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Beaked whales, like many other odontocetes, produce bouts of very rapid

clicking that serve as a homing signal just prior to a prey capture attempt. For

Blainville’s and Cuvier’s beaked whales (Mesoplodon densirostris, Md, and

Ziphius cavirostris, Zc, respectively) these homing sequences have been

dubbed “buzzes.” Buzz clicks have both a structure that is markedly different

from and a source level that is significantly lower than the foraging clicks

produced by these animals. To date, most of the studies of beaked whale

echolocation behavior, especially buzz production, have relied on analysis of

data from acoustic recording tags placed on vocal animals. While tag data has

allowed detailed description of the dive cycles and foraging behavior of the

tagged animals, providing invaluable ground truth for other passive acoustic

monitoring studies, it is of limited quantity. Tagging beaked whales is difficult

and the spatial and temporal coverage of tagged animals remains sparse.

Growing numbers of bottom-moored and bottom-mounted sensors are

being used for passive acoustic monitoring and for the study of Md and Zc

behavior and distribution. Buzzes from Md and Zc are detectable on such

remote sensors and these buzz data can augment higher order studies, such as

those on beaked whale habitat use and population health, as detected buzzes

can serve as a proxy for prey capture attempts.
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1 Introduction

Beaked whales (family Ziphiidae) are known to make deep foraging dives in search

of meso- and bathy-pelagic prey (Santos, et al., 2001). In the course of these deep dives

the animals produce both searching (foraging) clicks and homing pulses (buzzes) with

the latter being made just prior to a prey capture attempt (Tyack, et al., 2006; Madsen

et al., 2013). To date, most of the studies of beaked whale echolocation behavior,

especially buzz production, have relied on analysis of data from animal-borne

acoustic recording tags (Johnson & Tyack, 2003). Analysis of tag data has
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illuminated many details of beaked whale diving behavior,

from the depth and duration of dives and the duration of vocal

activity to the effective biosonar beam pattern, adjustments to

acoustic gaze, and prey selection (Johnson, et al., 2004;

Zimmer et al., 2005; Johnson and Madsen, 2006; Tyack

et al., 2006; Madsen et al., 2013; Vance, et al., 2021). The

tag data indicate that Blainville’s (Mesoplodon densirostris,

Md) and Cuvier’s (Ziphius cavirostris, Zc) beaked whales

generate buzzes within the context of deep foraging dives.

They usually buzz frequently during these dives, with Md and

Zc producing an average of approximately 29 and 30 buzzes

per dive, respectively (Tyack, et al., 2006).

The Marine Mammal Monitoring on Navy Ranges (M3R)

system performs automated passive acoustic monitoring of

marine mammal vocalizations as received on widely spaced,

bottom-mounted hydrophones at the U.S. Navy’s major

undersea ranges (Jarvis et al., 2014). Each of these deep-

water facilities provides nearly continuous access to

between 91–189 wide-bandwidth sensors. M3R has

included a class-specific support vector machine (CS-SVM)

classifier capable of real-time automated detection and

classification of foraging clicks from Md and Zc as well as

from sperm whales (Physeter macrocephalus, Pm) and from

several types of dolphins since 2010 (Jarvis et al., 2008; Jarvis,

2012). The CS-SVM classifier was updated in 2014 to add

classes specifically for Md and Zc buzz clicks. We believe the

CS-SVM buzz classifier is the first algorithm developed to

automatically detect beaked whale buzzes on remote

hydrophones. Its incorporation into M3R offers a unique

opportunity to study buzz production over geographically

large (1,200 + km2) areas.

A major challenge for remote detection of buzzes is that

the source level (SL) of buzz clicks is approximately 20 dB

lower than the SL for foraging clicks (Johnson and Madsen,

2006). Since buzz clicks have a much lower source level than

foraging clicks, the detection threshold of the buzz classifier

must be set correspondingly lower. Running the buzz

classifier, with its very low threshold, continuously can

cause an unacceptably high number of false alarms. To

mitigate this problem, CS-SVM buzz classifier

purposefully uses dive context to control its execution.

The buzz classifier is launched, within its own process,

only after the start of an Md or Zc foraging click-train has

been detected. The buzz classifier process then runs for

30 min, the approximate average vocal period of an Md

dive, before automatically stopping. This configuration of

the buzz CS-SVM launched by the foraging click CS-SVM

was fielded at both the Atlantic Undersea Test and

Evaluation Center (AUTEC) and at the Southern

California Ani-submarine Warfare Range (SOAR) in July

2014. Here, we present a manual review of approximately

36 h of Md buzz detections from AUTEC as well as a more

extensive automated study of 3 years of Zc buzz detections at

SOAR. During both study periods only a fraction of the

anticipated number of buzzes per dive were detectable on the

remote hydrophones. However, buzzes were detected during

dives across the entire range area in both cases. As buzzes are

a precursor to prey capture or, at least, prey capture attempts,

they are direct evidence of feeding. Being able to monitor

feeding over large spatio-temporal scales may better inform

population-level health models (e.g. Moretti, et al., 2014;

Cox, et al., 2006; DeRuiter, et al., 2013).

2 Methods

2.1 Remote reception of beaked whale
clicks

Md and Zc are both medium-sized oceanic whales that

live in small mixed composition groups of about 2–4 animals

(Baird, et al., 2006; Falcone, et al., 2009; Marques, et al., 2019;

Barlow, et al., 2006; MacLeod, et al., 2006) and are usually

found in deep offshore waters. Both species also execute

regular, breath-hold dives to hunt for mesopelagic and

bathypelagic squid and fish (Santos, et al., 2001) using

echolocation (Tyack, et al., 2006; Madsen, et al., 2013).

