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Uncertainties in remote sensing reflectance Rrs for the Ocean Color sensors
strongly affect the quality of the retrieval of concentrations of chlorophyll-a
and water properties. By comparison of data from SNPP VIIRS and several
AERONET-OC stations and MOBY, it was recently shown that the main
uncertainties come from the Rayleigh-type spectral component (Gilerson
et al., 2022), which was associated with small variability in the Rayleigh optical
thickness in the atmosphere and/or its calculation. In addition, water variability
spectra proportional to Rrs were found to play a significant role in coastal waters,
while other components including radiances from aerosols and glint were small.
This work expands on the previous study, following a similar procedure and
applying the same model for the characterization of uncertainties to the
Sentinel-3A and B OLCI sensors. It is shown that the primary sources of
uncertainties are the same as for VIIRS, i.e., dominated by the Rayleigh-type
component, with the total uncertainties for OLCI sensors typically higher in
coastal areas than for VIIRS.
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1 Introduction

Ocean Color (OC) satellite sensors provide radiometric information in multiple
bands, allowing to determine spectra of absorption and backscattering of water
components and through them, concentrations of chlorophyll-a, colored dissolved
organic matter (CDOM) and non-algal particles (Mobley, 2022). These quantities are
monitored over global and regional scales and are used in multiple applications
including fisheries, ecological models (IOCCG, 2021) and for the detection of algal
blooms. Thus, OC is indicative of ocean health and biochemistry and for that reason is
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listed as an essential climate variable (ECV) (IOCCG, 2008).
Atmospheric correction is the critical part in the process of
derivation of water parameters, since the water leaving radiance
is about 10% of the total radiance measured by the sensor at the top
of the atmosphere (TOA) in the blue/green spectral range over
typical clear waters, with the other 90% coming from scattering and
absorption processes in the atmosphere, including from molecules
and aerosol particles, and from reflection from the water surface
(Gordon and Morel, 1983; IOCCG, 2010; IOCCG, 2019).

Uncertainties in the water leaving radiance and corresponding
remote sensing reflectance Rrs after atmospheric correction are
assumed to come mostly from the non-ideal modeling of aerosol
scattering spectra and reflection of Sun and sky light from the wind-
roughened water surface (Gordon and Wang, 1992; Gordon and
Wang, 1994; Frouin et al., 1996; Wang and Bailey, 2001; Ahmad
et al., 2010; Frouin et al., 2019) from the presence of absorbing
aerosols (Gordon et al., 1997; Ransibrahmanakul and Stumpf, 2006;
Shi and Wang, 2007) and are mostly pronounced in the blue bands
with small Rrs. It is assumed that these effects lead to the negative
values of Rrs in the blue bands (Frouin et al., 2019) that are often
observed in coastal areas. More complex processing in the
atmospheric correction (Gordon et al., 1997; Oo et al., 2008),
removal of the uncertainty as a power law-like “artefact” with
exponent −6 (Ransibrahmanakul and Stumpf, 2006), Neural
Network approaches (Hieronymi et al., 2017; Fan et al., 2021),
utilization of AC algorithms based on the fitting of Rayleigh
spectra (Steinmetz et al., 2011; Zhang et al., 2019), and avoidance
of the blue bands in algorithms for retrieval of water parameters (El-
Habashi et al., 2019; Gilerson et al., 2021) represent only partial
solutions to the problem. One of the goals of future satellite missions
like NASA Plankton, Aerosol, Cloud, ocean Ecosystem, PACE
(Werdell et al., 2019), and EUMETSAT 3MI (Fougnie et al.,
2018) with polarimeters on board is to better characterize aerosol
parameters, especially in the blue part of the spectrum. However,
with three Visible Infrared Imaging Radiometer Suite (VIIRS)
sensors operated by NOAA and two European Commission’s
Copernicus Programme Ocean and Land Colour Instruments
(OLCI) currently in space and with more launches planned, these
sensors will provide most of OC information in the next decade and
beyond. Therefore, it is important for uncertainties in the products
from these sensors to be well characterized.

The estimation of uncertainties can be carried out by
comparison of the parameters determined from satellite imagery
after atmospheric correction with in-situ values, which include data
from the AERONET-OC Network (Zibordi et al., 2009; Zibordi
et al., 2021), from buoys like Marine Optical BuoY (MOBY) (Clark
et al., 1997) and from ships (Moore et al., 2015). Specifically, in
Moore et al., 2015 uncertainties in Rrs were estimated from such
sources for 7 optical water types (OWT), and it was found that Rrs

uncertainties are generally highest in the blue part of the spectrum in
both clear and coastal waters.

In Zibordi et al., 2022 a comprehensive assessment of OLCI
products and related uncertainties was carried out over European
water areas through the comparison of satellite and AERONET-OC
data and the additional comparison with similar VIIRS products,
showing that OLCI typically displays higher uncertainties than
VIIRS in coastal waters. A special case of OLCI-B and OLCI-A
called “Tandem Phase”was analyzed, with Sentinel-3B and Sentinel-

3A flying 30 s apart on the same orbit, demonstrating much smaller
uncertainties than with satellites on the same orbit but with a
different phase, which is the default operational configuration of
the satellites.

In Herrera-Estrella et al., 2021, a first version of the model used
in this study was developed to evaluate the spectral composition of
Rrs uncertainties and was applied to characterize uncertainties due
to the Rrs spatial distribution in images from the VIIRS sensor on the
SNPP platform and the Landsat-8 Operational Land Imager (OLI) at
different spatial resolutions. Most of those uncertainties were
attributed to the surface effects and water variability conditions.

