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This study introduces a methodology for land cover mapping across extensive
areas, utilizing multitemporal Sentinel-1 Synthetic Aperture Radar (SAR) data. The
objective is to effectively process SAR data to extract spatio-temporal features that
encapsulate temporal patterns within various land cover classes. The paper
outlines the approach for processing multitemporal SAR data and presents an
innovative technique for the selection of training points from an existing Medium
Resolution Land Cover (MRLC) map. The methodology was tested across four
distinct regions of interest, each spanning 100 × 100 km2, located in Siberia, Italy,
Brazil, and Africa. These regions were chosen to evaluate the methodology’s
applicability in diverse climate environments. The study reports both qualitative
and quantitative results, showcasing the validity of the proposed procedure and
the potential of SAR data for land cover mapping. The experimental outcomes
demonstrate an average increase of 16% in overall accuracy compared to existing
global products. The results suggest that the presented approach holds promise
for enhancing land cover mapping accuracy, particularly when applied to
extensive areas with varying land cover classes and environmental conditions.
The ability to leverage multitemporal SAR data for this purpose opens new
possibilities for improving global land cover maps and their applications.
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1 Introduction

Land cover mapping on wide areas is becoming an increasingly feasible tasks thanks to
the availability of free multispectral and SAR data sets, such as the Sentinel constellation1,
and of cloud processing services, such as Google Earth Engine (Gorelick et al., 2017) and the
Copernicus DIAS (Data and Information Access Services). Still, the challenges that the
procedures designed using these new data sets and tools are facing are far from being
completely tackled. For instance, no general solution is available for the extraction of the
spatio-temporal statistical features that could be most useful to map sequences of data sets by
heterogeneous sensors (He and Wang, 2020). Similarly, the issue of the limited size of
available training sets and the possibility/suitability of using existing land cover maps as
starting point has been explored (Radoux et al., 2014; Paris et al., 2019), but with no final
decision. Another issue is how to extract the same land cover classes when using different
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sensors, with different sensitivity and different spatial/spectral
resolutions (Arora, 2002). To this aim, unsupervised approaches
or transfer learning and deep learning techniques have been
considered (Hamrouni et al., 2021; Chabalala et al., 2022;
Wenger et al., 2022).

The focus of this paper is on the use of Sentinel-1 SAR time
series for land cover classification at the regional level using training
points extracted from pre-existing coarser resolution maps. As a
matter of fact, global approaches to land cover mapping using
satellite data are currently mostly limited to medium-resolution
multispectral data sets. Typical examples are the 300 m GlobCover
project2, which exploits multispectral data recorded by the MERIS
(MEdium Resolution Imaging Spectrometer) sensor and the 100 m
Copernicus Global Land Service (CGLS) (Buchhorn et al., 2020)
through the combination of Sentinel-1 and 2 (radar and
multispectral) data.

SAR is an active microwave instrument that presents a number
of favourable characteristics, including high quality of data that does
not depend on the clouds presence. In fact, it has become clear in
recent ears that the multispectral data are more efficient compare to
the field survey (Fernando and Shariff, 2015). However, the quality
of results given by the optical images is strongly influenced by the
weather conditions, as well as the cloud coverage. Although the
optical remote sensing can be considered a relatively powerful
mapping tool, there are some constraints in its usage for
discriminating the vegetation. In addition, contrary to the optical
system, SAR allows to continually collect data despite of light and
weather conditions (Balzter et al., 2015), and its characteristics make
it an indispensable instrument for the earth observation from the
space. In particular, the increasing number of satellites equipped
with SAR system is enabling a better understanding of the dynamics
of different scenarios characterizing the earth’s environment, such as
the vegetation analysis, forest inventories, permafrost thawing, land
subsidence, and urban analysis (Sorriso et al., 2021). The sensitivity
of SAR to the structural features of terrain leads to classification of
land cover into simple and easily interpreted structural classes
(Abdikan et al., 2016).

