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A crucial part of carbon accounting is quantifying a tree’s aboveground biomass
(AGB) using allometric equations, but species-specific equations are limited
because data to inform these equations requires destructive harvesting of many
trees which is difficult and time-consuming. Here, we used terrestrial laser scanning
(TLS) to non-destructively estimateAGB for 282 trees from5 species at 3 locations in
Northern California using stem and branch volume estimates from quantitative
structure models (QSMs) and wood density from the literature. We then compared
TLSQSM estimates of AGBwith published allometric equations and used TLS-based
AGB, diameter at breast height (DBH), and height to derive new species-specific
allometric AGB equations for our study species. To validate the use of TLS, we used
traditional forestry approaches to collect DBH (n= 550) and height (n= 291) data on
individual trees. TLS-basedDBHandheightwere not significantly different fromfield
inventory data (R2 = 0.98 for DBH, R2 = 0.95 for height). Across all species, AGB
calculated from TLS QSM volumes were approximately 30% greater than AGB
estimates using published Forest Service’s Forest Inventory and Analysis Program
equations, and TLS QSM AGB estimates were 10% greater than AGB calculated with
existing equations, although this variation was species-dependent. In particular, TLS
AGB estimates for Quercus agrifolia and Sequoia sempervirens differed the most
from AGB estimates calculated using published equations. New allometric
equations created using TLS data with DBH and height performed better than
equations that only included DBH and matched most closely with AGB estimates
generated from QSMs. Our results support the use of TLS as a method to rapidly
estimate height, DBH, and AGB of multiple trees at a plot-level when species are
identified and wood density is known. In addition, the creation of new TLS-based
non-destructive allometric equations for our 5 study species may have important
applications and implications for carbon quantification over larger spatial scales,
especially since our equations estimated greater AGB than previous approaches.
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1 Introduction

Globally, forested ecosystems store more carbon both above-
and below-ground than any other terrestrial sink, making climate-
smart forest management an important strategy to mitigate excess
anthropogenic carbon production (Canadell and Schulze, 2014).
Unfortunately, the specific drivers that promote long-term carbon
storage and improve forest health are often challenging and
complicated to identify without accurate data related to the size
of trees (Pugh et al., 2018). In addition, traditional forestry-based
survey approaches (i.e., hand-measured data or non-remote sensing
data) to estimate aboveground size of trees (aboveground biomass,
or AGB) may be inaccurate for a large percentage of species due to a
lack of availability of destructive harvest data (Burt et al., 2020). In
Northern California, an area of high regional species diversity, it is
unknown how much error is introduced into AGB estimates when
using general equations based on diameter at breast height (DBH)
and height data that originate from outside the study area and are
not locally calibrated. Due to the increased prevalence of drought
and wildfire in Northern California and the need to accurately
estimate carbon in trees, there is a need to focus on: 1) improving the
quantification of AGB for tree species in this region, and 2)
determining if there is a more efficient and accurate method to
estimate AGB than traditional approaches based on destructive
sampling.

Terrestrial Laser Scanning (TLS), which can measure
three-dimensional (3D) structure to millimeter accuracy
and precision at plot (e.g., 100–1,000 m2) scales (Disney
et al., 2018), can be a solution to these needs. In forests,
TLS has been shown to be more accurate than traditional field
methods for sampling forest structure (Hudak et al., 2009;
Calders et al., 2015a; Kelly and Di Tommaso, 2015; Liang
et al., 2016; de Tanago et al., 2018; Stovall et al., 2018).
Although there are relatively few papers related to the use
of TLS to estimate AGB (reviewed in Liang et al., 2016), AGB
estimates from TLS have been found to strongly correlate
with estimates from destructive sampling. Calders et al.
(2015a) found that TLS AGB estimates highly correlated
with AGB from destructive sampling (R2 = 0.98), with an
overestimation of 9.7%; in contrast, AGB derived from
allometric equations had a lower correlation with
reference biomass samples (R2 = 0.68–0.78) and
underestimation of 36.6%–29.9%. The study also found
AGB error with allometric equations to increase
exponentially with increasing DBH, whereas TLS error was
DBH independent. Since the detailed 3D data generated from
TLS can be rapid, non-destructive, and automated with high
precision, TLS data can be used to update general allometric
equations or establish specific equations for a geographic
region (Liang et al., 2016; Lau et al., 2018; Demol et al., 2022).

