
Remote sensing of river habitat
for salmon restoration

Chantal Giroux1,2*, Jon Grant2, Craig J. Brown2 and
Jeffrey Barrell2,3

1Spiri Robotics Inc., Halifax, Nova Scotia, Canada, 2Department of Oceanography, Dalhousie University
, Halifax, Nova Scotia, Canada, 3Department of Fisheries and Oceans, Ottawa, ON, Canada

Losses of river complexity and viable habitat has led to negative effects on

Atlantic salmon. With the rapid population decline of Atlantic salmon, there has

been an increase in river restoration and salmon reintroduction projects, and an

understanding of substrate is a vital component in the restoration of these

habitats. However, the isolation and/or inaccessibility of many of these rivers

make the collection of this information challenging and expensive based on

conventional survey approaches. This study looks at the feasibility and accuracy

of conducting substrate analysis using low-cost uncrewed aerial vehicles (UAV)

at seven transects through macroscale river habitat (riffles, runs and pools) on

the Upper Salmon River located in Fundy National Park near Alma, New

Brunswick, Canada. Using ArcGIS, a supervised classification was conducted

separating the dry and submerged substrate for higher accuracy. An object-

based image analysis was conducted in PCI for delineation of substrate size.

Small ideal spawning substrate was found to be concentrated in slower flowing

pools while large substrate was concentrated in faster flowing riffles. The

substrate analysis was conducted with an accuracy of 79% for dry substrate

and 86% for submerged substrate, demonstrating the potential of UAV use in

salmon habitat analysis.
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1 Introduction

Rivers are complex habitats with often steep gradients in elevation, substrate type,

flow, and depth (Schumm, 2007). In addition, they interface with the coastal ocean as a

link between terrestrial and marine habitats. Fish and invertebrates exploit the variety of

river habitats as do mammals and birds (Dubuc et al., 1990; Rushton et al., 1994;

Schneider and Winemiller, 2008). Diadromous fishes such as salmonids require the full

diversity of river and marine environments to complete their life cycle. Since rivers are so

integral to terrestrial landscapes, they are often subject to human disturbance including

dams, siltation, course alteration, eutrophication and other changes in water quality

(Hamilton, 2002; Wohl, 2005; Hilton et al., 2006). These alterations interact with climate

change in negative ways, e.g., deforestation reduces shade availability, by removing

riverside vegetation (Garman and Moring, 1991) and bank stability by removing the
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roots that anchor soil (Horton et al., 2017). Changes to river

habitat quality affect multiple species that depend on river

structure and function for their life histories that include

feeding, growth, reproduction, and migration (Thorstad et al.,

2008).

An understanding of the variety of river habitats, their

arrangement in the riparian landscape, and relationship to

useable habitat are critical in conserving river species. Habitat

structure refers to the physical composition (arrangement of

physical matter such as substrate) and three-dimensional

complexity of an area (McCoy and Bell, 1991). In river

environments, this complexity can refer to current velocity,

structural density, rugosity, porosity of substrate and substrate

size diversity/distribution (Willis et al., 2005). Increased

complexity creates microhabitats that diversify niche space

and species density in aquatic environments (Schlosser, 1987;

Holbrook and Schmitt, 2002). Moreover, river restoration efforts

require this information to ensure that physical structures are

reconstructed at the appropriate spatial scale and diversity to

provide suitable habitats (Finstad et al., 2007).

Species distribution modelling (SDM) attempts to match

presence/absence of a given species with habitat features to

understand how habitat affects distribution (Elith and

Leathwick, 2009). The essential component of SDM is the

ability to spatially characterize habitat. Statistical models may

be used to delineate the importance of upstream-downstream

gradients in fish distribution (e.g., Buisson et al., 2008), but there

are relatively few examples that address detailed mapping of river

habitat.

Habitat mapping is used to quantify the geographic

patterns and types of biophysical characteristics of the

environment which influence the distribution of an

organism (Brown et al., 2011). Because many river areas

are isolated and/or inaccessible, habitat mapping is

particularly difficult. As with any aquatic habitat, water

cover precludes visual access. Structural complexity has a

large influence on the success of river fish such as Atlantic

salmon. The current methods used in river habitat surveys

include LiDAR (light detection and ranging), which is costly

(Woodget et al., 2015) or in-situ surveys, which are time

consuming and difficult for broad scale analyses. In recent

years, there have been rapid advancements in remote sensing

technology, particularly uncrewed aerial vehicles (UAVs or

drones). UAVs have become easy to use, rapidly deployable,

capable of collecting high resolution data and inexpensive

research tools for remote sensing (Saska et al., 2012.; Tang and

Shao, 2015). Coupled with high resolution cameras, their

application to river mapping is growing (Zinke and Flener,

2013; Rusnák et al., 2018)). High resolution aerial images

coupled with GPS and altitude data can be used to model river

morphology in a 3D approach referred to as “structure from

motion” (SFM) (Westoby et al., 2012). This approach matches

features in overlapping images to create a three-dimensional

model using photogrammetry, in addition to producing an

accurate orthomosaic of the area.