Md and Zc frequently dive to depths over 1,000 m (Tyack,

et al., 2006) during dives lasting 45 min or more. Zc tagged

near SOAR hold the records for both longest (137.5 min) and

deepest (2992 m) mammal dives ever recorded (Schorr et al.,

2014). During their deep dives Md and Zc emit two distinct

types of click waveforms, foraging clicks (Baumann-

Pickering, et al., 2013) and buzz clicks (Figure 1). A

period of foraging clicks prefaces each buzz and this

pattern repeats approximately 30 times per dive, on

average (Madsen et al., 2013). Sound production in both

Md and Zc is highly directional with an estimated main lobe

beam width of approximately 20–30° and significant side lobe

suppression (Zimmer, et al., 2005; Zimmer, et al., 2008;

Shaffer et al., 2013). Essentially Md and Zc search their

environment with an acoustic flashlight where a narrow

beam ensonifies finite swaths ahead of the animal along

the axis of its melon (Zimmer et al., 2005). From the

perspective of an omnidirectional bottom-mounted

receiver, the sounds sweep through its hearing radius as

the animal searches. The amplitude of the received clicks

increase and decrease in response. Over a grid of

hydrophones such as AUTEC or SOAR we see the

foraging clicks from a diving Zc or Md “move” from one

hydrophone to its neighbors as the animal’s main response

axis turns away from one toward the other. Frequently the

loudest received clicks are not necessarily received on the

hydrophone closest to the animal but on the one most

directly in line with the main lobe of its biosonar.

Therefore, we must consider the ensemble of clicks

Frontiers in Remote Sensing frontiersin.org02

Jarvis et al. 10.3389/frsen.2022.941838

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2022.941838


FIGURE 1
(A) A Md foraging click and (B) a Md buzz click as received by a bottom-mounted hydrophone at AUTEC. (C,D) A Md foraging click train
transitioning to a buzz also received on bottommounted hydrophone at AUTEC. Changes in amplitude during foraging and within the buzz and are
due to relative orientation of the animal’s head to the hydrophone.

FIGURE 2
(A) Layout of bottom-mounted hydrophones at AUTEC. Spacing between hydrophones 15 through 91 is approximately 4 km. Spacing between
hydrophones 1 to 14 is approximately 2 km. The CS-SVM classifier was not running on hydrophones 8 to 14 during the study window. (B) Layout of
bottom-mounted SOAR hydrophones used in the study. Spacing between hydrophones varies with depth from approximately 3.5–5 km.

Frontiers in Remote Sensing frontiersin.org03

Jarvis et al. 10.3389/frsen.2022.941838

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2022.941838


received by the local group of hydrophones when trying to

detect beaked whale dive events.

2.2 Description of the CS-SVM processing
stream

Output reports from the CS-SVM classifier archived at two

Navy Ranges, AUTEC and SOAR, were analyzed for this

study. AUTEC, which is located in the Tongue of the

Ocean off Andros Island, Bahamas, has 91 broadband

hydrophones arranged in a roughly 48 km × 24 km grid.

Fourteen of the hydrophones are spaced approximately

2 km apart while the remaining 75 are spaced

approximately 4 km apart (Figure 2A). The total

instrumented range area is approximately 1,200 km2. SOAR

is located in the San Nicolas Basin, west of San Clemente

Island, California. The range has 153 broadband hydrophones

available but the CS-SVM classifier was running on only the

newest 89 hydrophones at the time of the study. The spacing

of the SOAR hydrophones is depth dependent (from

approximately 3.5–5 km) and the total area of coverage is

approximately 1700 km2 (Figure 2B). The signal conditioning

method for acoustic data is the same at both sites.

Analog data from each hydrophone are digitized using a

sampling frequency of 96 kHz and passed to a dedicated

processing stream. The digitized data for that hydrophone

are high pass filtered and a time-domain energy detector is

used to detect arriving clicks. If the peak of a click is above the

noise-variable threshold (NVT) then a 2.67 ms (256 samples

at 96 kHz) long snippet of the time series about the peak is sent

to the CS-SVM classifier for feature extraction then the feature

vector is input to the CS-SVM decision functions. During the

study, the CS-SVM was configured with the following classes:

1) Md foraging clicks, 2) Zc foraging clicks, 3) Sperm whale

foraging clicks, 4) generalized dolphin clicks. Since the data

input from each hydrophone is a continuous, real-time

stream, which can contain clicks from multiple animals of

the same or different species, the CS-SVM classifies each click

it sees individually. The NVT is typically set to ride 20 dB

above the time-varying average noise level calculated using an

exponential average (Jarvis et al., 2014). A buzz classifier is

launched on the data stream from a given hydrophone only

when 80% of clicks detected on that hydrophone over the last

20 s are classified as either Md or Zc. The buzz classifier

process then runs for 30 min, the approximate vocal period

of an Md dive (Tyack, et al., 2006), before automatically

stopping. The NVT for the buzz classifier is set only 6 dB

TABLE 1 The number of days permonth duringwhichM3R archives containing CS-SVM classifier outputwere collected at SOAR. The CS-SVM beaked
whale buzz click classifier was installed in July, 2014 (pink).

M3R SOAR Detection Archives

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2014 31 22 28 29 28 17 14 17 28 14 4 31

2015 31 28 24 25 31 15 22 21 15 30 15 11

2016 31 27 31 25 18 7 16 31 27 - 26 22

2017 15 - 13 17 2 - 12 31 24 17 29 31

TABLE 2 Unfiltered CTP output from SOAR from January 2015 with CS-SVM Zc click trains (TYP 17:02) highlighted in blue. The columns from left to
right are hydrophone number (HYD), algorithm type and class (TYP), minimum click threshold (TH, unused here), required number of detections
to save a click train (RQ), number of seconds without detection that causes click train to close (TMO), number of clicks in the train (CNT), Start and
Stop (Year, Day:HH:MM:SS.S), duration of train (DT), estimated interclick interval (ICI).