In Gilerson et al., 2022, the model was expanded and elaborated
to determine spectral components of Rrs uncertainties, calculated
from the comparison of SNPP- VIIRS data and data from MOBY
and 8 AERONET-OC stations in the US and Europe. It was shown
that the main Rrs uncertainties come from Rayleigh-type spectral
components (Rayleigh scattering and surface effects) strongly
peaked towards the blue, as well as from water variability with
spectra proportional to Rrs spectra and mostly pronounced in
coastal waters. It was hypothesized that Rayleigh uncertainties are
associated with a 1%–1.5% inaccuracy in the estimation of the
Rayleigh optical thickness (ROT) due to the discrepancy between
modeled and measured surface pressure and with the possible
variability of the vertical distribution of the gaseous component
in the atmosphere. It was also shown that Rayleigh uncertainties at
all stations are well characterized by the spectra of the standard
deviations of gains measured in the process of the vicarious
calibration of the sensor at the MOBY site, meaning that
uncertainties are similar at MOBY and other sites and are related
to the atmospheric processes and/or their processing in the
atmospheric correction model.

In this work, the same model is now applied to estimate spectral
components of the uncertainties in Rrs retrieval by comparing
Sentinel 3A and 3B OLCI satellite data and in situ data from the
MOBY site and a similar group of AERONET-OC stations in US
and European waters (Table 1), with results compared to
corresponding SNPP-VIIRS—AERONET-OC matchups.

In Section 2 the model (Gilerson et al., 2022) is briefly discussed,
in Section 3 satellite and in situ data are described and results are
presented in Section 4. Conclusions are provided in Section 5.

2Main relationships in the estimation of
uncertainties

A brief description of the model from Gilerson et al., 2022, is
given here for the convenience of the reader. The main radiometric
quantity in the processing of satellite data is the remote sensing
reflectance, Rrs, which is defined as the ratio of the water-leaving
radiance to the downwelling irradiance at the sea surface,
Rrs(λ) � Lw(λ)/Ed(λ), where Lw(λ) is the water leaving radiance,
Ed(λ) is the downwelling irradiance and λ is the wavelength. The
main relationship for the top of the atmosphere (TOA) total
radiance, Lt(λ), can be represented as (Gordon and Wang, 1994)

Lt λ( ) � Lr λ( ) + La λ( ) + Lg λ( ) + t λ( )Lw λ( ) (1a)
where Lr(λ) is due to the Rayleigh scattering and surface effects,
La(λ) is due to the aerosol scattering and Rayleigh-aerosol
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interaction, Lg(λ) is due to the Sun glint from the water surface,
Lw(λ) is due to the water leaving radiance and t(λ) is the diffuse
transmittance of light from the water surface to the TOA. Lt(λ)
measured at the satellite sensor at 3 × 3 or more pixels has
uncertainties due to all of these components in addition to
vicarious calibration and sensor noise. It is important to
emphasize that in the recording process Lt(λ) already contains
uncertainties from all its components in Eq. 1a because of the spatial
variability of these components in the pixels of study. These include
uncertainties from the water spatial variability, which as was shown
by Gilerson et al., 2022, are not negligible in coastal areas. In the
process of retrieval of the water leaving radiance, Lr(λ), La(λ), Lg(λ)
and t(λ) are modeled and radiances are subtracted from the
measured Lt(λ), which introduces another set of uncertainties
between actual and modeled radiances and transmittance
coefficients:

Lw λ( ) � Lt λ( ) − Lr λ( ) − La λ( ) − Lg λ( )( )/t λ( ), (1b)

In the model, Lr(λ) was further divided into radiance from the
Rayleigh scattering LR(λ) in the atmosphere and reflectance from
the ocean surface:

Lr λ( ) � LR λ( ) + t λ( )Lsurf λ( ), (1c)
where Lsurf(λ) � Lsky(λ)*ρ, Lsky(λ) is the sky radiance and ρ is
the reflectance coefficient from the water surface. While usually
in the satellite atmospheric correction procedure averaged
surface effects are considered as a part of Lr(λ) (Cox and
Munk, 1954; Gordon and Wang, 1992), in this model they are
considered separately because of differences in the spectra of
LR(λ) and Lsurf(λ). Additionally, each satellite image captures a
specific snapshot of the ocean, where the actual spatial average of
the light field reflected from the wave facets may not exactly
match the average predicted by the VRT model.

Uncertainties from all components included in Eq. 1a, 1b, 1c in
the recording of the signal and in the retrieval process need to be
taken into account. After normalizing radiances by the downwelling
irradiance, Ed(λ), the uncertainty in remote sensing reflectance σ in
sr−1 can be determined from:

σ2 � σ2
t + σ2

R + σ2
a + σ2

g( )/ t2 + σ2
surf + σ2

water + σ2
noise (2)

Variances for the quantities at TOA σ2t , σ
2
R, σ

2
a, σ

2
g are divided by

t2 in accordance with Eq. 1a, 1b, 1c. It was shown (Herrera-Estrella,
et al., 2021) that estimated σnoise for the VIIRS sensor (Qi, et al., 2017;
Xiong, et al., 2020) is significantly smaller than the total
uncertainties σ(λ) (Moore et al., 2015). OLCI σnoise (based on
S3 OLCI Cyclic Performance Report, 2021) is of the same order
(0.4*10–4 sr−1 at 412 nm and slightly lower for other bands) and will
thus not be considered further. As before for VIIRS, OLCI σ2R, σ

2
a, σ

2
g

and σ2surf contain uncertainties due to both natural variability inside
the set of pixels and uncertainties due to modeling inaccuracies,
while σ2t is at least partially due to the vicarious calibration. It can
also include other systematic errors due to detectors, polarization
effects, stray light, etc., but these errors are not included in the
model.