Applying SFM to drone imagery can also generate DEMs

(digital elevation models) and when combined with

orthomosaics of the imagery, detailed information can be

extracted to determine substrate and structural complexity,

based on substrate size and distribution, of the terrain (Arif

et al., 2017; Marteau et al., 2017; Leduc et al., 2019; Danhoff and

Huckins, 2020). Although information extraction from DEMs is

widely used in terrestrial ecology (Cunliffe et al., 2016; D’Urban,

2020; Iglhaut et al., 2019; Forsmoo et al., 2018; Alonzo et al.,

2018) they are an evolving tool for analysis of riverbed

morphology Photogrammetry in river habitat encounter issues

regarding the depth of light penetration, turbidity, reflection and

refraction in submerged areas but this technique is still applicable

to model river topography and substrate analysis for fluvial

morphology studies (Lane, 2000; Woodget et al., 2015; Arif

et al., 2017; Marteau et al., 2017; Woodget et al., 2017).

In the North Atlantic, Atlantic salmon (Salmo salar) are an

iconic anadromous species, threatened or endangered

throughout much of their range by river destruction,

overfishing in freshwater and at sea, climate change, as well as

predation and changes in pelagic food webs (Amiro et al., 2009).

Atlantic salmon spend between 2 and 4 years of their life in rivers

as parr (Mills, 1989), with subsequent smoltification and either

single or multiple migrations between river and sea (Jonsson

et al., 1991). Habitat use is specific to egg deposition, juvenile

feeding and predator avoidance and habitat distribution may be

different for each life stage. Many eastern Canadian populations

undergo long distance ocean journeys to Greenland, with

reduced survival at sea (Dadswell., 1968). However, other

populations have a more localized migration, particularly

those of the Inner Bay of Fundy who remain within the Bay

of Fundy and Gulf of Maine (IBoF salmon; Department of

Fisheries and Oceans Canada, 2010). IBoF Atlantic Salmon

have recently seen population declines of up to 97% (Irvine

et al., 2005) and most populations are critically endangered or

extinct in individual rivers, only remaining via captive breeding

and re-stocking programs.

There is an increase in projects seeking to restore breeding

habitat (Einum et al., 2008), including a recovery strategy from

the Government of Canada (Trzcinski, et al., 2004) and

reintroduction through captive rearing programs (Clarke

et al., 2016). Habitat degradation to many of the ~40 rivers

used in their life cycle plays an important yet unknown role in

their early life history. Protected areas such as those in national

parks therefore serve as templates for healthy river ecosystems

and the distribution of natural habitats within these

environments. Understanding which rivers have areas of

suitable substrate diversity is vital for the recovery of the

species. The most common method of data gathering for

habitat analysis are in-situ surveys, these involve visual

observations of detailed cross-river transects, river segments
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or specific known spawning habitat (Heggenes et al., 1996;

Borsányi et al., 2004; Linnansaari et al., 2009; Hill et al., 2019;

Marsh et al., 2020). The data is subsequently used to model and

predict habitat use and potential spawning habitat. Programs

such as Physical HABitat SIMulation (PHABSIM), are used to

simulates the relationship between streamflow and physical

characteristics, such as substrate (Borsányi et al., 2004; Moir

et al., 2009). Often the focus of these studies is to collect, describe

or predict the depths, velocities and substrate used by the

spawning fish. Substrate in particular is important as salmon

dig redds to protect against predation, freezing, shifts in

substrate, and low water levels (Heggenes, 1990; Armstrong

et al., 2003; Lapointe et al., 2004; Davey and Lapointe, 2007;

Louhi et al., 2008). Their eggs require high concentrations of

oxygen, not found in silt/sandy (<0.02 mm) substrate, and they

are unable to move larger gravel (>100 mm) giving them a

narrow suitable substrate spawning range (~5.4–100 mm)

(Armstrong et al., 2003; Lapointe et al., 2004; Louhi et al.,

2008). Collecting in-situ surveys for this work is time

consuming and generally only covers a small segment of the

river. Easily deployable UAVs mounted with high resolution

cameras can offer an alternative to these traditional methods.

Fundy National Park (New Brunswick) is the site of a

major salmon recovery project formed as a partnership

between Parks Canada, Cooke Aquaculture, Fort Folly

First Nation, University of New Brunswick, and Dalhousie

University (Clarke et al., 2016). Running through Fundy

National Park is the Upper Salmon River (USR), which

was considered devoid of native salmon populations due to

logging dams placed in the early 1900s (Dadswell, 1968). The

dams have since been removed and salmon restoration efforts

are underway. Using the live gene bank established by the

Department of Fisheries and Oceans (DFO), genetically

diverse wild salmon were reared from wild smolts (Clarke

et al., 2016). These juveniles were then released into the

rivers, before subsequently being recaptured and reared to

maturity in marine net pens to increase adult survival rates.

The adult salmon were then re-released into the river for

breeding. The rearing strategies employed in the Upper

Salmon River led to the discovery that releasing juveniles

before the onset of feeding increased their mass and fecundity

over those that were kept in captivity for longer (Clarke et al.,

2016), highlighting the importance of habitat in early life

history. If this program is to expand to other rivers in the

Inner Bay of Fundy, an assessment of available habitat is

required to determine which rivers are best suited for

restocking and/or restoration.

The goal of this research was to delineate salmon habitat

based on substrate type in a pristine river via use of an UAV.

Specifically, we explore the capability of a drone to determine

substrate composition as a component of structural

complexity for salmon spawning habitat with the following

objectives:

• Test the utility of UAV to obtain high resolution aerial

imagery of a protected river used for salmon restocking and

analyze the imagery for substrate size.