HYD TYP TH RQ TMO CNT Start time (Z) Stop time (Z) DT (s) ICI (s)

103 12:05 -1 5 180 30 2015 013:23:54:10.321160 2015 014:00:09:38.427826 928.107 0.0131671

303 17:02 -1 5 180 2,359 2015 013:23:39:50.515161 2015 014:00:09:42.852849 1792.34 0.4346429

905 12:02 -1 5 180 32 2015 013:23:59:06.097515 2015 014:00:09:44.145514 638.048 0.0093335

107 17:02 -1 5 180 69 2015 014:00:05:33.839683 2015 014:00:09:59.172099 265.332 0.4735192

104 17:02 -1 5 180 6 2015 014:00:07:43.684712 2015 014:00:10:10.436399 146.752 0.2900939

305 17:02 -1 5 180 27 2015 014:00:00:48.611413 2015 014:00:10:11.815466 563.204 0.2350442

703 12:04 -1 5 180 13 2015 014:00:07:30.286694 2015 014:00:10:14.286694 164 0.0288331
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above the average noise level. To further reduce the likelihood

of false buzz detections and better match the known amplitude

characteristics of buzz clicks, a maximum peak amplitude

threshold is also used. The peak value of clicks considered by

the buzz classifier must be less than ½ of the average of the

local foraging click peaks seen prior to the buzz. That is, the

received peak of a candidate buzz click must be a minimum of

6 dB below the local foraging peaks (METEOR Team, 2014).

Output reports from the classifier (i.e. detection reports), as

well as other M3R data like spectrogram and localization data,

from each hydrophone are written to a central archive on a

large (~3 TB) external hard disk drive. When the archive

drives at the ranges are full they are replaced and the

archive files they contain are transferred to permanent

storage on M3R’s petabyte-capable data server in Newport, RI.

2.3 Identifying beaked whale click trains,
group dives and buzzes

The M3R systems at each Navy range collect archives of

detection reports nearly continuously. The archive data

analyzed in this study include 36 h of archives recorded

8–10 July 2014 at AUTEC and a set of archives collected

over 3.5 years at SOAR (Table 1). To identify click trains that

are indicative of foraging dives, archive data are post-process

through M3R’s click train processor (CTP) program. CTP

generates click trains for each detection algorithm and class

(TYP) on a per-hydrophone (HYD) basis. Two beaked whale

classes are considered by the CTP. Md foraging clicks are

designated as class number 1 and Zc foraging clicks are class

number 2. A click-train is started when a click is detected,

and clicks of that detector type and class are added to the

click-train until at least 180 s (timeout (TMO)) pass without

additional detections. At this point, if the click train has at

least five clicks (click requirement (RQ)), a click train report

is generated; otherwise the click train is discarded. The click

train report includes the hydrophone number, detector type

(CS-SVM is type 17) and class (Md = 1, Zc = 2), the start and

stop times for the click-train, the total number of clicks in the

click-train (CNT), and the ICI. An example of the unfiltered

CTP output for archives from SOAR is shown in Table 2, with

the CS-SVM Zc detections (TYP 17:02) highlighted in blue.

The per-hydrophone click trains identified by CTP are

then associated with other click trains on nearby

hydrophones to form group dives using our auto-grouper

(AG) program. The CTP trains are first filtered for desired

type and class (e.g. CS-SVMMd and Zc are types 17:1 and 17:

2, respectively), then for a user-selectable ICI range

(0.23–0.40 s for Md and 0.35–0.75 s for Zc), followed by

FIGURE 3
Output of AUTEC CS-SVM classifier showing aMd click train as received on hydrophone 64 and neighbouring hydrophones. Blue dots indicate
the time of Md foraging click detections on a given hydrophone (listed on vertical axis). Magenta squares indicate the first and last clicks in a click train
according to the rules on the CTP. According to the rules of the AG, these trains would be joined together to form a single group dive.
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FIGURE 4
(A) Output of AUTEC CS-SVM classifier from hydrophone 56 showing rhythmic Md foraging clicks (blue dots) and then two buzz detections
(blue x’s). Black dots are false positives from the generalized dolphin class. (B) Output of AUTEC CS-SVM classifier from hydrophone 56 from a
different hour during the study. Again, blue dots are Md foraging clicks, black dots are generalized dolphin clicks and blue x’s are buzz click
detections. Notice that buzz detections continue after Md foraging click detections. These are most likely false positives caused by dolphin
clicks. In this case, CTP, AG and BTP rules were notmet and no buzzes were identified. (C) A close-up ofMd foraging clicks (blue dots) transitioning to
a long buzz detection (blue x’s).
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duration (click trains must be less than 60 min long and

contain a minimum of 300 foraging clicks). Finally, the

candidate click trains are sorted by start time. The AG

algorithm uses the CTP output to form groups by first

identifying trains from the set of filtered click trains with

the highest click counts, and then adding to their groups click

trains from nearby hydrophones with successively smaller

click counts. The set of neighboring hydrophones generated

for each hydrophone include all hydrophones within a fixed

radius (usually ~6 km) of the center hydrophone. The radius

selected is based on both range to visual Zc observations at

SOAR (DiMarzio & Jarvis, 2016; Moretti, et al., 2010) and

calculated hearing radius for Md clicks at AUTEC (Ward

et al., 2011).

Buzzes are identified using the buzz train processor

(BTP) algorithm. The BTP works in much the same way

as the CTP. It identifies buzz events by applying a set of

heuristic rules to the buzz click detection reports received

over time on a given hydrophone. The BTP requires a

minimum of five buzz click detections to start and the

buzz must be less than 6 seconds long (Tyack, et al., 2006;

Madsen et al., 2013). The amplitude of buzz clicks received

TABLE 3 Summary of buzz detection at AUTEC and SOAR.