As one of the main assumptions of the model, all standard
deviation components in Eq. 2 except σt were, as a first
approximation, considered proportional to the corresponding

mean values of the normalized radiances with proportionality
coefficient k:

σ2 � σ2
vc + kRLR/Ed( )2 + kaLa/Ed( )2 + kgLg/Ed( )2( )/t2

+ kSS*ρ( )2 + kRrsRrs( )2 (3)
where σvc(λ) = σgains(λ)Lt(λ)/Ed(λ), and σgains(λ) is the standard
deviation of the system vicarious calibration gains (unitless) for
OLCI from EUMETSAT processing. Additionally,

LR λ( ) � F0 λ( )τR λ( ) p 0.75 p
1 + cos 2 Θ
4π cos θ

(4a)

La λ( ) � ω0 λ( )F0 λ( )τa λ( )Pa

4π cos θ
(4b)

Lg λ( ) � F0 λ( )T0 λ( )T λ( ) p 0.005 (4c)
Ed λ( ) � F0 λ( )t0 λ( ) cos θ0 (4d)

Lsurf λ( ) � ρLsky λ( ); S λ( ) � Lsky λ( )
Ed λ( ) (4e)

In Eq. 4a F0(λ) is the extraterrestrial irradiance, θ is the sensor
zenith angle, Θ is the scattering angle, the angle between solar and
viewing directions; in Eq. 4b ω0(λ) is the single scattering albedo, Pa

is the scattering function for aerosols; in (5c) T0(λ), T(λ) are the
direct transmittance coefficients for TOA to surface and surface to
TOA respectively, and 0.005 is the threshold for glint detection; LGN,
in sr−1 (Wang and Bailey, 2001); in Eq. 4d θ0 and t0(λ) are the Sun
zenith angle and the corresponding diffuse transmittance; in Eq. 4e a
representative normalized sky reflectance, S � Lsky/Ed, was
simulated by the VRT RayXP code (Tynes et al., 2001) for the
Sun zenith angle θ0 � 42° at a viewing zenith angle of 40°, with
τa(443) and Angstrom coefficient average values for each specific
area based on the satellite processing values given below in Table 2.
Aerosol radiance in Eq.4b was determined assuming ω0 = 1 for all
wavelengths, with aerosol optical thickness values and the Angstrom
coefficient derived from satellite imagery, and with the phase
function (PF) equal to 0.3 corresponding to the scattering angle
around 120°. The water component σwater was expressed directly
proportional to the remote sensing reflectance Rrs.

Equation 3 includes OLCI S3A and 3B system vicarious
calibration uncertainties σvc, where sensor gains are determined
by the comparison of the atmospherically corrected water leaving
radiance with in situ measurements at the MOBY site (Franz et al.,
2007). σgains(λ) are included as constant spectra with values
σgains(λ) = [0.014210, 0.014000, 0.013206, 0.007822, 0.004042]
for S3A and σgains(λ) = [0.012342, 0.012278, 0.011843, 0.007769,
0.003752] for S3B for corresponding wavelengths [412.5, 442.5, 490,
560, 665] (EUMETSAT, 2020). Data processing was carried out first
without σvc(λ) in Eq. 3 to understand the contributions of other
components to the total σ(λ) and then with σvc(λ) included.

For each available matchup between satellite and AERONET-
OC measurements, all radiance spectra in Eqs 4a, 4b, 4c, 4d were
calculated, then spectra were averaged over the total number of
available measurements. Mean spectra were then used in the
fitting procedure based on Eq. 3, and on mean Rrs(λ) to
determine the contribution of each component to the total
σ2(λ). Because of the shorter period of operation of OLCI on
S3A and especially on S3B than of VIIRS, the number of
matchups was significantly smaller than for VIIRS and
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differences in wind speeds were not considered. In addition,
outliers in uncertainties spectra or unusual spectra not typical for
respective water areas from the AERONET-OC (in-situ) data
were removed from matchups since they had a significant impact
on results given the small number of total data points.

σ(λ) was calculated from the comparison of satellite data with
the corresponding AERONET-OC station data in all bands as

RMSD �


















∑N

i�1 Ri
rssat

− Ri
rsin−situ( )2

N

√
(5)

with σ(λ) = RMSD.
Biases were also calculated as

bias � ∑N
i�1 Ri

rssat
− Ri

rsin−situ( )
N

(6)

Each of radiances in Eq. 4, has individual spectral variable(s)
not repeated in other equations, so all spectra of uncertainties,
which were considered proportional to these radiances, should be
independent of each other. An optimization procedure was carried
out in the same manner as in Gilerson et al., 2022 in MATLAB

TABLE 2 Average atmospheric parameters at the sites of study determined from satellite and AERONET retrievals.

Site N S3A/S3B AERONET

τa(443) STD
τa(443)

Angstrom STD
Angstrom

τa(443) STD
τa(443)

Angstrom STD
Angstrom

ω0(443) ω0(671)

MOBY 30/
62

0.094/
0.113

0.008/
0.013

0.596/0.553 0.099/0.108 -- -- -- -- -- --

Casablanca 42/
134

0.183/
0.182

0.013/
0.015

0.873/0.846 0.182/0.177 0.143/
0.137

0.100/
0.089

0.910/1.100 0.356/0.353 0.915 0.898

USC 182/
138

0.158/
0.155

0.020/
0.017

0.797/0.780 0.200/0.189 0.104/
0.107

0.081/
0.091

0.849/0.813 0.353/0.317 0.919 0.905

Venise 116/
141

0.286/
0.292

0.012/
0.012

1.261/1.188 0.108/0.116 0.199/
0.212

0.129/
0.142

1.293/1.341 0.364/0.338 0.964 0.953

Gloria 131/
76

0.274/
0.289

0.016/
0.016

1.121/1.090 0.238/0.226 0.210/
0.224

0.110/
0.116

1.402/1.379 0.336/0.365 0.966 0.956

WaveCIS 117/
137

0.148/
0.146

0.014/
0.012

0.913/0.893 0.155/0.166 0.098/
0.098

0.082/
0.060

1.128/1.116 0.717/0.5422 0.968 0.962

LISCO 123/
81

0.175/
0.176

0.016/
0.016

1.001/0.941 0.198/0.207 0.098/
0.108

0.075/
0.097

1.211/1.131 0.503/0.477 0.8809 0.8697

Helsinki
Lighthouse

35/- 0.264/- 0.013/- 1.351/- 0.095/- 0.125/- 0.076/- 1.333/- 0.381 0.9357 0.9146

TABLE 1 Location and parameters of AERONET-OC sites.