To estimate AGB from TLS data, automated algorithms and
Quantitative Structure Models (QSMs) are often used (Calders
et al., 2015a; Lau et al., 2018; Stovall et al., 2018; Lau et al., 2019;
Momo Takoudjou et al., 2018; de Tanago et al., 2018; Malhi et al.,
2018; Disney et al., 2020). QSMs are a set of hierarchically
structured cylinders that can be fitted to TLS point clouds to
estimate the volume of trunk (stem) and branches of the tree, and
calculate a total (Raumonen et al., 2013; Calders et al., 2015a;

Calders et al., 2015b). Stovall et al. (2018) found that TLS stem
volume modeling via QSMs was an appropriate method of non-
destructive allometric equation development and reducing
uncertainty in tree-level AGB estimates. Similarly, Disney
et al. (2020) found QSMs of Sequoia sempervirens (redwood)
to agree with AGB estimates derived from detailed manual
measurements within 2% AGB from values from allometric
equations, with no change in regression slope.

In light of the need for non-destructive, accurate estimates of
carbon for species specific to Northern California regions, we used
TLS to non-destructively estimate AGB for 282 trees from 5 species
at 3 locations using stem and branch volume estimates from
quantitative structure models (QSMs) and wood density from the
literature. We aimed to determine if estimates of AGB calculated
using TLS QSM volume or TLS DBH and height would differ from
AGB calculated from multiple published allometric equations. We
also used TLS measurements to derive new allometric equations for
our study species using both DBH and height. We hypothesized that
both TLS-based volume AGB estimates and AGB calculated via an
individual tree’s TLS DBH and height would be greater than AGB
calculated from published equations, as TLS is species-specific and
directly measures the volume of each individual tree whereas
published allometries are often based on a small destructive
sample from a singular genus or forest type. Additionally, we
predicted that there would be less differences between TLS-based
AGB and AGB calculated from existing allometric equations for
coniferous species compared to broadleaf species (Quercus sp.), as
tree shape and biomass distribution is similar across conifers of the
size classes in our study areas, and allometric equations often assume
tapered, cylindrical growth of a single stem (e.g., conifer growth
pattern).

2 Methods

2.1 Study sites

Data were collected from three study sites in northern
California, United States: (Figure 1): Pepperwood Preserve (38°

34′ 57.5″ N, 122° 42′ 37.3″ W; Sonoma County), Saddle
Mountain Open Space Preserve (38° 30′ 3.3″ N, 122° 37′ 44.6″
W; Sonoma County) and Latour Demonstration State Forest, 40° 38′
21.5″N, 121° 43’ 26.0”W; Shasta County). At Pepperwood Preserve,
the most prominent forest community is oak woodlands. Trees at
Pepperwood were selected frommultiple plots (20 × 20 m) stratified
across topographic gradients along a narrow elevational range
(120–460 m) where DBH and height data had already been
manually collected in the past year (Evett et al., 2013; Ackerly et
al., 2020). Saddle Mountain primarily consists of mixed hardwood
and conifer forest, oak woodland, grassland, and chaparral
shrublands. Trees at Saddle Mountain were selected from
multiple plots (11.3-m radius) along a narrow elevational range
(233–549 m) where a suite of forest structure variables were
collected simultaneously (Forbes et al., 2020). Latour
Demonstration State Forest (LDSF) is located at the southern tip
of the Cascade Mountain Range (1,158 m to 2,550 m) and is
comprised of many conifer species. Trees at Latour were selected
from Continuous Forest Inventory (CFI) plots (11.3-m radius)
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where DBH and height data had already been manually collected in
the past year.