• Evaluate the accuracy and validate image-based substrate

classification through varying macro-habitats (riffles,

pools, etc.) to determine the effects of physical

characteristics (flow and depth) on imagery.

• Compare substrate composition in macrohabitats with

known salmon preference to evaluate if macro-habitats

can be used as an indicator of salmon spawning grounds.

2 Materials and methods

2.1 Study site

The Upper Salmon River (45.599°N, 64.948°W) is located in

Fundy National Park near Alma, New Brunswick, draining into

Chignecto Bay in the Bay of Fundy (Figure 1). Comprising a sand

and gravel estuary with salt marsh and amacrotidal delta near the

mouth of the river, the predominantly fast-flowing, boulder

strewn habitat is considered critical salmon habitat by the

Department of Fisheries and Oceans Canada (2010). The

river, which descends from a plateau, was studied from The

Forks, the name of a junction within the river leading to steep

waterfalls that are considered the upper limit of salmon

distribution to near sea level. The study site includes seven

cross-river transects within ~10 kilometers that encompass the

extent of the salmon habitat within the river (Figure 1).

2.2 Data collection

2.2.1 Drone data
Aerial imagery was collected using a DJI Phantom 4 drone

at each of the transects described above in late August of

2017 when seasonally water levels are lower than during

spawning season. The depths of the transect did not exceed

120 cm, with an average depth of 7–15 cm. The seven transects

were four quadrats wide (each quadrat 1 m2) and the length

was the full width of the river which varied from ~ 80 m at its

widest transect (Transect 7) to ~ 17 m at its narrowest transect

(Transect 3). Drone positioning was calculated using the on-

board GPS/GLONASS (global navigation satellite system), as

well as the barometric pressure sensor for elevation. Imagery

was obtained using the high dynamic range, high resolution

camera of 4000 × 3000 pixels, standard on the drone. The

drone was flown over the transects, with the downward facing

camera, at 30 m altitude and encompassed >80% frontal and

side overlap in imagery covering the transect locations. A

buffer area was flown around the transect to allow for the

overlap throughout the entire transect, with the excess area

cropped in processing. Still images were taken at 7 s intervals,
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with the drone paused in hover. This process was repeated for

each transect location and included 730 images. The imagery

was processed in the software package Pix4D to create

orthomosaics of each transect with a resolution of 1.7 cm

per pixel.

2.2.2 Ground truth data
The pool, riffle, run classification is often used by biologists to

identify spawning habitat (Gibson, 1993), which generally occurs

in areas categorized by riffles, runs or the tail ends of shallow

pools. These geomorphological categories, referred to herein as

macro-habitats, include their transition zones (e.g., pool/riffle),

where one habitat (e.g., pool) meets and flows into the other (e.g.,

riffle). Transects were placed in each of the river

geomorphological categories, referred to herein as macro-

habitat: 1) pool/riffle, 2) pool, 3) run/riffle, 4) pool/run, 5)

riffle, 7) run. An additional run transect was added at a long-

term monitoring site 6) as it is a well-studied area of the river.

Pools are characterized by a slow current with deeper water.

Riffles are shallow areas with fast turbulent water, often with

rocks protruding through the surface. Runs have a moderate

current and depth, with a continuous water surface, and connect

areas between riffles and pools. Although previous studies have

characterized depths and water velocities of these macro-

habitats, the classification is often subjective and analyzed

visually (Jowett, 1993; Vadas & Orth, 1998; Ward et al.,

2003). Zones were identified visually within the river, by water

flow and depth. Visual inspection indicated that the pool/riffle

segment (Transect 1; Figure 2A) had large boulders with breaks

in the surface of the water (riffles), followed by deeper, calm water

with smaller substrate boulders (pool). The pool segment

(Transect 2; Figure 2B) is dominated by deeper water and fine

substrate (fine gravel), interspersed with large boulders. The run/

riffle segment (Transect 3; Figure 2C) had breaks in the surface of

FIGURE 1
Map of the Upper Salmon River within New Brunswick created using the ArcGIS basemap. The black lines represent the approximate locations
of seven transects. The inset shows the location of the Upper Salmon River (black box) within New Brunswick. The black arrow indicates the
downstream flow direction. The Forks, the junction in the Upper Salmon River that leads to the upper limit of salmon distribution, is indicated on
the map.
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FIGURE 2
Orthomosaics for transects 1–7, transect areas denoted by the red boxes, with black arrows to indicate downstream flow direction. (A) Transect
1: Pool/Riffle, (B) Transect 2: Pool, (C) Transect 3: Run/Riffle, (D) Transect 4: Pool/Run, (E) Transect 5: Riffle, (F) Transect 6: Run/Long termmonitoring
site, (G) Transect 7: Run (Lowermost Site)
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the water over large/medium substrate, followed by shallower

calm water (run). The pool/run segment (Transect 4; Figure 2D)

had shallow water dominated by medium substrate (run),

followed by the deep, darker calm water (pools). The riffle

segment (Transect 5; Figure 2E) had shallower water with

breaks over the rocks. The run (Transect 6; Figure 2F) was

dominated by medium substrate and consisted of shallower

calm water. The long-term monitoring segment (Transect 7;

Figure 2G) had shallow water dominated by fine substrate and

submerged vegetation.