Study
Site (time period)

AUTEC 8–10 July 2014 SOAR
July 2014-December 2017

Species Md Zc

Total # of group dives 78 46817

Group dives with buzzes 61 20459

Fraction of group dives with buzzes 0.782 0.437

Total # of buzzes 258 97384

Average # of buzzes per group dive (all dives) 3.321 2.080

Average # of buzzes per group dive (dives containing 1 + buzz) 4.230 4.758

FIGURE 5
Output of CS-SVM classifier versus time for SOAR hydrophone 908. Orange dots are Zc foraging click detections and orange x’s are Zc buzz
click detections. Black dots are generalized dolphin click detections.
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varies with whale’s motion and received amplitude

(Figure 1D) can fall below the NVT during the buzz.

Therefore, any buzz clicks received on a hydrophone

within a given 6 s window are grouped into one buzz.

There also must be a minimum of 10 s without buzz click

detections between successive buzzes. This is to guard

against buzz classifier false positives caused by distant

dolphin clicks. In general, dolphin clicking tends to be

continuous over durations much longer than a buzz. Once

the times of candidate buzzes are identified, they are

compared to the start and stop times for group dives (AG

output) on that hydrophone. Only BTP buzz events that

occur during an identified group dive are counted.

3 Results

3.1 AUTEC 8–10 July 2014—manual
review

CS-SVM classifier detection reports, including CS-SVM

buzz classifier reports, were extracted from approximately

36 h of M3R AUTEC archives from 8–10 July 2014. These

archives were collected just after the buzz classifier was

deployed at AUTEC. Md foraging click detections were

grouped into click trains and groups using the rules of the

CTP and AG processes discussed above. The detections from

the groups were plotted and the dives manually reviewed and

validated. Figure 3 shows an example of output of the CS-

SVM classifier showing anMd foraging click train as received

on hydrophone 64 and neighbouring hydrophones. Blue dots

indicate the time of Md foraging click detections on a given

hydrophone (listed on vertical axis). Magenta squares

indicate the first and last clicks in a click train according

to the rules of the CTP. Initially we also reviewed Zc foraging

click detections (both Md and Zc have been visually verified

at AUTEC) but the number of dives detected during the

study period was low and several of these were detected only

on edge hydrophones. Such edge phone detections are not

typically included in dive counting analysis because the

animals are likely off the range proper with their heads

pointing in the direction of the receiving edge hydrophone.

Figure 4 shows the CS-SVM classifier detections versus

time from a single hydrophone. Here, again, blue dots areMd

foraging clicks and blue x’s areMd buzz click detections. The

black dots represent generalized dolphin detections. In

Figure 4A these are most likely false positives and only

Md are present. However, Figure 4B shows a case where

FIGURE 6
ICI calculated from CS-SVM Zc foraging click detection reports and CS-SVM buzz click detection reports from SOAR hydrophone 609 versus
time. Abrupt changes in ICI highlight the buzzes.

Frontiers in Remote Sensing frontiersin.org08

Jarvis et al. 10.3389/frsen.2022.941838

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2022.941838


there likely was dolphin activity and buzz detections persist

after the foraging click detections stop. These buzz detections

are viewed as false positives and fail the rules of the BTP.

Figure 4C shows detection of a long buzz on hydrophone 64.

The three clumps of buzz detections are grouped as one buzz

because they occur within the same 6-s window. The 5 s gap

between foraging clicks suggests that only a fraction of the

clicks in the buzz were detectable on the bottom-mounted

hydrophone. Still, the buzz event, itself, was detected.

A total of 78 Md group dives containing 258 buzzes were

identified within the 36 h manual analysis window. Buzzes

were detected in 61 of the group dives. The BTP rules

identified an average of 3.321 buzzes per foraging dive

over all Md dives (high 19, low 0) and 4.246 buzzes per

dive in the dives with buzzes (Table 3). This is a small

fraction of the expected number (~29) of buzzes produced

per dive as reported from acoustic tag data, but buzzes were

detected on 45 of 91 hydrophones across the entire range

area during the study window. The most buzzes per dive were

detected during group dives that occurred over hydrophones

1 to 7. Adjacent hydrophones within this hexagonal array,

dubbed Whiskey-1, are only 2 km apart vice 4 km apart

elsewhere on the range. Of the 14 Md group dives that

had 5 + detected buzzes, six occurred over the Whiskey-1

array. Note that the CS-SVM classifier was not running on

hydrophones 8–14 during the study period.

3.2 SOAR July 2014to December
2017—automated review

M3R SOAR archives collected over approximately 3.5 years from

July 2014 through December 2017 (Table 1) were batch processed

through the CTP and AG processes and Zc group dives identified as

part of a separate study on the long-term spatio-temporal distribution

and habitat use of Ziphius at SOAR (DiMarzio & Jarvis, 2016). These

archives where subsequently processed through the BTP to isolate

potential buzzes according to the following rules: minimum of

5 clicks per buzz, buzz duration less than 6 s long, 10 s timeout

between buzzes. The times of candidate buzzes were then compared

to the start and stop times of group dives output by AG. Only buzzes

that occurred within a group dive were retained (Figure 5). ICI, as

calculated from theCS-SVMreport times for foraging clicks and buzz

clicks can provide an interesting visualization of vocal part of a

foraging dive cycle (Figure 6).

During the study period, 46817 Zc group dives and

97384 buzzes were detected, an average of 2.080 buzzes per dive.

However, only 43.7% of the group dives contained buzz detections

(as compared with 78.2% of dives at AUTEC). Within those dives,

4.758 buzzes were detected per dive (Table 3). The start times of the

Zc group dives are fairly uniformly distributed across time. This

agrees with the available tag data that undisturbed Zc forage in

regular cycles both night and day (Schorr, et al., 2014; Falcone, et al.,

2017). A slight diel pattern was (qualitatively) noted in the average

FIGURE 7
Average number of buzzes detected per group foraging dive versus time of day (Z). Local night of 6 p.m. to 6 a.m. corresponds to 0200-1400Z.
Averages formed over entire study period from July 2014 to December 2017. Orange bars are the average over all group dives and blue bars
represent the average over dives during which buzzes were detected.
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FIGURE 8
Number of buzzes detected per hydrophone at SOAR from 31 July 2014 to 31 December 2017.