2.2 Species selection

Five species (Quercus agrifolia, Q. garryana, S. sempervirens,
Pinus ponderosa, and Abies concolor) were chosen based on both
their distribution in the study areas and availability of existing
allometric equations. Specifically, each species had to have a
minimum of 60 individuals within the surveyed plots across all
three study sites to ensure a large enough sample size for allometric
equation determination (Stovall et al., 2018). Additionally, Q.
agrifolia and Q. garryana were chosen because there is only one
known published species-specific allometric equation for either
species (Pillsbury et al., 1984). Redwoods, S. sempervirens, were
selected because local species-specific allometric equations do exist,
based on detailed partial-destructive sampling and crown mapping
(Sillett et al., 2019). S. sempervirens, P. ponderosa, and A. concolor
were also chosen because they are important timber species, making
accurate AGB estimates crucial for foresters. No species was present
at all three study sites.

2.3 Field measurements of DBH and height

Data collection included DBH, total tree height, and tree species.
For each tree included in this study, DBH was collected at 1.37 m
from the base of the uphill side on the trunk to the 10th of a
centimeter using a DBH tape for all selected species. To measure the
height of each tree, a Laser Technology Impulse 200 LR Rangefinder
was used by aiming the laser at eye level on the trunk of the tree, then
at the base of the uphill side of the trunk, and at the top of the tallest
piece of living or dead tree material. Height was collected for all trees
at Pepperwood Preserve and Saddle Mountain, but at LDSF, height
was only collected on select trees of interest due to time constraints.

2.4 TLS field measurements and plot-level
post-processing

A RIEGL VZ-400i (Horn, Austria) laser scanner was used for
all TLS measurements. One 360° vertical and one 360° horizontal
scan were collected per scan position by rotating the TLS on a tilt-
mount on the scanner surveying tripod to rotate 90° while
remaining in its fixed scan position. This scanner has a 1550-

FIGURE 1
Map of the 3 study locations in Northern California (Latour Demonstration State Forest, Pepperwood Preserve, and Saddle Mountain Open Space
Preserve) with expanded detail showing the plots (black circles) where trees were selected.
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nm wavelength and a 0.35-mrad beam divergence (Wilkes et al.,
2017; de Tanago et al., 2018). At all plots, nine scan positions
were used on a 10 × 10-m grid to ensure full scan visibility in
densely forested plots (Wilkes et al., 2017). Additional details
related to TLS field scanning is included in the Supplemental
Material and in Forbes et al. (2022).

Co-registration of TLS data was completed in RiSCAN PRO
(Riegl, www.riegl.com) where each scan was aligned to a
common local coordinate system. First, a coarse registration
used voxelized point clouds and an on-board Global Navigation
Satellite System (GNSS) to align the scans relative to the first
scan position. Then a Multi-Station Adjustment (MSA) (RIEGL
Laser Measurement Systems GmbH) performed a fine
adjustment where planes fit to the point data were aligned
using a least squares approach. Using GNSS, data were
transformed to NAD83 (2011)/UTM Zone 10N and geoid
12B for accurate height data. Once registered, the TLS
pointcloud of the entire plot was aligned to 2013 airborne
LiDAR scanner (ALS) data within RiSCAN PRO to create an
accurate digital elevation model (DEM), to better align with ALS
and unoccupied aerial system (UAS) data used in other studies
at the same field sites (see Forbes et al., 2022; Reilly et al.,
2021 for more details). The program Lidar360 (GreenValley
International, greenvalleyintl.com) was then used to create a
DEM by triangular irregular network (TIN) for each plot and
height normalize plot-level TLS data.

2.5 Data analyses

2.5.1 Allometric equations
To estimate AGB, allometric equations were used that have

been developed from destructive sampling of relatively small
numbers of trees in the same region (≥2.5 cm stem diameter) for
a subset of common species. These species-specific equations
relate main stem cubic volume via DBH or other diameter type
(e.g., above buttress), wood density and height, as well as biomass
of additional leaf and branch components (Jenkins et al., 2003;
California Air Resources Board, 2014; Chojnacky et al., 2014;
Sillett et al., 2019).