SAR measurements are widely used in various earth observation
applications, and the mapping is a discipline that benefits from SAR
data. SAR images helped generating different products, such as high-
fidelity maps and sensitive detection maps. The land cover is a
problem receiving a lot of attention in decades given the need of
developing land use policies, as well as mapping (Orlíková and
Horák, 2019; Prudente et al., 2020). It consists in establishing the
land cover in the areas of interest, such as vegetation, water, or urban
area and in detecting changes in land cover or usage over time.
Mapping land cover is a source of practical information for purposes
such as forest monitoring, agriculture, urbanization and flood
monitoring. Estimates of land cover are necessary to develop
land use policies. Only a few global land covers were extracted
using SAR, and no complete land cover maps. Examples are water
surfaces using ENVISAT (Santoro and Wegmüller, 2012) and
Sentinel-1 data (Huang et al., 2018; Jeon et al., 2021), the Global
Urban Footprint (Esch et al., 2018) from TerraSAR-X data, the

Forest/Non-Forest global map from ALOS/PALSAR data (Shimada
et al., 2014), and the crop parcel at the European level (d’Andrimont
et al., 2021). An interesting and extended overview concerns the
application of the SAR data in different scenarios is provided by
(Tsokas et al., 2022).

In order to fill this research gap, in this work Sentinel-1 annual
data sequences are exploited for the production of a global land
cover map.

To uniformly cover geographically wide areas, and potentially
the whole Earth surface, the methodology is based on a sequential
mapping of the tiles of the Sentinel-2 grid3, used here for Sentinel-1
data partition as well. As target legend, a subset of the CGLS legend
is considered. Indeed, because of its rather coarse spatial resolution,
the CGLS legend includes many mixed classes. Its legend was thus
reduced to a subset of the classes, by removing those with “mixed” in
the legend. Indeed, this is an improvement from the point of view of
the mapping product. A randomly selected subset of points
belonging to these classes in the Medium Resolution Land Cover
(MRLC) map is used as training set. This sampling approach is
similar to the one presented in (Paris et al., 2019); however, in that
study the training set is built leveraging spectral clustering
techniques applied to Sentinel-2 multispectral data, starting from
a 30 m spatial resolution land cover map based on Landsat imagery.
Considering the challenges of a global scale, Sentinel-1 data
contributes in classifying a major number of classes that are not
detected by using dataset with a coarsest spatial resolution (Sorriso
et al., 2021). The approach proposed with this manuscript was
chosen for the land cover due to its high generalization ability and
superior performance over deep learning-based classifiers (Yokoya
et al., 2018).

Section 2 is devoted to a detailed description of the proposed
methodology, while Section 3 introduces and discusses the
experimental results in very different test sites all around the
world. Eventually, Section 4 concludes the paper.

2 Materials and methods

The starting scientific question that this work addresses is how
to use a year-long multitemporal SAR sequence from the Sentinel-1
constellation to effectively map land cover classes using as reference
only an existing medium resolution map. This question translates
into the two main points discussed here in the following: 1) how to
select a reliable set of training points from amedium resolutionmap,
and 2) how to use a multitemporal SAR sequence to discriminate
among classes that are typically mapped using multispectral data.

The Sentinel-1 SAR sensor operates in C-band, with a central
frequency of 5.405 GHz. Thanks to the two platforms (Sentinel-1A
and -1B), the mission is able to provide data with 5 days of revisit
time (at the equator on a polar orbit). The antennas mounted on the
satellites are right-looking and their incidence angle can vary
between 29.1° and 46°. Sentinel-1 is a dual-polarized system that
can provide images acquired with VV (Vertically transmitted and
Vertically received) and VH (Vertically transmitted and

2 http://due.esrin.esa.int/page_globcover.php 3 https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products
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Horizontally received) polarizations. The data set used in this work
has been acquired using the Interferometric Wide (IW) swath
default operation mode, which has a 250 km swath and a 5 ×
20 m spatial resolution (for single look). In this work we use
level L1C multi-looked intensity images in the Ground Range
Detected (GRD) format with a 10 × 10 m pixel size.