FIGURE 9
Number of raw CS-SVM click detections per class over a 29 h period on 15–16 January 2015 shows an over 10 fold increase in dolphin click
activity at night which may obscure the identification of some Zc group dives and buzzes at night.
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number of group dives detected across the study period with

somewhat fewer dives recorded during local night of 6 p.m. to

6 a.m. (0200-1400Z). The number of buzzes per dive followed a

similar slightly diel pattern (Figure 7). This is not surprising as buzz

detection is constrained to occur only during identified group dives.

Only a small fraction of the expected number of buzzes (~30 on

average) produced per Zc foraging dive were detected, but buzz

events were detected across the entire SOAR range area within the

study period (Figure 8).

4 Discussion

The detection of sound underwater is governed by the sonar
equation (Eq. 1). Here, SL is the source level of the sound, TL is the
transmission loss experienced by the sound as it travels from source to
receiver, NL is the ambient noise level at the receiver, AR is the array
gain of the receiver, DI is the directivity index of the source, DT is the
detection threshold, and SNR is the received signal-to-noise ratio. All
quantities are in decibels. If SNR exceeds DT then the sound is
detected.

SNR = SL–TL–NL + AR + DI(θ) > DT (1) (Burdic, 1984).

TL is a function of the range (R) from the source to the receiver.

In deep-water environments like SOAR and AUTEC, spherical

spreading tends to predominate and TL increases with the square

of the range (i.e. TL = 20log(R)). For fixed SL and ambient noise

conditions, TL and receive DI(θ) determine whether the signal is

detectable. As discussed above, Md and Zc buzzes are highly

directive with as much as 30 dB suppression away from the main

response axis (Shaffer et al., 2013). This results in the variation of

received click amplitude shown in Figures 1C,D. Range determines

whether the clicks are detectable. Note that AR for the

omnidirectional hydrophones at AUTEC and SOAR is 0 dB.

Table 3 shows a summary of the buzz detections at both SOAR

and AUTEC during the study periods. A higher percentage of the

group dives detected at AUTEC included buzz detections than the

group dives detected at SOAR. There are several possible reasons for

this. One is that AUTEC tends to be quieter, at least qualitatively, than

SOAR. The isolating environment within the Tongue of the Ocean

means that ambient levels are typically lower. Additionally, there is

generally much less biologic activity, particularly dolphin activity, at

AUTEC than at SOAR. Lower NL translate to a higher received SNR

and increased detectability for signals of a given SL. Another reason

that AUTEC has a higher percentage of group dives with buzzes is

FIGURE 10
(A,B) Md buzz recorded at AUTEC on 8 July 2014 and (C,D) Zc buzz recorded at SOAR on 5 January 2017 are at lower frequency than (E,F) Zc
buzz recorded at SOAR on 8 January 2016.
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that several of the dives detected were over the Whiskey-1 array,

which has 2 km inter-hydrophone spacing. The closer hydrophones

means that the TL experienced by a click is less than the TL to more

distantly spaced hydrophones. This make it more likely that both

foraging clicks and buzz clicks would be detected on those

hydrophones. Additionally, Md have also shown fidelity to the

Whiskey-1 area over time (Thomas, et al., 2015). Although less

than half of the group dives detected at SOAR contained buzzes,

the average number of buzzes per dive for group dives containing

buzzes is similar at AUTEC (4.230 buzzes/dive) and SOAR

(4.758 buzzes/dive). This most likely means that the combination

of animal range to the hydrophone and ambient noise levels are

favorable enough to allow buzz detection only about 44% of the time

at SOAR but that the SL of the Zc andMd foraging and buzz clicks at

both locations are comparable.

The average number of group dives (thus the number of buzzes

detected) per hour of the day at SOAR is largely uniform although

slightly fewer group dives per were detected during the night

(Figure 7). Depth recording tags placed on Zc at SOAR show no

particular diel pattern to forage dive start times (Schorr, et al., 2014;

Falcone, et al., 2017). If the animals dive at the same rate day and

night, then any apparent diel behavior observed is most likely an

artifact of the group dive detection process. According to Eq. 1,

detectability is controlled by the range fromanimal to the hydrophone

(R) and by the received noise level,NL.While it is hard to imagine that

Zc were always farther away from the hydrophones at night over

3.5 years, it is possible that the received NL and thus the detector

characteristics are different at nighttime versus daytime. When

evaluated in the lab, the CS-SVM Zc forage click class correctly

classified 98.8% of the test data and misclassified 1.2% (Jarvis, 2012).

Similarly, the generalized dolphin class correctly classified

approximately 98.5% of the test data and misclassified

approximately 1.5%. Recall that the CS-SVM classifier must

classify each click it sees in real-time maintaining a local history of

only 20–30 s used for ICI estimation. SOAR is home to a large

number of dolphins of various species, dominated by common

dolphins (Delphinus delphis). While Zc foraging shows no strong

diel pattern, the feeding patterns of dolphins are diel. Figure 9 shows

the number of raw CS-SVM detection reports for Zc forage clicks, for

Zc buzz clicks and for generalized dolphin clicks versus time since 00:

00:00Z 15 January 2015. The raw number of generalized dolphin click

detections is more than an order of magnitude larger at night (hours

2–14 and 27–34). A ten-fold increase in dolphin activity over time can

be expected to cause a ten-fold increase in false positives.We postulate

that this huge increase in detections from dolphin clicks (both true

and false positives) is obscuring identification of some Zc group dives

at night by causing CTP, AG and BTP heuristics to fail on some of

those dives. One possible way to confirm and adapt for this is by

calculating group dive detection statistics and buzz detections statistics

for daytime and nighttime separately and applying different CTP and

AG rules depending on time of day. This work has not yet been done.