Station
name

Location Distance to
shore (km)

Latitude
(°)/Longitude (°)

Database Height above
water (m)

MOBY Autonomous buoy moored off of Lanai, Hawaii 15.00 N 59.949/E 24.926 1997—on
going

0.0

Casablanca Western Mediterranean Sea, Cambrils, Spain 45.00 N 40.717/E 1.358 2019—on
going

35.0

USC SeaPRISM Near Newport Beach, CA, United States 18.00 N 33.564/W 118.118 2011—on
going

31.0

Venise Acqua Alta Oceanographic Tower (AAOT), Gulf
of Venice, Italy

14.82 N 45.314/E 12.508 2002—on
going

10.0

Gloria Black Sea, near Constanta, Romania 22.22 N 44.599/E 29.360 2011–2019 30.0

WaveCIS Site
CSI 6

Timbalier Bay area, Gulf of Mexico, MS,
United States

18.00 N 28.867/W 90.483 2010—on
going

32.7

LISCO Long Island Sound near Northport, NY,
United States

3.00 N 40.955/W 73.342 2009—on
going

12.0

Helsinki
Lighthouse

Gulf of Finland, Baltic Sea 27.78 N 59.949/E 24.926 2006—on
going

20.0

Frontiers in Remote Sensing frontiersin.org04

Gilerson et al. 10.3389/frsen.2023.1146110

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1146110


using the default trust-region-reflective algorithm (Coleman and
Li, 1994; Coleman and Li, 1996) to determine the respective values
of the k coefficients for MOBY and each AERONET-OC site based
on the spectra of the σ(λ) components and their individual
contribution to the total observed Rrs variance σ2(λ) as
described in Eq. 3. Spectral components were normalized before
being used as inputs in the procedure, and results were averaged
over 100 runs with random initial conditions to test the robustness
of the solution against possible local minima. The normalization
did not affect spectral shapes of components and was used to avoid
small values of uncertainties, which can be not treated correctly in
the fitting process. Once a solution was reached, all normalized k
coefficients were then scaled back to their true scale values and
were interpreted as an indication of the major contributing
components to the total observed Rrs variance σ2(λ).

Equation 3 can be alternatively presented as

σ2 � σ2
vc + σ412

R

LR/Ed

L412
R /E412

d

( )2

+ σ412
a

La/Ed

L412
a /E412

d

( )2

+ σ412
g

Lg/Ed

L412
g /E412

d

⎛⎝ ⎞⎠2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦/t2

+ σ412
S

S
S412

( )2

+ σ560
Rrs

Rrs

R551
rs

( )2

(7)

where normalized radiance spectra LR/Ed, etc. are divided by their
values at 412 nm (at 560 nm for Rrs) and corresponding k
coefficients are multipled by these values. Thus k coefficients are
replaced by the standard deviation for each term at the reference
wavelength, 412 and 560 respectively. In this case standard
deviations at the reference wavelengths have clear physical
interpretation and they can be conveniently compared for
different terms.

3 Satellite and AERONET-OC data

3.1 OLCI data

OLCI S3A and S3B Collection 3 level 2 Full Resolution
imagery (300 m spatial resolution by pixel, EUMETSAT, 2021)
was downloaded from the EUMETSAT website for the period of
January 2017 to July 2022 for S3A and from May 2018 to July
2022 for S3B for the areas of MOBY in Lanai, Hawaii and seven
Aerosol Robotic Network for Ocean Color (AERONET-OC)
sites: Casablanca, University of South California (USC),
Venise, Gloria, WaveCIS, the Long Island Sound Coastal
Observatory (LISCO) and the Helsinki Lighthouse (HLT) with
locations shown in Figure 1.

Collection 3 was obtained using the extraction data base
(EDB) workflow scripts (https://github.com/juanchossn/
ThoMaS), and Level 2 SeaBASS - Ocean Colour Database
(OCDB) format images were retrieved with a window size of
25 × 25 pixels centered on the previously named sites. Each level
2 file includes geophysical products of the atmosphere and ocean,
such as aerosol optical thickness and Angstrom exponent at
865 nm, water-leaving reflectance at 412.5, 443.5, 490, 560,
and 665 nm among others, sensor zenith angle, solar zenith
angle, and quality flags. Rrs(λ) is calculated dividing the
water-leaving reflectance spectra by π.

OLCI Collection 3 level 2 operational water reflectance products
are not corrected for the bidirectional reflectance distribution
function (BRDF). The BRDF correction is not applied for
historical reasons as the main users have typically been interested
in coastal and inland waters where the standard open-ocean BRDF
approach does not apply. Nevertheless, the BRDF correction was
applied externally in this study to OLCI L2 products as it is necessary
for the current analyses (Morel et al., 2002).

Pixels flagged by at least one of the following conditions were
excluded: invalid flag, land, cloud (including ambiguous and
marginal), coastline, high solar zenith angle larger than 70°,
saturated flag, moderate or high glint, whitecaps, and
atmospheric correction fail. It should be noted that this set of
flags is slightly different from the set recommended for OLCI by
EUMETSAT (EUMETSAT, 2022). A file is selected if at least half of
the pixels in the set plus one was flag-free. Pixels used for matchup
comparison were averaged over 5 spatial resolutions: 900, 1,500,
2,100, 3,900, and 5,100 m (3 × 3, 5 × 5, 7 × 7, 13 × 13, and 17 ×
17 pixel boxes), centered at the AERONET-OC site (Hlaing et al.,
2013). Average Rrs(λ) and the standard deviation between pixels
and geometry were recorded.