Figure 1 summarizes the scheme of the proposed methodology.
Starting from an annual sequence of preprocessed high-resolution
SAR images, first a “seasonal” SAR time series (only VH
polarization) is extracted, as better explained later on, and a set
of spatial features are computed from this reduced time series. Then,
a second time series is added to the pool of features. This time series
is composed by fifteen “24-day” composites (both VV and VH
polarizations). The latter time series, as explained below, is obtained
by arithmetic average of the SAR acquisitions available within
separated intervals of 24 days.

2.1 SAR data preprocessing

Most of the processing steps involved in the presented
methodology, and described in the next sections, rely on pre-
processed Sentinel-1 SAR images available in Google Earth
Engine. As a matter of fact, Sentinel-1 SAR GRD scenes undergo
a standard pre-processing chain by means of a workflow in this
platform adapted from the SNAP Toolbox. These steps are the
application of orbit file, border noise removal, thermal noise
removal, radiometric calibration and orthorectification4. In these

pre-calibrated Sentinel-1 images each pixel reports the backscatter
coefficient (σ0) in dB.

Since the standard Sentinel-1 preprocessing chain does not include
radiometric terrain correction, we added an angular-based radiometric
slope correction routine for Sentinel-1 SAR images, developed in
(Vollrath et al., 2020). This model leverages a well-established
physical reference model which is also extended to simultaneously
generatemasks of invalid data represented by active layover and shadow
affected regions. The radiometrically corrected SAR products
significantly improve land cover mapping on a large scale, especially
over morphologically complex regions (e.g., mountains).

In the procedure implemented in this work, once the Region of
Interest (a Sentinel-2 tile) and the year of interest are selected, all the
SAR images in that year are considered as long as they cover at least
70% of the selected tile footprint. According to the study presented
in (Marzi and Gamba, 2020), the use of the whole annual temporal
series is not necessary for land cover mapping, and temporally
aggregated versions of it are more suitable. Leveraging on those
results, the selected set of SAR images is grouped into quarterly
clusters that resemble, although roughly, the seasonal cycle of the
different land cover types.

The four “seasonal” clusters are then subject to speckle noise
reduction exploiting a multitemporal denoising filter based on the
one presented in (Zhao et al., 2019), which appears to provide better
results than a spatial filter applied independently to each SAR image.
The procedure basically consists in the estimation of a “super-
image,” obtained as arithmetic mean of the SAR acquisitions
within the year of interest. Then, the ratio between the original,
noisy image at time t and the “super-image” is computed and
spatially denoised exploiting a simple Low-pass filter; finally, each
denoised ratio composite at time t is re-multiplied by the “super-
image”. Due to the improved stationarity of the ratio images,

FIGURE 1
A simplified block diagram of the proposed land cover mapping procedure. Part of the preprocessing chain is preimplemented in Google Earth
Engine; whereas, the radiometric terrain correction and speckle noise reduction steps were added to the chain. Reproduced from Buchhorn et al.(2020),
licensed under CC-BY 4.0.

4 https://developers.google.com/earth-engine/guides/sentinel1#meta
data-and-filtering
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multitemporal speckle-reduction techniques are more effective than
denoising each image in the original multitemporal data set. As
mentioned above, after the multitemporal denoising filtering is
applied, an artificial SAR composite time series of four images is
built by the arithmetic mean of all the acquisitions along each
seasonal cluster.

2.2 Feature extraction

The second step in the proposed procedure is the selection of the
most useful input features for the classifier. As mentioned above, it is
expected that the despeckled SAR sequence is able to provide a better
discrimination among different land cover types. For instance,
multitemporal SAR data for vegetation mapping have been
already considered in (Marzi et al., 2022; Paul et al., 2022; Jacob
et al., 2020; Khabbazan et al., 2019; Ngo et al., 2020; Gašparović and
Dobrinić, 2020).