Another possible reason that buzzes were detected during fewer

dives at SOAR than at AUTEC is that the signal characteristics of at

least some buzzes at SOAR differ from the training data (Warren,

et al., 2017) used to train the buzz click CS-SVM. The buzz classifier

training data were derived exclusively from recordings ofMd and Zc

made at AUTEC. No recordings containing buzzes were available

from SOAR at the time. Figure 10 shows a Md buzz recorded at

AUTEC and two Zc buzzes recorded at SOAR during the study

periods. Notice that the SOAR Zc buzz in Figures 10E,F is at a higher

frequency (centered at above 40 kHz) than the either the AUTECMd

buzz in Figures 10A,B (centered below 25 kHz) or the other SOAR Zc

buzz in Figures 10C,D (centered at approximately 25 kHz). While

both the buzzes in Figures 10A–D were automatically detected, the

buzz in Figures 10E,F was not detected by the buzz CS-SVM. We do

not currently know the prevalence of the higher frequency Zc buzz at

SOAR as no acoustic tag data are available from the study period.

Regardless, now that we have both tags on and acoustic recordings of

Zc dives made at SOAR, these data can be used to study the relative

occurrence of the higher frequency buzzes and augment the Zc buzz

classifier training set. Preferably, two buzz training sets, one specific to

AUTEC and one specific to SCORE, should be generated and used to

train site-specific buzz classifiers. This work is on going.

We appreciate that having such large, well-instrumented

areas is something unique to Navy ranges. However, the

ability to detect beaked whale buzzes, or homing pulses from

other odontocetes, is not limited to these sites. Any bottom-

mounted sensor or field of sensors is likely to be able to detect

some fraction of the buzzes emitted from animals diving

within its hearing radius. Detection of buzzes can augment

the information provided foraging dive detection regardless

of the number of sensors available or area of coverage.

5 Conclusion

Archived output from the M3R CS-SVM classifier was

used to conduct manual review of approximately 36 h of Md

buzz detections from AUTEC and an automated review of

3.5 years of Zc buzz detections from SOAR. The AUTEC data

indicates that the CS-SVM classifier detected 258 Md buzzes

across 78 Md foraging dives, an average of 3.321 buzzes per

Md foraging dive. Of the dives containing buzz detections,

4.230 buzzes per dive were identified. The more extensive

study of Zc buzz detection at SOAR was conducted using data

collected over almost 3.5 years. During this period, 46817 Zc

group dives and 97384 buzzes were detected, an average of

2.080 buzzes per dive. However, only 43.7% of the SOAR

group dives contained buzz detections. Within those dives,

4.758 buzzes were detected per dive. At both sites, only a

small fraction of the number of buzzes likely produced per

dive were detected. Given the low probability of detection of

buzzes on the remote hydrophones, one must be cautious

about extrapolating too much from these data. However,

buzzes were detected within group dives across the entire

range, within the study periods, at both AUTEC and SOAR.
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As buzzes are a precursor to prey capture or, at least, prey

capture attempts, they are direct evidence of feeding.

Monitoring buzz reception, even with limitations, over

large spatio-temporal scales can establish expected

baselines of observed activity and allow us to identify

deviation from that baseline. Being able to monitor

feeding over such large spatio-temporal scales may help

to inform higher order studies such as population-level

health models.

Data availability statement

The datasets presented in this article are not readily available

because; Data has not been publicly released. Requests to access the

datasets should be directed to susan.m.jarvis.civ@us.navy.mil.

Author contributions

All authors contributed equally to the fieldwork and M3R

maintenance efforts through which the data were collect. ND

developed the methodology and conducted the analysis for Zc

foraging group dive characterisation at SOAR. KD was responsible

for data base management and most of preliminary data processing.

SJ conducted the software development, data processing and analysis

for buzz identification. RM developed much of the software used in

the collection and post processing of M3R archives. SJ and ND were

the primary authors of the initial draft, but all authors contributed to

the review and editing of the manuscript.

Funding

The analysis of buzz production at SOAR was funded

through the Naval Undersea Warfare Center 219R program

(Neil DuBois). Modification of the CS-SVM to include

beaked whale buzz classifier was funded through

Department of Defense Test Resource Management Center

Advanced Instrumentation Science and Technology

program (George Shoemaker, Executing Agent). Funding

for the maintenance and operation of M3R systems at

AUTEC and SOAR, where the data were collected, has

been provided by Living Marine Resources Program

(Anurag Kumar, Mandy Shoemaker, Danielle Kitchen),

Commander U.S. Pacific Fleet Environmental Readiness

Division N46 (Mr. Chip Johnson), and the Office of Naval

Research Code 32 (Mr. Michael Weise).

Acknowledgments

We would like to thank Glen Devrow and Thomas Leo for their

support of M3R efforts at AUTECWe also thank D. J. Greenhough,

Doug Greenhough, Gary Miladelaroca, Dean Yamashita and Gary

Duckworth for their support of M3R data collection at SOAR.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial

relationships that could be construed as a potential conflict of

interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Baird, R. W., Webster, D. L., McSweeney, D. J., Ligon, A. D., Schorr, G. S.,
and Barlow, J. (2006). Diving Behaviour of Cuvier’s (Ziphius Cavirostris) and
Blainville’s (Mesolpodon Densirostris) Beaked Whales in Hawai’i. Can. J. Zool.
84, 1120–1128. doi:10.1139/z06-095

Barlow, J., Ferguson, M., Perrin, W. F., Ballance, L. T., Gerrodette, T., Joyce,
G., et al. (2006). Abundance and Densities of Beaked and Bottlenose Whales
(Family Ziphiidae). J. Ceracean Res. Manage. 7 (3), 263–270.

