout the year: streams, canals, lakes, reservoirs, and oceans
Developed Areas of intensive use; land covered with structures, including any land functionally related to developed/built-up activity
Barren/Sparsely Vegetated Land comprised of natural occurrences of soils, sand, or rocks where less than 10% of the area is vegetated
Tree Cover Land where the tree cover is greater than 30%. Note that cleared trees (i.e., clear-cuts) are mapped according to current

cover (e.g., barren/sparsely vegetated, shrubs, or grasses)
Herbaceous Land covered by herbaceous cover. Total vegetation cover exceeds 10%, tree cover is less than 30%, and shrubs comprise

less than 10% of the area
Shrublands Land with less than 30% tree cover, where total vegetation cover exceeds 10% and shrub cover is greater than 10%
Ice/Snow Land areas where snow and ice cover is greater than 50% throughout the year

FIGURE 1 | GLanCE dichotomous training data key, legend, and attributes used to assign land cover to training sites. Green boxes show the Level 1 land cover
classes that are being mapped for the GLanCE data product; Yellow boxes show additional attributes that are recorded to support Level 2 classification. BL, broadleaf;
NL, needleleaf.
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the clusters to stratify the spectral-temporal feature space), which
were then interpreted by analysts to create training sites. In doing
so, this procedure provides a sub-sampling of the feature space
from Landsat imagery that ensures each ecoregion is adequately
sampled while also ensuring that training sites are allocated
efficiently. For both the MODIS- and cluster-derived sites,
interpretations were performed on-screen using high-
resolution imagery from openly available sources such as
Google Earth in combination with time series of Landsat
surface reflectance values and vegetation indices using tools
developed on Google Earth Engine (GEE). Multiple analysts
reviewed all samples to ensure high-quality training data.

The third source of training data is data provided by trusted
collaborators. This process is non-systematic, opportunistic, and
depends on the availability of data from collaborators. However,
because good quality training data is essential to estimating high-
quality classification models and acquisition of training data is
difficult and labor-intensive at global scale, training data provided
by collaborators who have regional expertise in land cover and
land cover change processes is extremely valuable. In North
America, for example, we incorporated a data set that includes
17,476 randomly sampled reference sites distributed across the
conterminous United States that were used to assess the accuracy
of map products from the USGS LCMap program (Stehman et al.,
2021), along with 9,073 sites from Canada and Alaska that were
compiled as part of a separate project funded by NASA’s Arctic-
Boreal Vulnerability Experiment (ABoVE) (Wang et al., 2020).
Similarly, in South America, we are leveraging training sites
distributed across the Northern half of South America (Brazil,
Bolivia, Peru, Ecuador, Columbia Venezuela, French Guyana, and
Suriname) provided by colleagues involved in the MapBiomas
project (Souza et al., 2020). For all such cases, integration of
training data provided by collaborators into our database requires
collaboration with the provider to crosswalk the training site
attribute data to the GLanCE classification legend. In addition, to
avoid classifier bias (e.g., Zhu et al., 2016), when a contributed
data set is large we sub-sample the data to enforce pseudo-
uniform training data density across space so that regions with
data contributed by collaborators are not over-sampled relative to
other regions. For example, the MapBiomass data set includes
464,129 pixel-years of data from 2000–2019. For GLanCE, we use
a relatively small random sample (n = 20,119) of this larger
data set.

The fourth source of training data that we incorporate is
derived from the GeoWiki Global Land Cover and Land Use
reference data set (Fritz et al., 2017). This data set includes over
150,000,100 m grid cells with land cover information collected via
crowd-sourcing. For GLanCE, the GeoWiki data was processed
and subset using four steps: 1) we excluded training samples that
did not have a year assigned to the attributes; 2) for samples that
were assigned multiple land cover types in a given year, we used
the mode of the assigned land cover labels; 3) we cross-walked the
GeoWiki legend to the GLanCE legend and excluded samples that
could not be clearly assigned to a class in the GLanCE Level 1
legend (Table 1); and 4) we only retained training samples where
the land cover label agreed with the ESA WorldCover map
aggregated to 30 m. After applying these steps, we retained

16,543 training GEoWiki training samples, all of which were
added to the GLanCE global training site database.