Exploiting the “seasonal” time series described in Section 2.1,
a set of features are computed from each of the four composites of
the series: the spatial median, maximum, minimum and range
(maximum minus minimum). Each of these spatial statistical
descriptors is derived using a kernel of 5 × 5 pixels.

The second time series used in this work is derived from the
complete sequence of SAR images. In this case, first the complete
collection is clustered into 24-day collections; then, each
collection is denoised with the multitemporal denoising filter
described above; finally, both the VV and VH polarizations are
used to generate a sequence per channel, where the sequence
elements are obtained by the arithmetic mean of the images in
each 24-day denoised cluster.

The above mentioned seasonal and spatial features, plus the 24-
day sequence, are stacked and classified by means of a Random
Forest (RF) classifier. The RF approach is superior to unsupervised
methods and more robust (Inglada et al., 2017), to the level that
erroneous reference data (e.g., slightly outdated points) are
acceptable in the training group (Folleco et al., 2008). The RF
classifier is trained using a training set extracted, as mentioned in
the following subsection, from an MRLC map, while its final
classification result is a High-Resolution Land Cover (HRLC)
map with 10 m posting. This approach does not reduce the
resolution of the final land cover map, which is obtained
considering the original resolution of Sentinel-1 data. Moreover,
by selecting only classes that are not mixed, it allows to obtain
reasonably good training samples at a very limited cost. Of course,
these samples are as accurate as (on average) the maps from which
they are taken, and this is the reason why robust classifiers, such as
RF, are required. Also, several studies, as (Adugna et al., 2022), have
shown that for large area land cover mapping RF is effective in
classifying mixed classes such as built-up, forest, herbaceous
vegetation, and shrub, resulting in a LC map with less mixing
among classes.

2.3 Medium resolution (MR) training set

As in any supervised classification algorithms, the selection of
the training set plays a crucial role in our procedure. As mentioned,

since there are already global land cover maps available at medium
spatial resolution, the idea is to exploit the information they contain.
Specifically, in this work the training samples are collected from the
Copernicus Global Land Service MRLCmap at 100 m resolution. As
mentioned, the land use class set of this map is not suitable for a map
at finer spatial resolution. In fact, it includes many mixed land cover
types. Therefore, a different yet related class set must be used for the
new map, which includes only “pure” classes, i.e., classes with only
one land cover type. The new class set, reported in Table 1, is thus
composed only by pure classes. Additionally, classes in the original
MR set that cannot be reliably discriminated using SAR data are
merged. As an example, the MR class set contains two classes named
evergreen broadleaf tree and deciduous broadleaf tree, which are
merged into a single class named broadleaf tree.

Starting from the MRLC map including only the classes to be
recognized in the new map, a morphological erosion processing step
is applied separately to each class layer. This step, performed using a
3 × 3 pixels kernel, aims at avoiding the selection of training points
on the border of the classified area, which might be mixed pixels at
medium spatial resolution. To avoid undersampling of classes that
have only few pixels in the scene, if the abundance of a class after the
erosion appears to be less than the number of samples to be
extracted, the original class extent is entirely recovered and used
for sampling.

The eroded version of the MRLC map is then used to derive
more reliable training points, by means of an innovative algorithm
here described. Figure 2 summarizes the processing steps aimed at
obtaining points whose reliability is much higher than a simple
stratified random sampling. The first step consists of extracting a
class from the MRLC map and then generate a set of training points
(seeds) to be used as input for a k-Means clustering applied to the
stack of SAR-based features described in the previous subsection.
Note that the k-Means clustering is implemented according to the
“Weka” open source machine learning software (H Witten, 2016)

TABLE 1 The class legend used in this work.