The substrate was classified visually in the field within the

quadrats by the dominant sediment along each transect based on

substrate texture categories (Table 1), ranging from silt to

bedrock, based on those established by Borsányi et al. (2004).

The field data was subsequently used to validate the results from

Section 2.3.2.

2.3 Classification

The substrate classification was based on a similar study

conducted by Arif et al. (2017). Transects underwent a simple

supervised classification to separate RV, dry/exposed substrate

and wet/submerged substrate (Figure 3). They subsequently

underwent substrate size classification through an object-based

image analysis (OBIA) in PCI Geomaticas.

2.3.1 Supervised classification of dry substrate,
submerged substrate and riverside vegetation

Using ArcGIS, each orthomosaic was clipped around the

transect locations to remove the edges and areas with insufficient

overlap to be considered reliable (Figure 4). Both wet and dry

substrate categories were analyzed as habitat, since drone

imagery was obtained during low water level where exposed

substrate would equate to potential spawning habitat during the

spawning season when the water is higher. A supervised

classification involves user derived training sites for all the

classes provided, using pixel information within the training

site to segment and classify a given area. On each transect,

sections were assigned using polygons, representing each of

the classes, wet, dry and RV, for training. These training

classes covered ~28% of the total area of all seven transects.

An object-based classification was used in ArcGIS Pro 2.3 for

sectioning into wet/dry/RV, which involved consideration of

neighbouring pixels for their spectral (color) and spatial

(shape) characteristics. These characteristics are part of the

Image Classification Tool in ArcGIS Pro and both spectral

and spatial characteristics work on separate scales ranging

from 1–20 to determine how to section the image. A higher

spectral value allows for a more detailed classification among

objects, while a higher spatial value allocates a greater importance

to spatial proximity of features, allowing for more clustered

features. The ideal values for spectral and spatial detail to

provide the best overall accuracy for all seven transects were

determined to be 17.90 and 15 respectively, based on visual

assessment and the accuracy assessment. The image underwent

the supervised classification after training sites were selected

from the manually sectioned polygons (Figure 4). The

resulting images were 3 separate RGB (Red Green Blue)

images of dry, submerged and vegetated for each transect.

Vegetated areas were clipped and the data discarded, and

subsequent analysis conducted on only the submerged and

dry areas.

TABLE 1 Size classes used to classify substrate for the ground truth
data.

Class Substrate

1 Silt

2 Sand (0.0063–0.2 cm)

3 Fine gravel (0.2–2 cm)

4 Gravel (2–5 cm)

5 Large gravel (5–20 cm)

6 Boulders (20–40 cm)

7 Large boulders (>40 cm)

8 Bedrock

9 Vegetation

FIGURE 3
Data processing steps: The orthomosaic undergoes a
supervised classification (ArcGIS) to separate the RV from the
substrate. The substrate is then analyzed for texture. The pixel
values of the substrate are used to segment the image into
substrate sizes, which are assigned through another supervised
classification in PCI.
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FIGURE 4
Example of the process of classifying substrate (transect 3). (A)Drone imagery of the transect. (B) Selected training sites showing the RV (green),
dry (brown) and submerged (yellow) polygons. (C) Resulting classified shape files used to extract dry (brown) and submerged substrate (yellow) from
the RV (green). (D) Raster layer with the RV areas removed. (E) Example from transect 3 of randompoint selection chosen by the ArcGIS toolset within
the training areas used to produce the error matrix. The accuracy point is omitted from training and their predicted value compared to the
polygon designation. Green polygons are vegetation, brown polygons are dry substrate and yellow polygons are the submerged substrate.
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In order to assess the accuracy of the trained classification, the

toolset selects 500 random points within the training polygons and

omits them from training. The selection of points within the training

polygons is a requirement of the toolset. The predicted value (wet/

dry/vegetated) was compared to the polygon designation. An error

analysis was conducted by determining the % agreement between

training categories and predictions from image analysis.

2.3.2 Substrate classification using object-based
image analysis

In object-based image analysis (OBIA) an image is first

segmented based on spectral similarity while considering

neighbouring pixel values (Hossain and Chen, 2019). A

portion of the segments are then assigned to training sites

before classification of the remaining segments based on the

attributes found in the training sites. For the OBIA of substrate

type (Figure 5), PCI Geomaticas 2019 was used to create small

segments within wet or dry sections based on the texture of the

red band (homogeneity, contrast and mean intensity), evaluated

on a 10 × 10 pixel grid (1.74 cm per pixel). Texture refers to the

variations in intensity values of pixels (bumpy, rough, smooth,

silky) and considers spatial relationships among neighbouring

pixels by examining how often specific values of pixel pairs co-

occur (Arif et al., 2017). Based on Arif et al. (2017), the

FIGURE 5
An example of ground cover samples used as training sites in the supervised classification of substrate in both dry and submerged environments.
(A) purple (large boulders), red (boulders), green (gravel), blue (fine gravel). (B) black (sand). (C)white (other vegetation), yellow (silt). (D) An example of
the segmentation results, overlayed on top of the dry/submerged image for transect 3.
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FIGURE 6
Classified orthomosaics for transects 1–7 (A–G) with RV removed using a simple supervised classification. Yellow is submerged substrate and
brown is dry substrate.
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submerged and dry images were run through the OBIA

separately to increase accuracy. Substrate type based on visual

designation was assigned to a set of training segments (Figure 5).