3.2 VIIRS data

VIIRS’s Satellite Level 2—Version 2018.0 imagery was
downloaded, for the same areas, from the NASA Ocean Color
website https://oceancolor.gsfc.nasa.gov (Gordon and Wang,
1994; Siegel et al., 2000; Bailey et al., 2010). Standard NASA
Level 2 data files for VIIRS (with a pixel resolution of 750 m at
nadir) include geophysical products of the atmosphere and ocean,
such as aerosol optical thickness at 862 nm, remote sensing
reflectance, Rrs(λ), in the visible wavelengths 410, 443, 486, 551,
and 671 nm, and the level 2 quality flags.

Pixels flagged by at least one of the following conditions were
excluded: land, cloud, failure in atmospheric correction, stray light
(except for LISCO), bad navigation quality, high or moderate glint,
negative Rayleigh-corrected radiance, negative water-leaving
radiance, viewing angle larger than 60°, and solar zenith angle
larger than 70°. A file is selected if at least half of the pixels in
the set plus one was flag-free. Pixels used for matchup comparison

FIGURE 1
Areas of study: Global map showing MOBY area and all
AERONET-OC stations used in this study.
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were averaged over 3 spatial resolutions: 2,250, 3,750, and 5,250 m
(3 × 3, 5 × 5, and 7 × 7 pixel boxes), centered at the AERONET-OC
site (Hlaing et al., 2013; Gilerson et al., 2022). AverageRrs(λ) and the
standard deviation between pixels, geometry, and radiance were
recorded.

3.3 AERONET-OC data

The ocean color component of the Aerosol Robotic Network
(AERONET-OC) was implemented to support long-term ocean
color investigations by collecting normalized water-leaving

FIGURE 2
(A) Mean Rrs(λ) spectra from AERONET-OC, (B) standard deviations of Rrs(λ) for matchups with S3A. (C, D, and E) corresponding uncertainties
spectra σ(λ) for all areas of study, S3A, 3B and VIIRS respectively, (F, G, and H) biases for S3A, S3B and VIIRS.

Frontiers in Remote Sensing frontiersin.org06

Gilerson et al. 10.3389/frsen.2023.1146110

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1146110


radiance and aerosol optical depth data using the SeaPRISM
autonomous radiometer systems CE-318/CE-318T (CIMEL
Electronique, France) deployed on offshore fixed platforms
(Zibordi et al., 2009; Zibordi et al., 2021). SeaPRISM systems are
used to retrieve atmospheric optical thickness and other
atmospheric parameters, and modified to perform radiance
measurements with a full-angle field of view of 1.2° to determine
the total radiance from the sea surface, LAt (λ), and the sky radiance,
LAsky (λ), as a function of solar zenith angle, sensor viewing angle, and
azimuth angle relative to the Sun (Zibordi et al., 2009).

The normalized water leaving radiances, LAw, which were
measured and then calculated in accordance with AERONET-OC
protocols with the BRDF correction based on the open ocean
approach (Zibordi et al., 2009; Zibordi et al., 2021), were
downloaded for the sites mentioned above from the AERONET-
OC website and were converted into remote sensing reflectance at
the wavelengths 412, 443, 488, 551(or 560 when available), and
667 nm available on the CE-318 sunphotometers.

Several AERONET-OC stations had 551 nm band for the whole
period of OLCI operation, some of them had new sensor heads with
560 nm band for some part of this period. Considering water type
variability between sites and at sites themselves, introduction of
some algorithm of band shift most likely would have introduced
more uncertainties, so available data at AERONET-OC stations at
551 (or 560) nm were used without changes. SNPP VIIRS also has
551 nm band. Tests were conducted by changing the value of Rrs

(551) by 5% to simulate a band-shift effect, and the results of the
spectral decomposition were not noticeably affected.

The aerosol optical depth, aerosol inversions, and ocean color
data used in this analysis are version 3 level 1.5 data, which has been

cloud-screened and quality controlled to ensure the accuracy of the
data. All matchups were observed within a ±2 h window between
satellite overpass and in situ observation (Zibordi et al., 2009;
Zibordi et al., 2021). More detailed information on AERONET-
OC sites is listed in Table 1.

3.4 The Marine Optical BuoY (MOBY) data

MOBY (Marine Optical BuoY) is an autonomous buoy
anchored offshore of Lanai, Hawaii. Its radiometry data is used
by the NASA—OBPG and EUMETSAT as part of their ocean color
validation and vicarious calibration activities (Clark et al., 1997). On
each day of deployment, it collects several measurements of
upwelling radiance from sensors on its underwater arms (at
approximately 1, 5, and 9 m depth) and downwelling irradiance
from sensors on its underwater arms as well as at the surface (Voss
et al., 2017).

From the MOBY “gold” directory, data from deployments 266 to
272 (2019–2021) was collected for OLCI S3A and S3B, and 249 to 270
(2012–2021) for VIIRS-NPP. Normalized water-leaving radiance
calculated from the top sensor and bottom sensor corrected for
BRDF is used here because it has the larger available dataset.
“Good” and “questionable” data were used to match up with
satellite data. Matchups with more than 5 percent differences were
excluded from the analysis. MOBY data that matched the bands from
satellite sensors was collected with ±2 h of the satellite overpass.