Our training data workflow collects data on a continent-by-
continent basis. Once an initial training data set is compiled for a
continent, we perform four addition steps to create the final data
set that we use for mapping. First, because human error is
inherent to all manual interpretation and training data
compilation activities (Elmes et al., 2020), we adapted the
basic approach described by Brodley and Friedl (1999) that
uses machine learning to identify and remove
misrepresentative or incorrectly labeled training samples.
Second, we inspect the provisional map results and
strategically augment the training set in each continent to
correct regional under- or over-representation of land cover
classes. Third, to augment the training set in regions where
training data is sparse we used the algorithm described by
Zhang and Roy (2017), which uses the MODIS Land Cover
Type product (Sulla-Menashe et al., 2019) to automatically
select candidate training samples at Landsat resolution, and
removed candidate samples where the label disagreed with the
land cover label in the ESA WorldCover data set. We then used
the ESA WorldCover data set, cross-walked to the GLanCE land
cover scheme, to estimate the expected frequency distribution of
GLanCE land cover classes within 1,000 × 1,000 km grid cells, and
then sampled the candidate training sites to approximately match
this distribution. Note that we only applied this procedure to cells
that had less than 250 training sites. These last two steps ensure
that the training data has a minimum sampling density and
reduces bias in classification results arising from
misrepresentative class distributions in training data.

2.3 Continuous Change Detection and
Classification
The core algorithm being used in this project to performmapping
is the Continuous Change Detection and Classification (CCDC)
algorithm (Zhu andWoodcock, 2014). CCDC assumes that noise
is ephemeral and occurs at the time scale of individual images
(e.g., as a result of undetected clouds), that land cover change is
persistent, and uses all available Landsat observations tomap land
cover and identify the timing of land cover change at each pixel.
To accomplish this, the algorithm includes two core steps:

(i) Identification of change points and modeling of stable time
segments. Time series of surface reflectance in each band at
each pixel are first filtered to remove observations affected by
clouds, cloud shadows, and snow. The resulting time series is
then modeled as a Fourier series with three harmonics. To fit
the time series at each pixel, CCDC estimates an initial model
based on the first 3 years of observations at each pixel.
Subsequent reflectance values at each pixel are then
compared against fitted values, and change points are
identified based on persistent large residuals (across time)
between new observations and model fits based on Landsat
visible, near-infrared, shortwave infrared reflectance values.
When no change is detected after 3 years, new data are
appended to the time series and the model is re-fit. This
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process is applied recursively until a land cover change (if
any) is detected. Change points are identified using a change
vector metric that integrates differences between observed
and predicted reflectance in each spectral band, weighted by
the root mean squared error of the model fit for each spectral
band (Zhu and Woodcock, 2014). The concept of a time
segment—the period between two consecutive land cover
changes (if any), bounded by the start and end of the time
series—is central to the CCDC algorithm. To illustrate,
Figure 2 shows a time series of shortwave infrared
reflectance values for a single Landsat pixel, where the red
dot corresponds to a change point identified by CCDC. In the
example shown, CCDC identifies two distinct time segments,
one beginning in 2004 and ending 2012 (when a change is
detected), and the second extending from 2012 to the end of
the time series.

(ii) Assignment of class labels to time segments. Spectral-
temporal features for each time segment are used to
assign a land cover label to each pixel for each segment.
This approach has two important advantages. First, data
from the entire time segment contributes to the classification.
This provides stronger statistical support for classification at
each pixel than is provided using data from individual dates
with no temporal information. Stated another way, the
phenology or seasonal variation in reflectance at each
pixel is a key feature that is diagnostic of land cover in
each time segment at each pixel. Second, in the classification
stage, instead of using time series of surface reflectance as
input to the classifier, CCDC uses model parameters
estimated from harmonic models fit to time series of
surface reflectance in each Landsat band, which has been
shown to be highly effective (Zhu and Woodcock, 2014). For
this project we adopt a strategy that was developed as part of
the USGS LCMAP project, which is also using CCDC, and
estimate classifications at annual time steps. To perform
classification, we use the Random Forest classification

algorithm (Breiman, 2001) estimated using training data
described in Section 2.2. We estimate a single classifier
for each continent, incorporating a variety of ancillary
data layers to account for sub-continental variation in the
distribution of land cover types (see next section).

2.4 Applying CCDC at Global Scale
CCDC has been successfully and widely used to map land cover
and land cover change at regional scale (Arévalo et al., 2020b;
Brown et al., 2020; Wang et al., 2020). However, given the data
volumes and challenges involved in mapping land cover and land
cover change at global scale, implementation of CCDC required
two key modifications relative to how it has been applied in the
past at local or regional scales:

• First, to accommodate the computational requirements
involved in mapping land cover and land cover change
across multiple decades at Landsat spatial resolution for all
global land areas (excluding Antarctica), we are using an
implementation of CCDC on Google Earth Engine (GEE)
(Gorelick et al., 2017). The cloud-based infrastructure
provided by GEE supports rapid iteration and refinement
of map products over very large areas in ways that are both
essential for this project and impractical on high-
performance compute facilities. Note that an added
advantage of using GEE is that it allows us to easily
share the data sets and tools that we create with a large
(and growing) community of GEE users (Arévalo et al.,
2020).