As the PCI software relies on the manual designation of training

and accuracy sites, fine gravel (0.2–2 cm) was combined with the

coarser gravel (2–5 cm) classification referring to 0.2–5 cm

collectively as gravel, as they were not visually distinguishable

from one another. Accuracy of this trained classification was

quantified by comparing a separate set of predicted substrate

types to visual assessment of the same segment. An error analysis

was then constructed for each substrate class but reported as

overall % agreement between training and predictions. The

number of segments allocated to accuracy assessment was

dependent on the number of segments available, the size of

the segments and the size of the transect. In total there were 94,

95, 86, 76, 107, 80, and 89 accuracy assessment segments

assignments to transects 1–7 respectively, with twice the

amount of training segments as accuracy segments.

Finally, substrate type categorized in the above method was

compared to field data on substrate collected in ground truthing

studies of transect 1 as a further assessment of training accuracy.

Due to discrepancies in the GPS co-ordinates of the field data,

only transect 1 was available for validation. A visual assessment

was conducted on the orthomosaic for transect 1 (pool/riffle

transition zone), where the field quadrat substrate results were

mapped over the PCI analysis. The dominate substrate type for

each quadrat was compared and an error analysis was conducted

between both sets of data, similar to the supervised classification.

2.4 Spawning habitat

Although measurements vary, Atlantic salmon have been

reported to breed in substrate as small as 0.54 cm to as large as

10 cm (Armstrong et al., 2003), with 1.6–6.4 cm being considered

an ideal range (Louhi et al., 2008). In the present study, the gravel

category (0.2–5 cm) was considered to be ideal spawning

substrate, recognizing that other factors (e.g. flow) are also

important in spawning habitat.

3 Results

Imagery captured from the drone produced seven

orthomosaic images (Figure 2), which were clipped and used

to extract transect data.

3.1 Supervised classification

The supervised classification was conducted over all seven

transects and extracted submerged substrate, dry substrate and

RV (Figure 6). Certain large boulders were classified as both

submerged and dry substrate when they were observed to project

out of the water. Using the training sites, substrate was extracted

with minimal misidentification in the RV class, while submerged

and dry substrate had some areas of misidentification. Areas of

dry substrate shaded by RV were occasionally misclassified, but

areas of dry substrate shaded by large boulders were not.

Using the randomly assigned points within the training sites

(Figure 4) allowed predictions to be made for dry, wet, and RV

categories for each transect. When compared to training

categories the average accuracy of all seven transects (%

agreement between categories) was 90%, with no values lower

than 74.7% (Table 2). The highest accuracy was in transects 5, 3,

4 and 1, representing transects in riffle, run/riffle, pool/run and

pool/riffle respectively, with each transect scoring above 96%

accuracy. The lowest accuracy was in transects 7, 2 and 6,

representing transects in the southern most site, pool and run

respectively, with transects scoring between 74.7% and 89.4%

accuracy. These results indicate that regardless of river habitat,

the imagery was able to adequately separate emerged and

submerged substrate and RV with an accuracy of at least 75%,

but in most cases exceeding 90%.

3.2 Spawning habitat

After supervised classification was used to separate larger

habitat division (wet and dry), OBIA allowed delineation of

substrate. Most of the substrate consisted of a range from fine

gravel to boulders (Figure 7). The end member categories of

bedrock and silt were represented only in transects 1 and

7 respectively. Underwater vegetation, appearing as green

moss was also only represented in transect 7, categorized as

“other vegetation.” Two of the transects (2 and 6) had shadows

across part of the transect which caused misclassification of the

submerged and dry substrate but did not noticeably affect the

substrate classification. Transect 1, near the Forks, had very little

fine substrate in the dry portion of the transect, and so boulders,

large gravel and gravel were combined (Figure 8). Consequently,

as fine gravel could not be separated from the other fine substrate,

TABLE 2 Overall accuracy of the supervised classification for
segmentation transects 1–7, which is the percent agreement
between categories in the accuracy points and classified image.

Transect Overall accuracy (%)

1 96

2 78.5

3 97.1

4 96.7

5 98.6

6 89.4

7 74.7
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FIGURE 7
Substrate size of transects 1–7(A–G) classified through OBIA. Substrate size includes “other” on transect 7 for submerged vegetation and
“boulder and smaller” only used on transect 1 where fine substrate was limited. Submerged and dry substrate are analyzed separately but presented
together for ease of analysis.
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none of the dry transect 1 was considered to be ideal substrate for

salmon spawning. Of the submerged portion of this transect, 16%

was ideal spawning grounds, leading to a total of 8% of transect

1 as suitable spawning substrate (Figure 8A). On transect 2, very

close to transect 1, large boulders were also present, but the

substrate was dominated by sand and gravel, as might be

expected in the quieter waters of a pool. Thus, a total of 34%

was ideal substrate in both the dry and submerged areas

FIGURE 8
Object-based image analysis results for transects 1–7 (A–G) on both submerged and dry portions of the river, presented in percent coverage,
alongwith the percent of ideal substrate on each transect. Dry and submerged are processed separately and % are calculated based on individual (dry
or submerged) segments but presented together for comparison. Ideal substrate is the total amount of fine gravel found in the combined dry and
submerged portions of the transect.
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(Figure 8B). Transect 3 (run/riffle) was similar to transect 1 with