Main atmospheric parameters at the studied sites determined
from AC processing and AERONET retrievals are provided in
Table 2. Absorbing aerosols were noticeable at several sites with

FIGURE 3
Normalized spectra for all sites (7 × 7 pixels, 2,100 m resolution), OLCI S3A.
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the average ω0 values usually above 0.9 and even below 0.9 at LISCO,
but spectral dependence was small.

4 Results: Spectral components of
uncertainties

Mean Rrs(λ) spectra from the MOBY site and AERONET-OC
stations based on in-situ measurements are shown in Figure 2A;

waters were clear or moderately clear at MOBY, Casablanca and
USC with Rrs (443)> Rrs (551), moderately eutrophic at Venise,
Gloria and WaveCIS with Rrs (443)< Rrs (551) and more eutrophic
at LISCO and HLT with also low Rrs (412) Rrs(λ). standard
deviations are shown in Figure 2B. Corresponding σ(λ) spectra
are shown in Figures 2C–E for OLCI S3A, S3B and VIIRS
respectively. They have different shapes for different stations with
highest values in the blue. Uncertainties are very similar for S3A and
S3B, some small differences here and below are due to the different

FIGURE 4
Results of fitting for all areas of study for OLCI S3A and S3B. Total uncertainty is the solid black line, and the fitted curve is dashed black line.
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number of matchups and conditions of individual matchups.
Uncertainties for VIIRS are spectrally similar to OLCI
uncertainties, they are approximately the same in magnitude at
MOBY and about 50% higher at other stations. Biases are shown in
Figures 2F–H and are very similar for OLCI S3A and S3B with
moderate spectral dependence. OLCI biases are also in the same
range as for VIIRS and spectrally differ mostly at 412–443 nm. There
were very small number of matchups between OLCI S3B and the
Helsinki AERONET-OC station, and these results are not presented
here nor below.

Spectra for all components from Eq. 3 normalized to their
maxima are shown for all stations in Figure 3 and these spectra
were used in the fitting procedure. In accordance with Eq. 3 σR, σa,
σg are divided by the spectrum of the diffuse transmittance t for the
propagation of light from the surface to TOA. The normalized
spectra for the Rayleigh scattering and glint are the same for all
stations, while spectra for the total σ(λ), for aerosols and Rrs(λ)
components are different.

Spectra for surface effects are slightly different for different
stations because of the small difference in the aerosol parameters
used for their calculations. Rayleigh scattering and surface effects
spectra are both related to the sky spectra, but the former is divided
by the spectrum of the diffuse transmittance t and the latter was
simulated based on the composition of Rayleigh and aerosol
scattering, which makes these spectra distinct from each other.

Results of fitting are presented in Figure 4 for S3A and S3B.
Because of the similarity of the total uncertainties’ spectra for S3A
and S3B, it is not surprising that spectral components are also
similar. For most of the stations fitted spectra (dash black lines)
match well solid lines of total uncertainties spectra confirming that
most likely all relevant components were taken into account. For all

stations the main component of σ(λ) is Rayleigh scattering. Glint
and surface effects are small, and aerosol contributions are
noticeable for LISCO only. With some differences, water
variability terms (green solid lines) are quite pronounced,
especially at coastal stations, which is usually not considered in
the uncertainties budget.

Results are very similar for SNPP VIIRS with relatively stable
σ412R � (0.9 − 1.4)*10−3sr−1 as seen in Figure 5. It should be
emphasized that in Figures 4, 5 standard deviations are
presented, while the fitting process is carried out on variances, so
even small differences in the values of spectral components in
Figures 4, 5 are amplified in the fitting procedure.

Since the validity of the assumption that the uncertainties
spectra are proportional to the spectra of the components
themselves can be less accurate for aerosols than for other
components, it is possible that the optimization procedure
underestimates the contribution of the aerosol component to the
total uncertainties. Generally, however, the aerosol uncertainty
levels are consistent with their estimations or slightly below them
(Wang, 2007; Gao et al., 2022), where they are at the level of
10–4–4*10–4 sr−1. LISCO station has a pronounced aerosol
component for both OLCI S3A and S3B, which is not visible in
VIIRS. It can be partially due to the different atmospheric correction
processes in OLCI and VIIRS, as well as different number of
matchups for these sensors. Some inaccuracies in spectral
composition can also be present after optimization because of the
similarity of some of the spectra (cf. Rayleigh and surface effects
spectra).

For both OLCI and VIIRS sensors the water variability term
(solid green line) is very pronounced at the MOBY site. This can
be partially due to the similarity of Rrs and Rayleigh spectra but is

FIGURE 5
Results of fitting for VIIRS same stations. Total uncertainty is the solid black line and the fitted curve is dashed black line.
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probably also related to the temporal variability of Rrs at the site
since, as was shown in Herrera-Estrella et al., 2021, spatial
variability of Rrs is very small in such waters. Also, Brown
et al. (2007) estimated uncertainties for upwelling radiance Lu
(412) for “good” days at 2.4% and 4.7% in general. Assuming

similar uncertainties for the downwelling irradiance and
Rrs(412) = 0.012 sr−1, related σ412 can be about 6*10–4 sr−1,
which at least partially justifies large uncertainty proportional
to the Rrs at the MOBY site, well visible in Figures 4, 5 as a green
solid line.

FIGURE 6
Proportionality coefficients in Eq. 7 in the form of standard deviations at referenced wavelengths.
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While results have many similarities between VIIRS and OLCI
sensors, some differences are present due to higher uncertainties at
OLCI, differences in atmospheric correction algorithms,
imperfectness of the fitting approach for the separation of
components, especially with similar spectra, and the different
number of matchups. Thus, for example, at the LISCO site the
shape of the surface and aerosol spectra seemed to switch. For S3A/
B, aerosol spectra are close to exponential with σa(412) ≈ 10–3, and
the surface spectra are almost flat and near zero. For VIIRS, the exact
opposite happens: the surface spectrum is close to exponential with a
magnitude of 10–3 and the aerosol spectrum is flat and near zero.
Interestingly, at the Venise site there is a big surface contribution for
S3B, but not for S3A. Glint effects are more visible in VIIRS than in
OLCI S3A/B.