• Second, a variety of ancillary data sets and land cover map
products are used to complement information from Landsat
and improve classification results generated by CCDC
(Table 2). We use the World Settlement Footprint and
Worldpop Global Population data sets as features in the
classification process to help distinguish the Developed land
cover class from the Bare/Sparsely Vegetated class. The

FIGURE 2 | CCDC results for a single Landsat pixel in Thailand that was converted from forest to cultivated land in 2012. The high-resolution images in the top row
are from 2009 (before conversion) and 2015 (after conversion). The time series plot on the bottom shows all Landsat observations in the Landsat SWIR2 band (black
dots), as well as the CCDC model fits (lines) and break point (red dot).
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Global Surface Water and Topography classes (from
Landsat and SRTM/ALOS, respectively) are included as
features to help distinguish water bodies from other land
cover classes and reduce spurious mapping of water in
shadowed areas located in regions with complex
topography. Finally, we include mean annual
temperature, precipitation, and aridity (the ratio of total
evapotranspiration to actual evapotranspiration) from the
TerraClim data set as features, which helps the classifier
label sub-classes in the Level I legend that occur at
continental scale (e.g., woody and herbaceous cover at
low versus high latitudes). Note that these ancillary data
sets are provided as static features, and hence do not change.
Year-to-year change is captured by variation in the Landsat
imagery.

3 ACCURACY ASSESSMENT AND
REFERENCE DATA

For land cover and land cover change maps to be scientifically
valid and useful, their accuracy and uncertainty need to be
quantified and documented using high quality observations of
reference land cover conditions collected via probability
sampling (Stehman, 2000; Olofsson et al., 2014). To provide
this, we are compiling reference data sets and using them to
estimate: 1) the overall accuracy of the land cover and land
change maps; and 2) the global user’s and producer’s accuracy of
each map category, along with estimates of associated 95%
confidence intervals. Two sets of random samples are being
collected to support characterization of error and uncertainty in
both land cover and land cover change. The first sample is
designed to characterize the overall accuracy of the land cover
data sets in any given year. This reference sample is drawn from
all of the Earth’s land areas by simple random sampling. The
second reference sample is designed to characterize the accuracy
and uncertainty of land cover change. Because land-cover
change often impacts only a small proportional of the
landscape, this latter data set is selected by stratified random
sampling with strata corresponding to map classes identified as
stable versus changed by CCDC. This latter data set will be
compiled over the next year once the GLanCE land cover change
products are produced.

For both reference data sets, the design-based inference
framework that we are employing requires high quality
reference observations for the assessment statistics to be
reliable and robust. To ensure this, our data collection process
includes reviews of each reference site by multiple analysts with
deep experience in land cover mapping. Interpretations for sites
that remain uncertain after multiple reviews are removed from
the sample and new units are selected using the original sampling
design.

A key objective of our accuracy and uncertainty assessment is
to quantify uncertainty in the estimated area of land cover types
and change areas. Because classification errors introduce area bias
and smaller or more complex categories such as deforested lands
are especially susceptible to bias and large errors, the area of
individual map categories cannot be estimated by simply
counting pixels (McRoberts, 2011). To account for this, we
apply the stratified estimators provided in Olofsson et al.
(2013) to the sample data for area estimation. Note that
because our data products are still in development and the
final strata are not yet defined, the results we present below
are preliminary and do not include an assessment of GLanCE
land cover change results and we only provide results for North
America, where our map products and reference data are more
mature. We include the above description of our overall approach
for completeness and to emphasize that rigorous error and
uncertainty assessment are key elements that will be provided
with the final data products when they are released.

4 DATA PRODUCTS

Once complete, the GLanCE data record will cover the period
from 2001–2020 at annual time steps. The science data sets
(SDSs) included are designed to provide three main types of
information for each year in the data record (Table 3). First, five
SDSs provide information related to: 1) the land cover class, 2) the
estimated quality associated with the assigned label, 3) whether
the assigned label reflects a change in land cover from the
previous year, and for those pixels where change has occurred,
4) an index that quantifies the magnitude of change, and 5) the
approximate date of change during the year. Second, three SDSs
are included that characterize the overall greenness, the annual
amplitude in greenness, and the trend in greenness (if present) at

TABLE 2 | List of ancillary data layers used to complement information from Landsat derived from CCDC in the GLanCE mapping processing.