Multiple tree allometry protocols were used to calculate AGB for
each tree species: 1) U.S. Forest Service’s Forest Inventory and
Analysis Program (FIA) protocol; 2) Jenkins et al.’s (2003)
protocol; 3) Chojnacky et al.’s (2014) protocol; and 4) a local
species-specific allometry (if available). For the FIA protocol,
volume and AGB of live trees were determined with allometric
equations approved by California’s Air Resource Board (CARB) for
cubic volume and wood density (density of tree bole/stem, bark, and
branches) (CARB, 2014). Each species was assigned a specific
equation for live volume estimation, using each stem’s DBH and
height as inputs. The AGB of the tree stems (in kilograms) was
calculated as:

AGBstem � volumeft3 × wood density lb/ft3( ) × 0.453592 kg/lb
(1)

The CARB FIA protocol species-specific wood densities and
specific gravities were used in Eq. 1. Some genera with largely

varying wood specific gravities were divided into two different
taxa groups. Supplementary Table S1 shows each species within
the equation taxa group for Jenkins et al., 2003 and Chojnacky et al.,
2014. Additional details related to the specific allometric equations
used are included in the Supplemental Material.

2.5.2 TLS data
Using plot-level data, semi-automated segmentation of

individual trees from a respective seed point was performed in
Lidar360. The profile view of an individual tree was used tomanually
measure the DBH and height of a single stem, where height was
determined by the tallest visual points of the tree. After each tree was
segmented and measured, it was manually edited in CloudCompare
(www.danielgm.net/cc) to remove extraneous points (Supplemental
Figure S1) and processed via TLSeparation (v1.3.2;
tlseparation.github.io/documentation) to remove the foliage so
only wood was remaining.

Tree volume was estimated directly from the segmented and
cleaned point cloud of wood-only data using Quantitative
Structure Models (QSM) (Raumonen et al., 2013; Calders
et al., 2015b; Disney et al., 2018; Lau et al., 2018; Raumonen,
2020). A range of TreeQSM input parameters were tested to
optimize QSM outputs. All QSMs were visually compared to the
segmented point cloud and any that did not produce visually
similar structured models (i.e., large branches missing) were
discarded and not used in subsequent analyses. Additional
details related to tree segmentation, tree measurements and
QSM functions and optimization are included in the
Supplemental Materials.

2.5.3 Data comparisons
As general indicators of model accuracy, root mean square error

(RMSE) (kg), coefficient of variation root mean square error (CV
RMSE) (%), bias (kg), and percent bias (%) were calculated via
Eqs 2–5:

RMSE � √
∑n

i�1 ŷi − y( )2
n

(2)

CVRMSE � RMSE

mean ŷ( ) × 100 (3)

Bias � ∑n
i�1 ŷi − y( )2

n
(4)

%Bias � mean
ŷi − y

ŷ
( ) × 100 (5)

where, ŷi is ith TLS-derived volume or AGB estimate for an
individual tree, y is the allometry-derived value, and n is the
sample size (Calders et al., 2015a; Stovall et al., 2018). Bias and
RMSE were both represented in the units of their inputs and divided
by mean volume or AGB to calculate CV RMSE and percent bias
(unitless measures that represent a ratio). This normalized the data
to allow for more accurate comparisons due to differences amongst
the species, such as sample size and overall tree size. Slope and
intercept values of orthogonal regression models between TLS-
derived volume or AGB and field-measured values were used to
identify departure from the 1:1 line, and the R-squared value was
used to evaluate the regression fit (de Tanago et al., 2018; Stovall
et al., 2018).
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2.5.4 Updated allometric equations
DBH, height, volume, and AGB were used to derive a DBH

and height and a DBH only allometric equations per species
(10 equations total). TLS derived allometric equations were
computed using a linear regression model, with TLS QSM
AGB as the response and TLS DBH and height per species as
predictors. The log-transformed ordinary least squares
regression method detailed in Stovall et al. (2018) was used
to determine the slope coefficient, β1, and intercept, β0,
with DBH and height H). Specifically, two equation forms
were used:

AGB Eq. 1:

ln Biomass( ) � β0 + β1 ln DBH( ) or
Biomass � Exp β0 + β1 ln DBH( )( ) (6)

AGB Eq. 2:

Biomass � β0 + β1 DBH2 × H( ) (7)
All analyses were performed using R Statistical Software (v3.6.2;

R Core Team, 2021).