a dominance of coarse substrate especially in the dry portion. It

included a total of 17.5% area categorized as ideal spawning

substrate with 6% in the dry area and 29% in the submerged area

(Figure 8C). Transect 4 (pool/run) consisted mostly of boulders

and large gravel, similar in wet and dry areas, and contained

11.5% of ideal spawning grounds, 14% in the dry area and 9% in

the submerged (Figure 8D). Transect 5 (riffle), although close to

transect 4, was dominated by gravel in the submerged area, but by

boulders in the dry habitat. It contained 4% total ideal spawning

substrate with none in the submerged area and 8% in the dry area

(Figure 8E). On both transects 4 and 5, despite the presence of

gravel, the substrate was too coarse for abundant spawning

habitat. Transect 6 (run) was dominated by large gravel and

boulders in both wet and dry areas, and thus only 2.5% of the area

was determined to be ideal substrate, with none in the submerged

and 5% in the dry area (Figure 8F). Transect 7 is furthest

downstream where there are depositional areas and the river

broadens. It was the only transect with silt. It was interesting that

suitable spawning substrate was only present in dry areas. Based

on this difference it contained 21% overall ideal substrate with

42% in the dry area (Figure 8G).

3.2.1 Accuracy assessment: Substrate texture
Dry and Submerged substrate were identified as either silt,

sand, fine gravel, large gravel, boulders, large boulders, bedrock

or other vegetation with an overall accuracy of 79% for the dry

substrate and 86% for the submerged substrate (Table 3). Over

most of the transects, submerged substrate categorization had a

higher accuracy than dry substrate categorization, with

submerged substrate on transect 7 categorized with complete

accuracy. Only on transect 1 (pool/riffle), did the dry substrate

have a higher accuracy than the submerged substrate. Within the

dry substrate the highest accuracy was on transects 6 (run), and 3

(run/riffle), and the lowest accuracy was on transects 5 (riffle)

and 4 (pool/run). The transect with the highest submerged

substrate accuracy was 7 (run) and 6 (run), with transects 3

(run/riffle), 1 (pool/riffle) and 5 (riffle) having the lowest

accuracy.

3.3 Ground truth data

An assessment was conducted to compare the ground truth

data to the PCI analysis for transect 1. In this comparison, 75% of

the substrate sizes matched between the two analyses. The most

noticeable misclassification was that 12% of the ground truth

points were classified as large boulders (>40 cm) while classified

as boulders (20–40 cm) in the PCI analysis, with ~96% of this

misclassification occurring in the submerged substrate. The 4%

of the misclassification within the dry substrate occurred in areas

where tree branches obscured the imagery.

4 Discussion

Pools, riffles, and runs have long been used as descriptive

classifications within rivers in fluvial morphology (Allan and

Castillo, 2007) and biological studies (Cunjak, 1988).

Descriptions vary in the literature, with use of visual

assessments or unstated criteria (Jowett, 1993) and removal of

runs as a category in some studies (Montgomery et al., 1999).

These macro-habitat classifications have been used to assess

juvenile salmon habitat (Rimmer et al., 1984), as well as

TABLE 3 Accuracy assessment conducted on the object-based imagine analysis of transects 1–7 for both dry and submerged substrate, which is the
percent agreement between the training and predicted segments.

Transects Overall accuracy (%)

1 Pool/Riffle Dry 80.30

Submerged 75

2 Pool Dry 79.25

Submerged 85.71

3 Run/Riffle Dry 82.34

Submerged 74.29

4 Pool/Riffle Dry 78.38

Submerged 87.18

5 Riffle Dry 72.73

Submerged 75.61

6 Run Long-Term Monitoring Site Dry 82.5

Submerged 95

7 Run Dry 78.85

Submerged 100
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partition rivers for sampling, with the assumption that physical

conditions within classes are similar (Jowett, 1993). The results of

this study indicate that the substrate distribution within the

macro-habitat designation is highly variable. In addition, the

transects do not represent consistent substrate mixes for regions

of the river since adjacent transects were also highly variable in

composition. Hillslope erosion and transport of boulders and

thus bank slope and composition play a major role in macro-

substrate generation in the river bed (Glade et al., 2019).

Although many studies agree that substrate is a vital

component of salmon habitat (Armstrong et al., 2003), there

are surprisingly few studies focused on river substrate

classification methods using UAV, with most methods relying

on small scale in-situ surveys. The available studies have

concentrated on general feasibility of methods and not on

variation in physical characteristics which subsequently affect

the applicability of survey results (Arif et al., 2017; Danhoff and

Huckins, 2020).

The drone was not used to classify the distribution of riffles,

runs, and pools on the larger sections of the river either by visual

or image analysis methods. While this might be feasible,

examination of riffle areas as spawning habitat (Malcolm

et al., 2004) may be inaccurate since substrate variation is so

prevalent within the macro-habitats. River restoration efforts

work with a template of idealized spawning macro-habitat, but

both substrate and riverbank morphology are manipulated (Van

Zyll De Jong et al., 1997). In wild rivers, the present results

suggest that the relationship of riffle/run designation to the

potential location of redds is not certain.