Layer Name Description Source

World Settlement Footprint Binary mask outlining the extent of human settlements circa 2015 at 10 m spatial resolution Marconcini et al. (2020)
Worldpop Global Project
Population

Estimated number of people residing in each grid cell circa 2010 at 100 m spatial resolution www.worldpop.org

TerraClimate Mean monthly climate and climatic water balance for global terrestrial surfaces since from 1958 to
2015 at 4 km spatial resolution

Abatzoglou et al. (2018)

Global Surface Water The frequency with which water was present, expressed as a percentage of time, from 1984 to 2015
at 30 m spatial resolution

Pekel et al. (2016)

Topography Slope, aspect, and elevation at 30 m spatial resolution. We used the Shuttle Radar Topography
Mission (SRTM) wherever it was available and ALOS north of 60°N and south of 56°S where SRTM
was not available

Farr et al. (2007), Tadono et al.
(2014)
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each pixel, each measured via the Enhanced Vegetation Index
(EVI; Huete et al., 2002). Third, two SDSs are included that
indicate the inferred leaf type and phenology for pixels classified
as trees. Note that because we are developing the GLanCE data
sets on Google Earth Engine, all the data sets listed above will be
made available via this platform as well as the LP DAAC.

5 PROGRESS AND INITIAL RESULTS

To create the data products identified in Table 3, our mapping
process includes three core steps, each performed independently at
continental scale: 1) creation of training data; 2) classification and
mapping; and 3) assessment using reference data. Currently, we
have completed a first version of our global training site database,
created a first version of our global maps for 2001–2020 (hereafter,
V1.0), and we are in the process of refining and assessing our
mapping process and results, focusing on North America. Below we
summarize our initial results from each of these core steps.

5.1 Training Data Collection
Excluding regional training data provided collaborators, the global
training database includes 87,333 sites, each composed of a single
Landsat pixel visually interpreted for a specific year in the time series
(Figure 3). The number of sites in each continent is roughly
proportional to the area of each continent—Eurasia, which is by
far the largest continent, has 35,490 sites and Oceania (the smallest)
has 4,631 sites. Because we allocate sites by sampling within
ecoregions, the density of training sites is relatively uniform across
space, with modestly lower site density in larger and more uniform
ecoregions, and vice versa. Note that the density of points in Brazil in
Figure 3 is less dense than elsewhere because the figure only shows
training data collected through this effort, which does not include the
densely sampled training data provided from theMapBiomas project
(Souza et al., 2020). Also, as we briefly describe in Section 2.2, we use
machine learning to filter the training set in each continent, which
removes roughly 10% of the total training data.

The distribution of classes included in the training data set is
variable across continents and reflects the biogeography of

TABLE 3 | 30-m GLanCE Science Data Set Layers. The data will be distributed on the Land Processes DAAC in 150 km × 150 km tiles in the Albers equal area conic
projection, and on Google Earth Engine.

Science data set SDS description

Land Cover Class Integer identifier for class at the end of the calendar year
Quality Flag for Land Cover Class Integer ranging from 1 (highest quality) to 4 (lowest quality); 5 indicates back-up algorithm
Change Date Estimated day of change in the year; N/A if no change
Change Magnitude Change vector for spectral reflectance; N/A if no change
Previous Class Integer identifier for previous class; N/A if no change
Median EVI Median EVI for the year
EVI Amplitude Amplitude of total variation in EVI over the year
EVI Trend Annual rate of change in EVI (yr−1)
Leaf type Integer: broadleaf (0) or need leaf (1); Trees only, NA elsewhere
Phenology Integer: deciduous (0) or evergreen (1); Trees only; NA elsewhere

FIGURE 3 |GLanCE global training site data base. Note that this map only shows the sites collected by the GLanCE team and does not include data sets provided
by collaborators.

Frontiers in Remote Sensing | www.frontiersin.org June 2022 | Volume 3 | Article 8945717

Friedl et al. Global Mapping of Land Cover

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


vegetation, modified to varying degrees, by land use in each
continent. Herbaceous and Tree Cover are uniformly the most
frequent classes in the training site database across all continents,
followed by Shrubland and Barren/Sparsely Vegetated sites. The
remaining three classes (Developed, Water, Snow/Ice) comprise a
much lower proportion of the training data, which reflects the
relative frequency of these classes in global land areas.