3 Results

3.1 TLS vs inventory data for height and DBH
estimation

For 550 trees, DBH ranged from 10.9–76.4 cm. For 291 trees,
height ranged from 3.16–38.74 m. Across all species, TLS derived
metrics accurately estimated DBH and height when compared to
field measured DBH and height (R2 = 0.98 for DBH, R2 = 0.95 for
height) (Figure 2).

3.2 QSM volume estimates compared to
national FIA equations

Successful QSMs were created for 282 trees across 5 species.
Across all species, except P. ponderosa, AGB calculated from TLS
QSM volumes were approximately 30% greater than AGB estimates
using published Forest Service’s Forest Inventory and Analysis
Program (FIA) equations (Figure 3, Supplemental Table S3,
Supplemental Table S8). Conifer species (A. concolor, P.
ponderosa, S. sempervirens) had QSM volumes closer to FIA
volumes compared to hardwood species (Q. agrifolia, Q.
garryana) (Figure 3, Supplemental Table S3, Supplemental
Table S8).

3.3 TLS QSM AGB estimates compared to
AGB calculated from national allometric
equations

TLS derived AGB estimates were compared to AGB calculated
using published allometric equations from FIA, Jenkins et al. (2003),
Chojnacky et al. (2014), and Sillett et al. (2019; for S. sempervirens
only) (Figure 4, Supplemental Table S4). In general, comparisons
between TLS AGB and AGB calculated from Jenkins et al. (2003)
equations had the lowest CV RMSE (36.10%) and bias (1%).
Comparisons between TLS AGB and AGB calculated using
Chojnacky et al. (2014) and FIA equations had 39.09% and
40.34% CV RMSE and 20% and 11% bias, respectively. For A.
concolor, when comparing AGB from species-specific published
allometries to TLS AGB, FIA equations had the lowest CV RMSE
of 31.78%, a bias of 59.41 kg, and percent bias of 12%. For P.
ponderosa, AGB comparisons between the three equations only
differ by 1.23 kg with FIA producing the lowest CV RMSE of

FIGURE 2
(LEFT) Linear regression of traditional DBH (cm) compared to TLS DBH (cm) and (RIGHT) linear regression of traditional height (m) compared to TLS
height (m) for each tree measured in the study plots (550 trees for DBH and 291 trees for height; sample sizes are different because traditional height was
not measured on all trees).
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25.35%. However; Chojnacky et al. (2014) equations had an CV
RMSE of 25.62% with a lower bias of 23.49 kg and percent bias of 5%
than either FIA or Jenkins et al. (2003); Jenkins et al. (2003)
equations comparisons for AGB had the lowest CV RMSE, bias,
and percent bias for the other three species, S. sempervirens, Q.
agrifolia, and Q. garryana (Supplemental Table S4). Despite Sillett
et al. (2019) having updated equations from detailed measurements,
comparisons of TLS AGBwith AGB calculated using these equations
did not produce the lowest CV RMSE for S. sempervirens. RMSE
only differed between Jenkins et al. (2003) and Sillett et al. (2019) by
2.78 kg, and Sillett et al. (2019) had a much lower bias of 16.53 kg
compared to 93.85 kg for Jenkins et al. (2003) for S. sempervirens.
Both hardwood species, Q. agrifolia and Q. garryana, had TLS AGB
estimates that were most similar to Jenkins et al. (2003) AGB
estimates when evaluated with CV RMSE and bias.

3.4 New species-specific allometric
equations created from TLS QSM AGB data

New allometric equations were developed for each species using
either DBH (Eq. 6), or both DBH and height (Eq. 7) as covariates
with TLS QSM AGB. The species-specific equation coefficients, β0
and β1, for each equation are reported in Table 1 and visualized in
Supplemental Figures S2, 3 The R2 and CV RMSE values for each

species-specific equation demonstrated that the height-DBH
equations were a better fit than the DBH only, for all species
except Q. garryana, where there was no difference in R2.