4.1 Object analysis

The submerged substrate classification had an overall higher

accuracy than the dry substrate classification, with the exception

of the pool/riffle and run/riffle transects. Both riffle and pool

transects were a concern for accuracy due to the possible

distortion caused by depth in the pool transections (>70 cm)

and ripples on the surface of riffles transects. To limit these

effects, the drone was flown during times of low flow, as

suggested by Lane (2000). The Upper Salmon River has very

clear water as due to the coarse substrate, with the riverbed visible

even in deeper water. These coupled factors mitigated the effects

of pools, with only areas of riffles affecting accuracy. Other

factors such as forest vegetation caused a lower accuracy for

the dry substrate where visibility was affected by overhanging

branches.

4.1.1 Effects of macro-habitat on classification
accuracy

Although transect 1 ran through a transition zone of a riffle

and a pool, both of which could limit visibility of the substrate,

the analysis was still conducted with a 75% accuracy. When

comparing the raw RGB image to the classified substrate image, it

is evident that neither the riffled water nor the depth of the water

obscured the image significantly. Areas of shade seemed to have

the most effect on the classification, with some areas of substrate

being misclassified as large gravel. In the transition zone at the

tail end of a riffle, there were more large boulders rather than

gravel, which matches conditions expected in a riffle, as smaller

substrate would be less likely retained in high flow areas (Jowett,

1993).

Most issues in accuracy for both the dry and submerged

transects stemmed from lack of training sites. As the transects

covered relatively small areas of the river, substrate that was less

common within the transect limited selection of appropriate

training sites. The dry portion of the pool/riffle transect 1 had

very little finer substrate and substrate smaller than the large

boulder class was grouped. The reduction in classes correlated

with an increase in accuracy of the transect which is less desirable

when aggregation of classes obscures subtle changes in habitat

distribution. When analyzing substrate, classes that serve

different functions such as spawning suitability should not be

grouped.

Riffle areas have the potential to be ideal spawning habitat,

owing to swift flowing water, aeration and availability of fine

substrate (Coulombe-Pontbriand and Lapointe, 2004; Fitzsimons

et al., 2013). In the submerged classification of transect 3 (run/

riffle), there were patches of fine gravel in both the northeast and

southwest areas that would have higher water flow and smaller

grain size, both characteristics of potential salmon spawning

grounds (Armstrong et al., 2003). The classification had the

lowest accuracy of the submerged transects (74%). All three

transects through riffles had lower accuracy, possibly due to

turbulence at the water surface of the riffles. The sub-

classifications with the most overlap/error at this transect

were boulders and large boulders, commonly in riffles,

suggesting that the distortion at the water surface may have

led to confusion error in OBIA. Arif et al. (2017) used similar

methods to analyze substrate from UAV imagery and found that

the larger grain sizes resulted in a higher number of

misclassifications. They concluded that altering texture layers

could help mitigate this problem, without identifying the

underlying cause. We note that increased error at coarse

substrate size has minimal impact on the assessment of finer

substrate classes, such as the fine gravel, important in salmon

spawning habitat.

Transect 7 through the run was situated in the southernmost

site, the only one containing silt/mud, and submerged vegetation.

The submerged area was difficult to assign training sites, since the

silt/mud and other vegetation appeared murky in the water on

the RGB images. Although this sediment class was more

challenging to visually identify, the classification resulted in

100% accuracy, primarily because there were only two

sediment classes both expressing distinctive textures. The

textural segmentation could therefore distinguish the
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difference in bottom characteristics which were more difficult to

visually designate on the RGB images. Lacking the depth of the

pools and the visual distortions of the riffles, the run transect had

a higher accuracy.

4.2 Spawning grounds

The preferred substrate size for Atlantic salmon spawning

reported in the literature ranges from gravel as fine as 0.54 cm

to as large as 10 cm (Armstrong et al., 2003). In the current

study, ideal spawning substrate was based on the

classifications assessed with object-based image analysis,

designated fine gravel (0.2–5 cm). The pool transect 2) had

the largest area of ideal spawning ground (34%), as well as the

highest amount of sand. Pools are characterized by deeper

water and slower currents, and the low flow in these areas

leads to sedimentation of smaller substrates (Jowett, 1993).

However, low flow and finer sediment may also signify lower

aeration in the substrate which can affect the survival rate of

eggs (Lapointe et al., 2004). Redd digging behaviour in

salmon aids in the removal of smaller sediments to

increase oxygen to the eggs (Everest et al., 1987), but

salmon also prefer higher water velocity of 31–55 cm s−1

(Gibson, 1993), characteristically occurring in runs

(Jowett, 1993). Although pools may contain the largest

relative areas of ideal substrate, low flow/aeration makes

them less suitable for spawning. Transition zones at the

downstream end of the pools (pool/run, pool/riffle), can

lead to higher water velocity at the tail end of the pool

while maintaining smaller substrate deposits. These areas

have been linked to spawning (Malcolm et al., 2004) and

are constructed for this purpose in river restoration (Payne &

Lapointe, 1997). Runs are characterized by shallow, swift

water that does not break at the surface (Jowett, 1993), but

are variable in water velocity and substrate size. Among the

transects in this study, ideal spawning substrate (fine gravel)

comprised 21% of total available substrate at on the long-term

monitoring site (transect 7), and 2.5% of total available

substrate in the other run, transect 6. Although transect

6 did not have much fine gravel, it contained abundant

large gravel. Salmon are able to spawn in larger substrate

when other factors suit their needs (Gibson, 1993), such that

among substrate and flow, runs contain many suitable

variables for spawning habitat (Armstrong et al., 2003).