5.2 Initial Global and North American
Mapping Results
Our mapping process proceeds on a continent-by-continent
basis. V1.0 of the GLanCE global land cover data set includes
annual maps at 30 m spatial resolution for the period 2001–2020
based on the Level 1 legend in Table 1. At global scale, the initial

results realistically capture the expected geographic distribution
of land cover (Figure 4).

Consistent with the distribution of training data, Herbaceous
and Tree Cover are the most extensive classes, Developed and
Water are the least common, with Shrublands and Barren/
Sparsely Vegetated land cover occupying a substantial, but
variable, proportion of the landscape across continents.

In North America, Herbaceous land cover is the most
extensive land cover type, followed by Tree Cover, Shrubland,
and Barren/Sparsely vegetated land areas (Figure 5). Developed
land cover occupies 0.8% of North America, with isolated alpine
areas covered by Snow/Ice. As we previously alluded to, classes
that include mixtures of land cover and plant functional types
were particularly challenging to map. At high latitudes, for
example, two factors made it difficult to distinguish between
Herbaceous cover and Shrublands. First, relative to other
regions, there is relatively little high-resolution imagery
available at high latitudes. Hence, compiling training data in
boreal and Arctic areas is challenging and both the density and
quality of training data in boreal and Arctic North America is
lower than in other biomes. Second, much of the landscape at
high latitudes is composed of mixtures of lichens and mosses
(neither of which technically constitute Herbaceous cover or
Shrublands), low stature trees, herbaceous cover, and dwarf
shrubs. Hence, the GLanCE land cover legend is not well
suited for this region and a large proportion of 30 m Landsat
pixels at high latitudes are mixed in terms of their land cover
composition (Beamish et al., 2020). Consequently, much of the
landscape north of the tree line where lichens, moss, and dwarf
shrubs are present is mapped as Herbaceous cover, and
Shrubland cover is probably under predicted in non-forested
boreal and Arctic regions (cf., Myers-Smith et al., 2011, 2020;
Myers-Smith et al., 2019).

FIGURE 4 | Version 1.0 global land cover map for 2010 based on the GLanCE Level 1 classification system.

FIGURE 5 | Area occupied by each class in GLanCE Level 1 legend for
North America (excluding Greenland).
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We encountered similar challenges mapping land cover in arid
and semi-arid regions at lower latitudes. Specifically,
distinguishing among Barren/Sparsely Vegetated areas,
Herbaceous cover, and Shrublands is difficult because (similar
to issues encountered at high latitudes), most pixels in these
regions include mixtures of at least two cover types. This issue is
well documented at coarse spatial resolution such asMODIS (e.g.,
Friedl et al., 2010; Sulla-Menashe et al., 2019). The higher spatial
resolution of Landsat reduces, but does not resolve, the impact of
this issue. Hence, it is important to note that while we assign a
unitary label to each pixel, relatively few pixels are actually
uniform in regard to their land cover composition, even at
30 m spatial resolution.

To provide a qualitative assessment and comparison at local
scale, Figure 6 compares land cover from 2019 from GLanCE
with results from the ESA WorldCover map for 2020, cross-
walked to the GLanCE legend. The first column (A) compares a
~400 km2 area in Louisiana where the GLanCE map shows
significantly more Developed and Herbaceous land cover
relative to WorldCover, which reflects the different threshold
for tree cover that is used in each map (10 vs. 30%). The second
column shows a ~900 km2 area in southern Amazonia where,
aside from minor differences, the two maps show strong
agreement. The third column shows a ~100 km2 area in
Southern China that includes a complex mix of Trees, Water,
Herbaceous, and Developed land cover. The two maps show
significant disagreement at this location, particularly regarding
the extent of water, but also regarding the amount of Bare and
Sparsely Vegetated land cover, which occupies a substantial
portion of the landscape in the WorldCover map but is not
present in the GLanCE map. This location is a coastal area with a
high concentration of industrial fish farms, and visual inspection
of these results suggest that theWorldCover map provides a more
realistic representation of land cover in this location than the
GLanCE map.

5.3 Preliminary Accuracy Assessment
At this point in time, our maps are not finalized, and we have
not completed compiling our global reference data set.
However, to provide a preliminary assessment of our initial
mapping results, we used a simple random sample of 1,630
reference observations from North America that have been
collected and undergone quality assurance to assess the
overall and class-specific accuracies of GLanCE land cover
mapping results (Figure 7). Results from this comparison are
shown in Table 4.