3.5 AGB calculated from new TLS species-
specific allometries compared to AGB
calculated from published allometries and
TLS QSMs

AGB calculated from new allometric equations derived from
TLS data were compared to FIA, Jenkins et al. (2003), Chojnacky
et al. (2014), and Sillett et al. (2019) (S. sempervirens only) AGB
estimates. AGB estimates created from TLS QSM AGB and DBH
(Eq. 6) were more closely correlated (CV RMSE and bias) to AGB
estimates using Jenkins et al. (2003) equations for all species
(Figure 5, Supplemental Table S5). When comparing equations
created with TLS QSM AGB and height and DBH (Eq. 7),
Jenkins et al. (2003) AGB estimates were the closest to TLS data
for all species except for A. concolor and P. ponderosa, which had the
lowest CV RMSE for AGB calculated using the FIA equations
(Figure 6, Supplemental Table S6). TLS AGB (kg) estimated from
QSMs compared to TLS AGB estimated from the new allometric
equations had slightly greater R2 for Eq. 6 (DBH2H) compared to Eq.
7 (DBH) across all species (Figure 7, Supplemental Table S7).

FIGURE 3
Individual tree volume comparison between TLS QSM volumes (L) and FIA volumes (L) by species. Individual tree sample sizes are listed next to
species names in parentheses. Grey line indicates 1:1 line.
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4 Discussion

Due to a lack of comprehensive destructive sampling, allometric
equations developed for a few species are often applied to many

species across large spatial areas (i.e., often outside their domain)
which may introduce error into AGB estimates. Further, in order to
apply these equations to any forest stand, multiple measurements
from individual trees must still be measured in the field via

FIGURE 4
Linear regression of FIA, Jenkins et al. (2003), and Chojnacky et al. (2014) and Sillett et al. (2019) individual tree AGB (kg) compared to TLS QSM AGB
(kg) for each species. Sillett et al. (2019) is used for Sequoia sempervirens only.

TABLE 1 New species-specific allometric equations created from TLS QSM AGB data.

Species by Equation Variable β0 β0 SE β1 β1 SE R2 RMSE (kg) CV RMSE (%)

AGB Equation 1 using DBH: ln (Biomass) � β0 + β1 ln (DBH) or Biomass � Exp (β0 + β1 ln (DBH))
Abies concolor −2.09 0.1889 2.35 0.0588 0.91 119.28 29.35

Pinus ponderosa −1.93 0.4937 2.29 0.1395 0.94 196.95 26.98

Sequoia sempervirens −0.69 0.6568 1.95 0.1868 0.83 179.22 25.73

Quercus agrifolia −1.06 0.7638 2.17 0.2283 0.78 270.06 41.43

Quercus garryana −0.87 0.4700 2.12 0.1459 0.81 177.76 35.43

AGB Equation 2 using DBH2H: Biomass � β0 + β1(DBH2 × H)
Abies concolor 85.51 11.0220 168.48 3.1680 0.95 115.21 28.35

Pinus ponderosa 126.08 47.0250 145.78 7.1820 0.96 154.50 21.16

Sequoia sempervirens 209.21 50.1864 108.57 7.0237 0.92 183.13 26.29

Quercus agrifolia 85.12 69.9093 451.56 42.5176 0.81 232.18 35.62

Quercus garryana 96.33 37.7261 383.34 27.2875 0.80 171.93 34.27
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expensive, time-consuming on-the-ground surveys. This study used
a relatively rapid, remote sensing approach (TLS) to estimate AGB
of 5 tree species in Northern California by calculating and then
comparing TLS QSM estimates of AGB with AGB estimated from
published allometric equations (FIA, Jenkins et al., 2003; Chojnacky
et al., 2014; Sillett et al., 2019). Data from TLS were then used to
measure AGB, DBH, and height to create new allometric equations
for these species and to compare these new equations, and their
resulting AGB, to AGB of published allometric equations and AGB
estimated directly from QSMs.

Before estimating AGB, we validated the use of TLS to accurately
capture tree dimensions by comparing TLS data to field DBH from a
tape measure and height from a laser rangefinder. Similar to other
TLS studies which also extracted these measurements and compared
them to field measurements (Olofsson et al., 2014; Calders et al.,
2015a; Liang et al., 2016; Stovall et al., 2018; Lau et al., 2019), we
determined that DBH and height could be accurately measured for
the trees sampled here. Importantly, the TLS data processing
approach developed for these measurements occurred at the plot-
level, indicating that one can easily and semi-automatically extract
DBH and height for multiple trees within a plot without individual
tree segmentation or QSM processing.