Standard deviations σ412 and σ551 retrieved in the fitting
procedure for both OLCI sensors and VIIRS for all areas are
shown in Figure 6 as a function of spatial resolution, starting
from 3 × 3 pixels (900 × 900 m) to 17 × 17 pixels (5100 × 5100 m)
for OLCI and from 3 × 3 pixels (2250 × 2250 m) to 7 × 7 pixels
(5250 × 5250 m) for VIIRS. Fully in accordance with Figures 4, 5,
with exception of Venise for VIIRS, the standard deviations for
aerosol, glint and surface effects components are much smaller
than for the Rayleigh scattering component, while water
variability through σ551 is pronounced for most of coastal

sites. For aerosols, glint, surface effects and water variability
σ412, σ551 are in the same range for both OLCI and VIIRS;
however, they are different for the Rayleigh component, as
will be discussed in further detail below. Some dependence of
these standard deviations on the spatial resolution as well as some
differences between OLCI S3A and S3B are not systematic and
are most likely due to the different number and timing of
matchups, which are not properly averaged over the relatively
small number of observations. Rayleigh component σ412R for
OLCI and VIIRS are compared in Figure 7. It can be clearly
seen that these standard deviations differ in a small range for
VIIRS and in a much larger range for OLCI sensors. At the
MOBY site OLCI σ412R values are similar to VIIRS σ412R values but
are instead higher at other stations and consistently so for both
OLCI 3A and 3B. It can be also noticed that these OLCI σ412R

values, with some exceptions, tend to vary in accordance with the
latitude of the stations, as can be seen roughly in Figure 1; Table 1,
which leads to their possible dependence on the solar zenith
angle, mean values for which are provided in Table 3 together
with sensor zenith angle. In Zibordi et al., 2022 it was also shown
that dependence of uncertainties exists for the sensor zenith angle
as well; however, this is not apparent in VIIRS data. Both these
effects merit further study. It should be also noticed that
comparison of processing of OLCI data using EUMETSAT
and NOAA MSL12 algorithms (Mikelsons et al., 2022) showed
smaller Rrs uncertainties for MSL12, which can assume that
larger OLCI uncertainties than for VIIRS shown above are
associated with the processing algorithm and not with design
features of the instruments.

In Gilerson et al., 2022 it was shown that σ412R = 1*10–3 sr−1

corresponds approximately to the uncertainty in the Rayleigh optical
thickness (ROT) of about 1.5%. The uncertainty in ROT was
estimated as the ratio of determined Rayleigh uncertainties
spectra to the average Rayleigh radiance component at TOA
normalized by the downwelling irradiance. This number remains
the same for OLCI in case of theMOBY site. Higher uncertainties for
coastal sites are most likely associated with other reasons related to
the processing algorithms (for example, higher uncertainties in
modeling of the surface pressure, which is directly related to the
estimation of ROT).

Following the hypothesis in Gilerson et al., 2022 that Rayleigh
components of uncertainties are related to the standard deviation
of gains σgains(λ) during the vicarious calibration at the MOBY

TABLE 3 Viewing (VA) and solar zenith (SZA) angles (in degrees) at the areas of
study.

S3A
EUMETSAT

S3B
EUMETSAT

VIIRS

VA SZA VA SZA VA SZA

MOBY 33.79 42.23 30.52 39.03 39.17 34.34

Casablanca 31.53 48.21 31.70 48.60 33.68 47.70

USC 30.66 46.28 29.78 45.64 34.51 44.13

Venise 28.13 48.58 29.85 48.72 31.06 48.37

Gloria 33.38 44.36 34.92 44.07 33.70 50.25

Wavecis 27.90 49.75 30.51 50.43 34.15 48.65

LISCO 29.03 52.84 28.66 51.27 33.63 53.32

Helsinki 27.78 45.53 --- --- 36.07 46.27

FIGURE 7
Comparison of σ412R for OLCI S3A and S3B and VIIRS.
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site, the fitting procedure was repeated with vicarious calibration
terms included as it was given in Eq. 3 and σgains(λ) below it, with
results shown in Figure 8 for both OLCI and VIIRS sensors. As
discussed in Gilerson et al., 2022, the standard deviation of gains
σgains(λ) is mostly related to the variability of atmospheric
parameters and thus should not depend on the sensor. OLCI

S3B σgains(λ) are very close to the ones from VIIRS, while OLCI
S3A σgains(λ) are about 15% higher. Based on the similarity of the
total uncertainties’ spectra and their spectral components for
OLCI S3A and S3B as shown in Figures 2, 4, this difference in
σgains(λ) (see values for S3A and S3B in Section 2) does not have
an immediate explanation.

FIGURE 8
Results of fitting for all areas of study for OLCI S3A, S3B and VIIRS with VC term included.
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While for VIIRS σvc/t replaced most of Rayleigh
components, for the OLCI S3B sensor an additional Rayleigh
component remained, which correlated with higher total

uncertainties for OLCI than for VIIRS. The reason for
additional OLCI uncertainties is not obvious, but it is
probably related to some features in the processing

FIGURE 9
Analysis of the S3A ΔRrs distribution for MOBY, Venise and LISCO sites. First column: all ΔRrs , second column: all ΔRrs—mean bias for the station, third
column: histogram of all ΔRrs– mean bias for the station at 412 nm.
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algorithms for these sensors. For OLCI S3A, as for VIIRS, σvc/t
replaced most of Rayleigh components shown in Figure 4, with
the obvious exception of the Casablanca station where, for
reasons yet unclear, the fitted curve was higher than the
spectrum of the total uncertainties. Other components remain
similar to how they were in Figure 4 for both OLCI sensors.