Baumann-Pickering, S., McDonald, M., Simonis, A., Berga, A.,
Merkens, K., Olsen, E., et al. (2013). Species-specific Beaked Whale
Echolocation Signals. J. Acoust. Soc. Am. 134 (3), 2293–2301. doi:10.
1121/1.4817832

Burdic,William S. (1984).Underwater Acoustic Systems Analysis. United States: Prentice-
Hall.

Cox, T. M., Ragen, T. J., Read, A. J., Vos, E., Baird, R. W., Balcomb, K., et al.
(2006). Understanding the Impacts of Anthropogenic Sound on Beaked
Whales. J. Cetacean Res Manage. 7 (3), 177–187.

DeRuiter, S. L., Southall, B. L., Calambokidis, J., Zimmer, W. M. X., Sadykova, D.,
Falcone, E. A., et al. (2013). First Direct Measurements of Behavioural Responses by
Cuvier’s Beaked Whales to Mid-frequency Active Sonar. Biol. Lett. 9, 20130223.
doi:10.1098/rsbl.2013.0223

DiMarzio, N., and Jarvis, S. (2016). Temporal and Spatial Distribution and
Habitat Use of Cuvier’s Beaked Whales on the U. S. Navy’s Southern California
Anti-submarine Warfare Range (SOAR): Data Preparation.

Falcone, E. A., Schorr, G. S.,Watwood, S. L., DeRuiter, S. L., Zerbini, A. N., Andrews, R.
D., et al. (2017). Diving Behaviour of Cuvier’s Beaked Whales Exposed to Two Types of
Military Sonar. R. Soc. open Sci. 4, 170629. doi:10.1098/rsos.170629

Frontiers in Remote Sensing frontiersin.org13

Jarvis et al. 10.3389/frsen.2022.941838

mailto:susan.m.jarvis.civ@us.navy.mil
https://doi.org/10.1139/z06-095
https://doi.org/10.1121/1.4817832
https://doi.org/10.1121/1.4817832
https://doi.org/10.1098/rsbl.2013.0223
https://doi.org/10.1098/rsos.170629
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2022.941838


Falcone, E. A., Schorr, G. S., Douglas, A. B., Calambokidis, J., Henderson, E.,
McKenna, M. F., et al. (2009). Sighting Characteristics and Photo Identification of
Cuvier’s Beaked Whales (Ziphius Cavirostris) Near San Clemente Island,
California: a Key Area for Beaked Whales and the Military? Mar. Biol. 156,
2631–2640. doi:10.1007/s00227-009-1289-8

Jarvis, S., DiMarzio, N., Morrissey, R., and Moretti, D. (2008). A Novel
Multi-Class Support Vector Machine Classifier for Automated Classification
of Beaked Whales and Other Small Odontocetes. Can. Acoust. 36 (1), 34–40.

Jarvis, S. M. (2012). A Novel Method for Multi-Class Classification Using
Support Vector Machines. Doctoral Dissertation (Dartmouth: University of
Massachusetts).

Jarvis, S. M., Morrissey, R. P., Moretti, D. J., DiMarzio, N. A., and Shaffer, J. A.
(2014). Marine Mammal Monitoring on Navy Ranges (M3R): A Toolset for
Automated Detection, Localization and Monitoring of Marine Mammals in
Open Ocean Environments. Mar. Technol. Soc. J. 48 (1), 5–20. doi:10.4031/mtsj.
48.1.1

Johnson, M., Madsen, P. T., Zimmer, W. M. X., Aguilar de Soto, N., and Tyack, P.
L. (2004). Beaked Whales Echolocate on Prey. Proc. Biol. Sci. 271, S383–S386.
doi:10.1098/rsbl.2004.0208

Johnson, M., Madsen, P. T., Zimmer, W. M. X., de Soto, N. A., and Tyack, P. L.
(2006). Foraging Blainville’s Beaked Whales (Mesoplodon Densirostris) Produce
Distinct Click Types Matched to Different Phases of Echolocation. J. Exp. Biol. 209,
5038–5050. doi:10.1242/jeb.02596

Johnson, M. P., and Tyack, P. L. (2003). A Digital Acoustic Recording Tag for
Measuring the Response ofWildMarineMammals to Sound. IEEE J. Ocean. Eng. 28
(1), 3–12. doi:10.1109/JOE.2002.808212

MacLeod, C. D., Perrin, W. F., Pitman, R., Barlow, J., Ballance, L., D’Amico, A.,
et al. (2006). Known and Inferred Distributions of Beaked Whale Species (Cetacea:
Ziphiidae). J. Cetacean Res. Manage. 7 (3), 271–286.

Madsen, P. T., Aguilar de Soto, N., Arranz, P., and Johnson, M. (2013).
Echolocation in Blainville’s Beaked Whales (Mesoplodon Desirostris).
J. Comp. Physiol. A 199, 451–469. doi:10.1007/s00359-013-0824-8

Marques, T. A., Jorge, P. A., Mourino, H., Thomas, L., Moretti, D. J., Dolan, K.,
et al. (2019). Estimating Group Size from Acoustic Footprint to Improve Blainville’s
Beaked Whale Abundance Estimation. Appl. Acoust. 156, 434–439. doi:10.1016/j.
apacoust.2019.07.042

METEOR Team (2014). Marine Mammal Effects from T & E on Ocean Ranges
(METEOR) FinalReport, Test Resource Management Center, Advanced
Instrumentation System Technology, Dr. George Shoemaker
(george.shoemaker@navy.Mil). Exec. Agent.