Class ID Land cover type Color

1 Tree cover broadleaf

2 Tree cover needleleaf

3 Shrubland

4 Grassland

5 Vegetation aquatic

6 Lichens and mosses

7 Bare areas

8 Open water
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and starts from a representative subset of the data to generate a
model aimed at making predictions on the whole data set. The
trained clustering model is then used to extract k = 2 classes which
are not know in advance. The choice of k = 2 in the k-Means
algorithm stems from experiments carried out to achieve a balanced
and reliable training set. To this aim, the k-Means approach was
applied to the set of SAR features of Section 2.2 within the areas
delimited by the Copernicus medium resolution classes, using k = 2.
Then, only the pixels associated to most abundant cluster were
considered, and a large number of pixels (4,000 in this
implementation) are randomly selected to sample the stack of

SAR features (ending up with up to 4,000 feature vectors). It was
also noted that, by empirically varying k, we noticed that for k ≥ 3
classification performances were lower, as the points that can be
potentially sampled after the k-Means clustering were not enough to
characterize each land cover type, thus generating an unbalanced
training set.

All these vectors are then reduced to a single vector by an
element-wise mean. This mean vector is considered as the
“representative” vector for that particular class. Finally, each
of the extracted 4,000 feature vectors is compared with the
representative vector by computing the Pearson correlation

FIGURE 2
Block diagram of the training set generation procedure.

FIGURE 3
Thumbnails of the test sites used in this work. From left to right, Siberia (tile 42WXS), Italy (32TPP), Amazonia (21KUQ) and Africa (37PCP). Reproduced
from Buchhorn et al.(2020), licensed under CC-BY 4.0. Maps Data: Google, ©2023 TerraMetrics
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coefficient (ρ). Eventually, only the points with correlation ρ ≥
0.95 are kept to be part of the final Random Forest training set for
that class. This procedure is iterated for all the classes in the
selected legend that are present in the region of interest according
to the MRLC map.

3 Results and discussion

The entire workflow described in the previous Section was
implemented leveraging the great computational power offered
by Google Earth Engine, a powerful cloud computing platform
aimed at processing and analysing huge amounts of remotely
sensed data and GIS data in general.

To test it, as shown in Figure 3, four tiles were selected Siberia,
Italy, Brazil and Africa (tiles 42WXS, 32TPP, 21KUQ and 37PCP
respectively). Such selection was driven first of all by the need to
evaluate the proposed approach in areas with very different land
covers and climate typologies. Moreoever, these regions are those
selected by the European Space Agency (ESA) “Climate Change
Initiative Extension (CCI+) Phase 1: New Essential Climate
Variables (NEW ECVS)” project.

The Siberian region is dominated by very cold weather during
the whole year, and this makes it a potential hot spot of future
climate change studies. From a geomorphological point of view,
the region is characterized by many rivers and water bodies,
covered with ice and snow for around 75% of the year. In this
area the advantage of using multitemporal SAR data is clear: SAR
signals can penetrate clouds and rain, ensuring periodic data
acquisitions.

The Brazilian tile is characterized by a dense vegetation layer,
and has for several decades focused the attention of the climate
change community due to large deforestation rates and potential
associated large-scale climate impacts. This region is dominated by
vegetation and hot tropical weather, and again represents a perfect
example of SAR data usefulness: in fact, due to such harsh climate, it
is very difficult to obtain cloud-free optical images over this area.
Temperatures range from 22°C to 40°C, and the rainfall is persistent
during most of the year, ranging from 200 to 320 mm every single
month with an average of 89% of humidity.

Fog and haze are often present in the Italian region, and its
morphology offers a wide variety of landscapes, such as
mountainous and plain areas. This tile lies exactly in the middle
of the Lombardy region, and is characterized by the so-called
Mediterranean climate, with temperatures ranging from 20°C to
35°C during Summer (with the exception of the extreme hot
temperatures reaching 45°C and severe drought registered during
Summer 2022), and from −1–10°C in Winter.