The overall accuracy (percentage correctly classified) of the
V1.0 GLanCE land cover map for North America was 77.0 ± 2.0%
(95% confidence interval). Producer accuracies ranged from
40.7 ± 8.9% for the Barren/Sparsely vegetated class to 96.8 ±
3.5% for theWater class. User accuracies ranged from 68.9 ± 9.3%
for the Herbaceous class to 95.8 ± 4.0% for the Water class. Tree
Cover, which is geographically extensive in North America,
shows high User accuracy (83.9 ± 7.4%), which is
encouraging. At the same time, the Shrublands and
Herbaceous classes show the lowest user accuracies (69.7 ±
9.2% and 68.9 ± 9.3%, respectively) that are below our target
of 75%, which reflects the challenges involved in mapping these
classes that we alluded to in Section 5.2.

It is important to note that while the sample we used for this
analysis is designed to provide an estimate of the overall
accuracy with a margin of error of ±5%, which was achieved,
the sample size fore reference data in several classes is low.
Specifically, the Developed, Ice and Snow, and Barren/Sparsely
Vegetated classes have 25, 27, and 118 reference observations,
respectively. Hence, the uncertainty in estimated accuracy for
these classes is high.

As an additional comparison, to complement the accuracy
assessment presented in Table 4, we used the reference locations
shown in Figure 7 to compare results for North America from
GLanCE against land cover labels from the ESA WorldCover

FIGURE 6 | Comparison of GLanCE maps (top row) with ESA WorldCover (bottom row) for locations: Louisiana (A), Brazil (B), and southern China (C).
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2020 map (Table 5). To perform this comparison, we used
GLanCE results from 2019, which is the most recent year we
have mapped at the time of this writing. To crosswalk the

WorldCover land cover legend to the GLanCE legend, we
merged the Grassland, Cropland, Herbaceous wetland, and
Moss and Lichens classes into a single class (Herbaceous

FIGURE 7 |Map showing locations of reference sites selected by simple random sampling. These sites are used to assess the accuracy of the GLanCE land cover
map for 2010 (Table 4), and to compare the 2019 GLanCE land cover map against the ESA WorldCover 2020 data set (Table 5).

TABLE 4 | Confusion matrix and user and producer accuracies for the V1.0 GLanCE land cover product based on 1,630 reference points in North America.

Class Water Ice/Snow Developed Bare Trees Shrubs Herbaceous Total

Water 92 1 0 1 0 0 2 96
Ice/Snow 0 21 0 0 0 0 0 21
Developed 0 0 15 0 0 1 0 16
Barren/Sparse Vegetated 0 3 1 48 1 4 4 61
Trees 1 0 3 2 495 55 34 590
Shrublands 0 0 1 9 16 106 20 152
Herbaceous 2 2 5 58 55 94 478 694
Total 95 27 25 118 567 260 538 1,630
Producer’s Accuracy (%) 96.8 ± 3.5 77.8 ± 16.0 60.0 ± 19.6 40.7 ± 8.9 87.3 ± 2.7 40.8 ± 6.0 88.8 ± 2.7
User’s Accuracy (%) 95.8 ± 4.0 100.0 ± 0.0 93.8 ± 4.9 78.7 ± 8.2 83.9 ± 7.4 69.7 ± 9.2 68.9 ± 9.3
Overall Accuracy (%) 77.0 ± 2.0

TABLE 5 |Confusion matrix comparing the V1.0 GLanCE land cover (in rows) with the ESAWorldCover data set (in columns) for North American reference data presented in
Table 3. Note that the number of sites in each GLanCE class varies slightly with those in Table 4 because 16 sites (1%) had different labels in 2019 than in 2010.

Class Water Ice/Snow Developed Bare Trees Shrubs Herbaceous

Water 91 0 0 2 0 0 0
Ice/Snow 0 22 0 1 0 0 0
Developed 0 0 8 1 3 0 5
Barren/Sparse Vegetated 0 1 1 37 0 0 19
Trees 2 0 0 1 506 45 42
Shrublands 0 0 0 21 13 76 42
Herbaceous 4 1 1 41 62 22 562
Overall agreement (%) 79.8
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cover), and the Mangroves class was merged with Tree cover. We
then upscaled the 10 mWorldCover data to 30 m using the mode
of the 9 WorldCover land cover labels located in each GLanCE
pixel. Overall agreement between the two maps is 79.8%, which is
slightly higher than the reported accuracy of each map (77.0 and
74.4%1 for GLanCE and WorldCover, respectively).
Disagreement is highest among the Barren/Sparsely Vegetated,
Shrublands, and Herbaceous cover types, which is consistent with
the accuracies presented in Table 5 and accuracies reported for
the WorldCover data set.