When volume estimates from TLS QSMs were compared to
volume estimated with FIA equations (the only allometries that
estimate volume directly), all TLS volumes were greater than FIA

estimated volumes (20%–86% greater), except for P. ponderosa (only
1.6% greater). Also, larger AGB discrepancies between TLS and
published FIA volume-based allometries were observed for
hardwoods (51%–86%) compared to softwoods (2%–46%). It is
possible that these volumes showed large differences because FIA
volumes allometries are developed from field-measured DBH and
height, whereas the TLS volume measurements are based on TLS
measured cylinders that measure the main stem and branches. Since
allometric equations often assume tapered cylindrical trunk growth
of a single stem and do not incorporate coppice growth with
multiple tapering stems and interlocking limbs (e.g., redwood/
tanoak forests or oak-woodlands regenerating after fire), species
that do not grow strictly following a typical fractal growth pattern
are expected to show the greatest deviations (Bentley et al., 2013). In
Sonoma County, California, allometric equations to estimate height
from DBH were found to overestimate heights for large trees,
requiring corrections via airborne light detection and ranging
(LiDAR) data (Duncanson et al., 2017). These results imply that
volume estimates using FIA equations where height is modeled
might significantly underestimate actual tree volume, especially for
hardwood species.

TLS based estimates of AGB were also greater than AGB
estimated from published allometric equations, but on average
only 10% greater, with much less variation by species than
volume-based FIA estimates. Jenkins et al. (2003) estimated

FIGURE 5
New species-specific TLS DBH-based AGB estimates (kg) (AGB Eq. 1) compared to AGB estimated using FIA, Jenkins et al. (2003), Chojnacky et al.
(2014) and Sillett et al. (2019) equations for all trees using TLS DBH. Sillett et al. (2019) equations are used for Sequoia sempervirens only.
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hardwood AGB were very similar to TLS AGB estimates, perhaps
because stem AGB is captured by both estimates and might be the
main component of total AGB. Duncanson et al. (2017) also found
that Jenkins et al. (2003) and Chojnacky et al. (2014) equations
produced AGB estimates that were statistically similar to each other,
on a plot- and forest-scale, while FIA equation AGB estimates were
20% less than Jenkins et al. (2003) and Chojnacky et al. (2014)
overall. Importantly, the greatest deviations we observed were for S.
sempervirens (23.5% greater) and Q. agrifolia (15.3% greater).
Disney et al. (2020) found that AGB for S. sempervirens in
Sonoma County calculated using TLS was 30% higher than AGB
calculated using Jenkins et al. (2003); Chojnacky et al. (2014)
equations for large redwoods. Further research (including
validation through destructive sampling) should be done to
determine if the allometric equations generated for these species
differ due to site-specific variation. Local conditions are often
ignored when creating allometric equations via destructive
sampling, but can greatly influence the morphology and biomass
of the tree as trees respond to abiotic and biotic stresses experienced
throughout their lifetime (Anderson-Teixeira et al., 2015).

New allometric equations created using TLS data validated the
use of TLS to generate new allometric equations, as these equations
produce AGB values similar to QSM volume measurements and
values using already accepted and published equations. New

allometric equations created using TLS data for AGB, DBH and
height, performed better than equations that only included TLS
AGB and DBH, perhaps because accurate TLS heights were used in
these equations. In addition, allometric equations created using TLS
data agreed most closely with general Jenkins et al. (2003) equations,
rather than FIA equations. This was surprising since FIA equations
are the only of the three biomass equation protocols that incorporate
height and use California species-specific Q. agrifolia and Q.
garryana equations (Pillsbury et al., 1984). Possibly, the close
agreement of our data with Jenkins et al. (2003) equations and
not FIA equations is due to the variety in tree form due to regional
biotic and abiotic factors that can be better quantified by more
general equations. Can general allometries in a region be used across
species without species-specific information? Equation development
for Jenkins et al. (2003) and Chojnacky et al. (2014) compiles
thousands of equations for over 100 species. While the varying
levels of agreement among TLS AGB and published allometric AGB
is most likely due to differences in species form, forest density, or
destructive sampling/published equations inaccuracies, it is possible
that these differences may not matter as much as previously
believed. Nevertheless, there is an assumption that wood densities
are consistent within a species, and even within an individual. This
might not be entirely realistic due to wood density differences
between heartwood and sapwood, or branches vs bole (Sillett