Moretti, D., Marques, T., Thomas, L., DiMarzio, N., Dilley, A., Morrissey, R., et al.
(2010). A Dive Counting Density Estimation Method for Blainville’s Beaked Whale
(Mesoplodon Densirostris) Using a Bottom-Mounted Hydrophone Field as

Applied to a Mid- Frequency Active (MFAS) Sonar Operation. Appl. Acoust. 71
(11), 1036–1042. doi:10.1016/j.apacoust.2010.04.011

Moretti, D., Thomas, L., Marques, T., Thomas, L., Harwood, J., Dilley, A.,
et al. (2014). A Risk Function for Behavioral Disruption of Blainville’s Beaked
Whales (Mesoplodon Densirostris) from Mid-frequency Active Sonar. PLOS
ONE 9 (12), e116555. doi:10.1371/journal.pone.0116555

Santos, M. B., Pierce, G. J., Herman, J., Lopez, A., Guerra, A., Mente, E., et al.
(2001). Feeding Ecology of Cuvier’s Beaked Whale (Ziphius Cavirostris): a Review
with New Information on the Diet of This Species. J. Mar. Biol. Assoc. U. K. 81,
687–694. doi:10.1017/s0025315401004386

Schorr, G. S., Falcone, E. A., Moretti, D. J., and Andrews, R. D. (2014). First Long-
Term Behavioral Records from Cuvier’s Beaked Whales (Ziphius Cavirostris)
Reveal Record-Breaking Dives. PLoS ONE 9 (3), e92633. doi:10.1371/journal.
pone.0092633

Shaffer, J. A., Moretti, D., Johnson, M., Jarvis, S., and Tyack, P. (2013). Effective
Beam Pattern of Blainville’s Beaked Whale (Mesoplodon Densirostris) and
Implications for Passive Acoustic Monitoring. J. Acoust. Soc. Am. 133 (3),
1770–1784. doi:10.1121/1.4776177

Thomas, L., Marques, T., Shaffer, J. A., Baggenstoss, P., Claridge, D., and
Dunn, C. (2015). Beaked Whale Group Deep Dive Behavior from Passive
Acoustic Monitoring. Available at https://apps.dtic.mil/sti/citations/
AD1014320.

Tyack, P. L., Johnson, M., Aguilar de Soto, N., Sturlese, A., and Madsen, P. T.
(2006). Extreme Diving of Beaked Whales. J. Exp. Biol. 209, 4238–4253. doi:10.
1242/jeb.02505

Vance, H., Madsen, P. T., Aguilar deSoto, N., Wisniewska, D. M., Ladegaard,
M., Hooker, S., et al. (2021). Echo-Locating Toothed Whales Used Ultra-fast
Echo-Kinetic Responses to Track Elusive Prey. eLife 0, 68825. doi:10.7554/
elife.69925

Ward, J., Jarvis, S., Moretti, D., Morrissey, R., DiMarzio, N., Johnson, M., et al.
(2011). Beaked Whale (Mesoplodon Densirostris) Passive Acoustic Detection in
Increasing Ambient Noise. J. Acoust. Soc. Am. 141 (3), 662–669. doi:10.1121/1.
3531844

Warren, V. E., Marques, T. A., Harris, D., Thomas, L., Tyack, P. L., Aguilar de
Soto, N., et al. (2017). Spatio-temporal Variation in Click Production Rates of
Beaked Whales: Implications for Passive Acoustic Density Estimation. J. Acoust.
Soc. Am. 129 (2), 1962–1974. doi:10.1121/1.4978439

Zimmer, W. M. X., Johnson, M. P., Madsen, P. T., and Tyack, P. L. (2005).
Echolocation Clicks of Free-Ranging Cuvier’s BeakedWhales (Ziphius Cavirostris).
J. Acoust. Soc. Am. 117, 3919–3927. doi:10.1121/1.1910225

Zimmer, W. M. X., Harwood, J., Tyack, P. L., Johnson, M. P., and Madsen,
P. T. (2008). Passive Acoustic Detection of Deep-Diving Beaked Whales.
J. Acoust. Soc. Am. 124 (5), 2823–2832. doi:10.1121/1.2988277

Frontiers in Remote Sensing frontiersin.org14

Jarvis et al. 10.3389/frsen.2022.941838

https://doi.org/10.1007/s00227-009-1289-8
https://doi.org/10.4031/mtsj.48.1.1
https://doi.org/10.4031/mtsj.48.1.1
https://doi.org/10.1098/rsbl.2004.0208
https://doi.org/10.1242/jeb.02596
https://doi.org/10.1109/JOE.2002.808212
https://doi.org/10.1007/s00359-013-0824-8
https://doi.org/10.1016/j.apacoust.2019.07.042
https://doi.org/10.1016/j.apacoust.2019.07.042
https://doi.org/10.1016/j.apacoust.2010.04.011
https://doi.org/10.1371/journal.pone.0116555
https://doi.org/10.1017/s0025315401004386
https://doi.org/10.1371/journal.pone.0092633
https://doi.org/10.1371/journal.pone.0092633
https://doi.org/10.1121/1.4776177
https://apps.dtic.mil/sti/citations/AD1014320
https://apps.dtic.mil/sti/citations/AD1014320
https://doi.org/10.1242/jeb.02505
https://doi.org/10.1242/jeb.02505
https://doi.org/10.7554/elife.69925
https://doi.org/10.7554/elife.69925
https://doi.org/10.1121/1.3531844
https://doi.org/10.1121/1.3531844
https://doi.org/10.1121/1.4978439
https://doi.org/10.1121/1.1910225
https://doi.org/10.1121/1.2988277
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2022.941838

	Automated detection and classification of beaked whale buzzes on bottom-mounted hydrophones
	1 Introduction
	2 Methods
	2.1 Remote reception of beaked whale clicks
	2.2 Description of the CS-SVM processing stream
	2.3 Identifying beaked whale click trains, group dives and buzzes

	3 Results
	3.1 AUTEC 8–10 July 2014—manual review
	3.2 SOAR July 2014to December 2017—automated review

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