Melin, 2022 compared satellite and AERONET-OC data for the
European sites and for several sensors launched before OLCI and
found that for specific stations the spectra of uncertainties from
different sensors are close to each other, thus supporting the
hypothesis in Gilerson et., 2022 that such uncertainties are
mostly due to the variability of atmospheric parameters (or their
calculation).

Zibordi et al., 2022 evaluated uncertainties for the
European sites over the period of the so-called “Tandem Phase,”
with Sentinel-3B and Sentinel-3A flying just 30 s apart on the
same orbit, and showed spectral median percent differences lower
than ±1% in the 412–560 nm interval, much lower than when the
sensors were on the same orbit but with the nominal phase difference.
This is also very consistent with the hypothesis of a dependence of the
uncertainties on the atmospheric parameters (or their calculation), since
these should be almost the same for both satellites in the Tandem Phase
configuration.

As discussed in Gilerson et al., 2022, uncertainties related to
AERONET-OC measurements (Gergely and Zibordi, 2014), are
about 4 times smaller than the total uncertainties at all stations
and thus play a small role in the total uncertainties budget. With
OLCI uncertainties typically higher than for VIIRS, this is also
true for the evaluation of OLCI sensors data. However, if it will be
possible to make the Rayleigh component contribution to the
total uncertainties smaller, remaining uncertainties can be
similar to the ones from AERONET-OC and the issue will
require more attention.

In Figure 9 the spectra of ΔRrs � Rrs
i
sat − Rrs

i
in−situ are shown for

MOBY and two AERONET-OC sites in the first column, with bias

subtracted in the second column and the histogram of the second
column data at 412 nm in the third column. Satellite data are from
OLCI S3A. After correction for biases the ΔRrs distribution is clearly
almost symmetrical and close to normal for the open ocean MOBY
and coastal Venise and LISCO sites, confirming that negative
uncertainties values are for the most part not associated with
absorbing aerosols.

In Figure 10 σvc spectra for OLCI S3A/B and VIIRS calculated as
σvc(λ) = σgains(λ)Lt(λ)/Ed(λ) at the MOBY site are compared with
Rayleigh components determined from the fitting procedure for these
sensors also for theMOBY site and shown in Figures 4, 5. For OLCI S3B
and VIIRS σvc spectra are very similar to each other and to Rayleigh
components. The differences are larger for S3A, which are most likely
due to the inaccuracies of measurements, different number of
matchups, etc., considering that all other spectral characterisitics
related to Rrs and uncertanties are very similar. This again confirms
that Rayleigh uncertainties spectra determined in this work are close to
σvc at the MOBY site and represent a significant part of Rayleigh
uncertainties at other sites with remaining differences can be probably
mitigated with advanced processing algorithms. To remind, as was
shown in Gilerson et al., 2022, for VIIRS σvc were very close to Rayleigh
components for all coastal sites as well.

5 Conclusion

Uncertainties in remote sensing reflectance for S3A and S3B
OLCI sensors were evaluated by comparisons with MOBY and
AERONET-OC data for several US and European sites. We
applied a previously developed model for the decomposition of
uncertainties spectra for OC satellite sensors to OLCI sensors and
compared the results with the uncertainties from SNPP VIIRS. The
uncertainties for OLCI and VIIRS are found to be spectrally similar,
but at the coastal sites OLCI uncertainties are about 50% higher.

It is shown that as previously for VIIRS, the main component in
Rrs uncertainties spectra from OLCI is the Rayleigh component. For
coastal water areas, the water variability term proportional to Rrs

spectra is also pronounced. All other components like aerosol,
surface and glint effects are much smaller. Since the spectra of
uncertainties from aerosols are not known, it is possible that the
contribution of these uncertainties is underestimated. The effect of
absorbing aerosols can be more visible in biases, but their spectral
dependence is small at the sites considered here.

As in Gilerson et al., 2022 it is assumed that uncertainties in the
Rayleigh component are mostly associated with the variability of the
atmospheric parameters (ROT) or with their estimation in the
current atmospheric correction algorithms (inaccuracies in
modeling of the surface pressure), and/or with variability in the
vertical distribution of atmospheric gaseous components. This
uncertainty corresponds to about 1.5% of ROT at the MOBY site
and higher at other stations. The Rayleigh spectral component of the
uncertainties was equal to the standard deviation of gains in the
vicarious calibration process after conversion to Rrs uncertainties
and is close to similar terms for other OC sensors. The reasons for
some small differences remain unclear because of the differences in
the standard deviations of the spectra of gains for OLCI S3A and
S3B. Rayleigh-type uncertainties appear to be the main reason for
the negative Rrs values in coastal waters, where Rrs themselves are

FIGURE 10
Standard deviations during system vicarious calibration for OLCI
and VIIRS σvc compared with Rayleigh component spectra for these
sensors at the MOBY site.
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typically small. Positive uncertainties in coastal areas and all
uncertainties in the open ocean create some inaccuracies in Rrs

retrievals, but they are not explicitly visible as errors at high Rrs.
The reason for the higher uncertainties of OLCI, primarily with

Rayleigh spectral shape, in comparison with VIIRS should be further
studied. They may be partially related to some specifics in the
atmospheric correction processing. In a preliminary manner, we
associate them here with the latitude of the site and thus with the
solar zenith angle, where in previous studies (Zibordi et al., 2022)
dependence on the viewing angle was also noticed. Such
dependencies do not exist for the SNPP VIIRS sensor.

To mitigate Rayleigh-type uncertainties atmospheric correction
schemes should probably include additional constraints (Steinmetz
et al., 2011), which can be even different for open ocean and costal
water areas.
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