6 DISCUSSION

6.1 Land Cover Mapping Challenges
The qualitative and quantitative results for the V1.0 GLanCE
product provide confidence that global land cover can be
effectively and accurately mapped at 30 m spatial resolution
from Landsat using the training data sets we’ve compiled in
association with strategically selected ancillary feature sets. At the
same time, our initial results point to some key challenges that
need to be addressed. Most significantly, as we previously alluded
to, sub-pixel mixtures of land cover, even at the 30 m spatial
resolution of Landsat, continues to be a significant challenge for
land cover mapping, especially in regions with sparse or low
stature vegetation such as temperate drylands and Arctic
ecosystems.

In Arctic and boreal regions, where land cover and plant
functional types vary across short length scales (e.g., a fewmeters)
because of microtopography and hydrology, assignment of land
cover labels is challenging, both for analysts compiling training
data and for machine learning-based classification algorithms.
Indeed, sub-pixel mixing of land cover in many high latitude
landscapes, even at the resolution of Landsat, effectively means
that assignment of a pixel-scale land cover label as Shrublands or
Herbaceous cover is often challenging, and the resulting labels
have systematically lower confidence.

It is also important to reiterate in the specific context of Arctic
regions that the land cover legend we are using for GLanCE is not
well-suited for regions where lichen and moss cover is common
and extensive. Ideally, we would add a class similar to the Lichen
and Moss class included in the ESA WorldCover data set.
However, short growing seasons, cloud cover, and large solar
zenith angles make acquisition and interpretation of high-quality
training sites that distinguish herbaceous life forms from lichens
and mosses challenging. Hence, even if this class was added to the
GLanCE legend, it may not be possible to populate our training
data set with sufficient samples to support mapping it. At lower
latitudes, we encountered similar challenges distinguishing
between Shrublands and Herbaceous Cover in arid and semi-
arid systems. However, greater availability of high-quality high-
resolution imagery at lower latitudes in North America

substantially reduces this challenge relative to the challenges at
high latitudes described above.

6.2 Challenges Mapping Global Land Cover
Related to the Landsat Archive
A key requirement for the land cover and land cover change
mapping approach that we have developed for GLanCE is that
relatively dense time series of Landsat observations are available.
Specifically, previous work has shown that seven clear sky
observations per year are required to fit robust CCDC models
(Zhang et al., 2021). Unfortunately, the number of images in the
Landsat archive is quite variable both in space and time (Wulder
et al., 2016) and this requirement is not met in some regions.
Generally, more observations are available during periods when
two Landsat sensors are operating (i.e., after the launch of Landsat
7, which overlaps with both Landsat 5 and Landsat 8). Since 1999,
the USGS has been responsible for Landsat operations and
implemented an acquisition strategy designed to provide
systemic global imagery. This is the primary reason why we
restrict the GLanCE product to 2001-present. However, the
number of available cloud-free images at any location is still
quite variable globally and depends on which Landsat sensors
were in operation at any given time. Additional variability is
introduced by the presence of clouds, cloud shadows, snow,
sensor saturation, hazy observations (based on atmospheric
opacity), and lack of aerosol optical depth information (Zhang
et al., 2022).

The net result is that while some regions (e.g., the
conterminous US, Canada, Australia) have deep and dense
time series, the number of observations in some parts of world
is insufficient to support CCDC-based mapping. Key examples of
such regions include coastal West Africa, the Pacific coast of
Colombia and Ecuador, and much of Siberia. Our current results
are based on Landsat Collection 1 and preliminary analyses
suggest that for most of the world the number of available
images is higher in Landsat Collection 2, especially in the
Landsat-8 era. Future versions of the GLanCE product will be
based on Collection 2, which will help to mitigate—but not
eliminate—regional challenges related to data density. For
some regions (e.g., Siberia, West Africa), however, data density
will continue to be too sparse to use CCDC for mapping. Hence,
an alternative strategy will be required tomap land cover and land
cover change in these regions. To address this, we are currently
investigating mapping approaches that have previously
demonstrated the ability to map land cover and land cover
change using comparatively sparse time series (e.g.,
LandTrendr) (Kennedy et al., 2010). For regions where data
density is insufficient to support the use of CCDC, we will
create maps using this “back-up” algorithm and identify pixels
where this approach was applied via quality assurance layers.