FIGURE 6
New species-specific TLS DBH2 * height-based AGB estimates (kg) (AGB Eq. 2) compared to AGB estimated using FIA, Jenkins et al. (2003), and
Chojnacky et al. (2014) and Sillett et al. (2019) equations with TLS DBH and TLS height. Sillett et al. (2019) equations are used for Sequoia sempervirens
only.
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et al., 2019) and should be verified with field measurements for
future model development and testing.

It is also possible that closer agreement between TLS AGB and
AGB estimates from Jenkins et al. (2003) equations are due to the
fact that our analysis did not include tree size as an interaction term.
Other studies comparing TLS derived AGB to AGB calculated from
published allometries often examine the effect of tree size (DBH,
height) on the success of the QSM and may even generate distinct
allometric equations from TLS data based on size (Lau et al., 2018;
Stovall et al., 2018; Lau et al., 2019). While we did not have a large
enough range of tree sizes to perform this analysis, larger individual
trees in this study did tend to deviate farther from the 1:1 line than
smaller individuals as in Disney et al. (2020). It is possible that larger
(older) trees have more complex branching architecture and bigger
contribution of branches to biomass, not captured as easily by a
regression allometry based on DBH and height. It is important that
future work should focus on comparing the effect of tree size, such as
height or DBH, on TLS based allometric equations using these data.

In addition, future work related to estimation of AGB using TLS
data should focus on QSM optimization improvement. While
optimizing QSMs for tree size, QSMs failed consistently for
individual trees without clear point clouds due to close proximity
to the TLS instrument in the field or dense foliage in the understory.
These study sites were in predominantly evergreen forests during
leaf-on conditions for deciduous species, which most likely
increased occlusion compared to less dense forests. These issues

with QSM generation suggest that future work should experiment
with different algorithms for fitting volume to TLS point clouds
rather than TreeQSM. Other methods such as convex hull (Stovall
et al., 2017) and complex primitives (Åkerblom et al., 2015) are
currently being explored with promising results as an alternative to
TreeQSM (Calders et al., 2020). Lastly, development of improved
automation of tree extraction and leaf-separation techniques would
greatly improve the feasibility of TLS over broader spatial scales
(Vicari et al., 2019; Moorthy et al., 2020).

We recognize that TLS may not be necessary at a local spatial
scale or in regions with low stand density (i.e., few trees) to measure
AGB due to the time needed to process TLS data being greater than
the time to complete field measurements. Nevertheless, this work
supports the use of TLS for non-destructive AGB estimation and
allometric equation derivation, which is incredibly useful for species
that do not yet have species-specific or local equations, because
destructive sampling is challenging or impossible due to protection
from local or federal law. While Duncanson et al. (2017) and Disney
et al. (2020) both evaluated LiDAR derived AGB in Sonoma County,
in similar regions where S. sempervirens, Q. agrifolia, and Q.
garryana data were collected for this study, there are no known
studies which specifically evaluate allometric equations for AGB of
Q. agrifolia, Q. garryana, or other hardwood species in California,
with or without TLS (Pillsbury et al., 1984), until now.

Lastly, TLS may offer a uniform, cost effective, and precise
method to collect DBH and height or estimate AGB on broader

FIGURE 7
TLS AGB (kg) compared to TLS allometric equation derived AGB (kg) using AGB Eq. 1 (DBH only) and AGB Eq. 2 (DBH and Height).
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spatial scales or in regions with high stand density, where traditional
methods and access are laborious, but species are identified and
appropriate wood density values are known. Importantly, since we
found that current traditional approaches for estimating AGB for
well-studied species produce values that are up to 85% less than TLS
AGB estimates, the implications for calculating AGB for regional
carbon budgets using TLS are large. Once height-based and/or
regional allometric equations can be evaluated, validated or
improved for a larger number of species across California, TLS
has the potential to supplement airborne or spaceborne LiDAR
biomass estimates for rapid, regional-scale, or global applications
(Silva et al., 2021).
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