Runs have also been linked to overwintering habitat of

juvenile salmon (Cunjak, 1988), creating vital habitat for

the salmon at other life stages.

Riffles tend to have faster currents and are often

characterized visually by a broken water surface (Jowett,

1993). Riffle transect 5 had mostly large gravel and

boulders and very little ideal spawning habitat. Transect

3 had abundant large boulders, but also small patches of

finer sediment typically located behind large protruding

rocks, caused by a lower flow and settlement of smaller

grain sizes. This resulted in an average of 17.5% of ideal

spawning habitat. In the literature, riffles are considered to

have good potential spawning characteristics (Malcolm et al.,

2004). Although runs have the potential to be spawning

habitat based on flow and depth, not much is written

linking the two, with studies generally referencing riffle

and pool/riffle transition zones when discussing spawning

habitat (Fitzsimons et al., 2013). As stated above, transition

zones between riffles/runs and pools also allow for a decrease

in flow and so the settling of smaller substrate. Although

riffles may not be as suitable for spawning as transition zones,

a study by Bagliniere and Champigneulle (1986) determined

that they were very productive locations for juvenile salmon,

even compared to runs.

4.3 Comparison and application

Habitat degradation has been detrimental to Atlantic salmon

populations, with declining populations throughout Europe and

North American (Parrish et al., 1998).

IBoF Atlantic salmon have been strongly affected, seeing a

historical decrease in returning adult salmon from 40,000 to 500

(Irvine et al., 2005). With a large habitat range, 32 of the 50 rivers

located in the Inner Bay of Fundy, and limited funds,

conservation efforts must be focused on rivers with high

spawning potential. The common method for river habitat

assessment is in-situ surveys. This method was used in

parallel to the drone surveys for comparison and validation.

The drone was able to cover all seven transects within

2 days, the foot travel between locations comprising the most

time. Two people were able to easily complete the drone

surveys, working in unison as one flew the drone while the

other focused on wilderness safety concerns by spotting birds

of prey and avoiding river landings by finding suitable

landing sites. In comparison, in-situ surveys took

significantly longer with each transect taking a day and

requiring a much larger team. In contrast the image

analysis took longer to complete and was largely

dependent on computing power. Where the substrate for

the in-situ surveys were analyzed based on dominant

substrate within the quadrats, the drone surveys

determined the substrate size for any given location along

the transect. While both are subject to human error, the more

training data provided to the object-based image analysis, the

more accurate the results.

Although both physical survey and remote sensing

methods are valid, exploration into object-based image

analysis using UAVs would allow for larger sections of

rivers to be surveyed with higher accuracy and in shorter

periods of time. As spawning ground is closely linked to
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substrate size, these broad-scale substrate analyses could be

used to determine breeding potential of rivers, allowing for

restoration efforts to be focused on rivers that have the

highest spawning potential. Broad-scale substrate analyses

can also be used to aid in restoration efforts that use river

substrate manipulation. The addition of spawning gravel was

found to successfully enhance juvenile production in rivers,

improving habitat quality and increasing egg survival

(Barlaup et al., 2008; Pulg et al., 2021). The addition of

boulder clusters, V-dams and half-log covers has also been

found to increase salmon density and biomass (de Jong and

Cowx, 2016). Through the utilization of current object-based

image analysis techniques coupled with high resolution

photographs captured by UAVs, substrate analyses can

help determine which restoration techniques (spawning

gravel or boulder clusters) are needed. Although helpful

for restoration efforts, these analyses can also be used to

further our understanding of salmon behavior. For example,

by studying what substrate is affected by ice formation,

overwinter sheltering of salmon in rivers can be better

understood (Linnansaari et al., 2009).

5 Conclusion

Habitat degradation is a serious threat to the river productivity,

affecting all life stages of the Salmo salar and other salmonids

(Einum et al., 2008). Recent efforts, including in Norway and North

America, have sought to increase salmon habitat by large scale

manipulation of substrate through the addition, removal and

redistribution of varying substrate sizes (Fjellheim et al., 2003;

Emerson, 2014; Têtu et al., 2016). Although substrate is a vital

component of spawning habitat (Armstrong et al., 2003), it can also

increase the fitness of other life stages, including prey availability

(Mitchell et al., 1998). Van Zyll De Jong et al. (1997) suggested that

the most effective way to increase the density of juvenile salmon was

by manipulating substrate clusters through the addition of boulders.

Current salmon habitat studies often utilize on-ground sampling of

the river, relying on observational data and photographs (Malcolm

et al., 2004; Louhi et al., 2008; Moir et al., 2009). Although UAVs

have become more popular in recent years, very few studies have

looked at their potential for substrate analysis in rivers for biological

study (Arif et al., 2017). Based on our results, they emerge as a

powerful tool in river mapping, especially effective in otherwise

inaccessible terrain.

This study demonstrated that diversity in substrate within

macro-habitat lessens the value of this crude traditional

classification in categorizing spawning habitat. It also identified

visibility issues in the broken water surface of riffles as a source of

inaccuracy for object-based image analysis. At the same time,

substrate alone does not determine spawning habitat. Pool

transect 2 had by far the highest amount of ideal spawning

substrate, but other conditions in pools such as flow subtract

from suitability indicated by substrate. River bottom texture

should be viewed as a starting point for assessing habitat

suitability, adding other data layers to better quantify spawning

habitat.
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