6.3 Land Cover Change Detection and
Mapping
Moving forward, as we mature our mapping process and the
quality of our land cover maps improve, our efforts are heavily

1Product Validation Report (D12-PVR), Version 1.1, https://esa-worldcover.s3.
amazonaws.com/v100/2020/docs/WorldCover_PVR_V1.1.pdf, accessed 19
April 2022.
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focused on land cover change mapping. To illustrate the change
detection and mapping process implemented based on CCDC,
Figure 8 shows two time series of GLanCE classification results
for areas undergoing land cover change, along with time series of
surface reflectance from the SWIR1 band of Landsat. The top
panel shows a GLanCE time series that captures expansion of
Developed land cover associated with construction of an airport
terminal in Fort Meyers, Florida. The second row shows the
SWIR1 time series for a single pixel (identified by the arrow in the
image) that illustrates spectral changes as the land cover
transitions from Tree Cover to Herbaceous cover, and finally
to Developed cover as the construction proceeds. The third row
shows a time series of GLanCE land cover for an area that was
flooded for a dam in Minas Gerais, Brazil in 2007, and the fourth
row shows the SWIR1 surface reflectance time series for a pixel at
the center of these maps (also identified by an arrow) that was
initially herbaceous, was then flooded, but returns to land as
shoreline after water levels in the dam recede.

More generally, qualitative inspection of the V1.0 GLanCE
results regarding land cover change suggests three key
conclusions. First, for most locations, especially in humid
regions outside of the tropics where land cover change is not
extensive, the V1.0 land cover maps are quite stable and robust.
Second, in locations where land cover change occurs and is
permanent (or at least semi-permanent, e.g., Figure 8), the
GLanCE map products generally capture changes with good
realism. Third, the V1.0 GLanCE results tend to over-estimate
land cover change in semi-arid regions that include a mix of
Shrublands, Herbaceous Cover, and to varying degrees, Barren/
Sparsely Vegetated land cover. This issue is at least partly caused by
the challenges we discuss above, i.e., the GLanCE data products
show spurious changes that are a direct outcome of assigning
unitary class labels to pixels that are mixed. This challenge is
further complicated by year-to-year variation in phenology and
greenness in semi-arid systems, which can be significant. Previous
work has used hidden Markov models (Abercrombie and Friedl,

FIGURE 8 | Illustration of land cover and land cover change detection using CCDC. The top two rows show time series and changes in spectral reflectance
associated with construction of an airport terminal in Fort Meyers, Florida. The bottom two rows show time series and changes in spectral reflectance associated with the
flooding of a dam and the subsequent retreat in the water level in the state of Minas Gerais, Brazil. The black arrows in each set of images show the location of the pixel for
which the SWIR1 reflectance time series are shown.
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2016; Hermosilla et al., 2018) and Bayesian methods (Cardille and
Fortin, 2016) that post-process classification results to reduce
spurious interannual variation in map labels arising from
classification uncertainty or interannual variation in phenology
and greenness.We are currently exploring solutions based on these
approaches. Preliminary results suggest that the combination of
these post-processing methods, in combination with the use of
Landsat Collection 2 imagery, which improves both the density and
geolocation of available Landsat observations at each pixel, helps to
reduce overestimation of change in regions where spurious change
events are most frequently mapped. Because provision of
information related to land cover change is a core goal of the
GLanCE data product, resolving these issues and creating data sets
with high-quality representation of change is a core priority of the
project moving forward.

7 CONCLUSION

Maps of land cover provide essential information related to the
ecological state of land areas and how they have been modified by
humans. Hence, accurate information related to land cover is
essential for both managing natural resources and for
understanding society’s ecological, biophysical, and resource
management footprint. In this paper, we describe methods, data
sets, and early results from a 5-year effort with the goal of using the
global record of Landsat observations to create annual maps of global
land cover from 2001 to 2020 at 30m spatial resolution. Initial results
indicate that the data sets and methods we are using to generate land
cover maps are effective, but that the maps have somewhat lower
accuracy for specific classes. In particular, and unsurprisingly,
regions and classes at high latitudes and in semi-arid systems
that tend to have mixtures of land cover below the 30 m spatial
resolution of Landsat are more challenging to map and show
modestly lower accuracy based on reference data than humid
regions with uniform land cover. Moving forward, our efforts
will focus on improving the quality of our land cover maps,
expanding our reference data collection and accuracy
assessment outside of North America, characterizing land
cover change with well-defined accuracy, and, in the near
future, releasing the data sets we are creating for use by the
broader scientific community.
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