Finally, the African tile is a very complex climatic region
which experiences severe events often attributed to climate
warming and for which the future predictions (amplitude of
the regional warming and rainfall changes) are very uncertain.
In the eastern part of the Sahelian band, the role of El Niño in the
initiation of dramatic drought events in the horn of Africa is also
not really understood and deserves more work to better predict
and help mitigation studies. From a morphological point of
view, this region is characterized by bare soil, lakes and
croplands.

As mentioned above, these four different test sites were selected
to assess the robustness of the proposed methodology in situations
with very diverse environmental and climatic features.

For each case study, all the Sentinel-1 acquisitions covering at
least 70% of the tile in 2019 are considered. This high overlap ratio is
selected to avoid the use of images acquired from different orbits,
therefore avoiding incidence angle issues affecting backscatter
intensity and, consequently, the classification results
(Tsyganskaya et al., 2018). This selection results into a collection
of 29 SAR images for Siberia, 38 for Italy, 32 for Brazil and 25 for
Africa. All the images are Interferometric Wide (IW), VV and VH
descending orbit data sets.

Once all the features are computed as described in Section 2.2
and Section 2.3, the feature vectors were classified using the Random
Forest (RF) classifier trained as mentioned above. The RF is a
commonly used classifier for land cover classification due to its
capability of being robust to the label noise, yielding high
classification accuracy with a low sensitivity to the features
selection (Tatsumi et al., 2015), an easy parametrization
(Rodriguez-Galiano et al., 2012), and a low computational
complexity (Pal, 2005). In addition, the choice of the user
parameters selected for the RF classification is not very sensitive
for the land cover classification of large areas (Mellor et al., 2015).
The RF classifier consisted of 60 decision trees, a number of variables
per split equal to the square root of the total number of input
features, and the fraction of input for bagging (per tree) was set to 1/
2 and each tree had a minimum leaf population equal to 1 (so that
every new node has at least 1 point in its training set).

To validate the mapping results and provide a quantitative
analysis, a total of 1350, 712, 1432 and 1709 High resolution
(HR) validation points for Siberia, Italy, Brazil and Africa,
respectively, were manually collected by experts in different
institutions following a stratified random sampling procedure.
This HR set was extracted by visual interpretation from
multispectral and multitemporal 10 m spatial resolution Sentinel-
2 data sets and/or Very High Resolution single date SPOT-6/
7 images; when available, ground panoramic images were
inspected as well. The spatial and class-wise distribution of the
validation points for each test site is reported in Figure 4.

Qualitative classification results are shown for the selected
tiles in Figure 5. It is possible to note that the new land cover
product (in the last column) offers a significantly increased
spatial detail of the classes with respect to the MRLC map. In
other words, the new product is coherent with the coarser CGLS
map at 100 m, used to select training and sets, but improves its
details. Please note that the black regions in the MRLC maps
indicate areas labeled with mixed classes in the MR map, hence
removed from this comparison.

To further appreciate the increased spatial resolution of the final
product of the proposed procedure, in Figure 6 it is possible to
observe the classification of a very small portion of each test site. The
aim of this figure is to provide a qualitative comparison between the
MRLC map used to train the RF classifier and the obtained result in
areas which are significant. In particular, in the African HRmap it is
possible to observe the much more outlined area of aquatic
vegetation surrounding the lake; also, small broad-leaved trees
are now visible to the East of the scene. Regarding the Brazilian
tile, lots of important spatial details are visible: small river branches,
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as well as the regular square-shaped regions, due to deforestation. In
these areas, current grassland cover (yellow) replaced previous dense
vegetation (green) zones. Whereas, in the Italian tile, the enhanced
spatial resolution of the HR map highlights very small water bodies,
surrounded by thin layers of grassland. Also, many agricultural fields
boundaries are clearly distinguishable. Finally, looking at the
Siberian tile, small water bodies and grassland areas are well
visible and separated. Moreover, a large variety of land cover
types emerge where the two river branches split, types that are
invisible in the MR map.

Table 2 reports, finally, the quantitative analysis of the maps
extracted in the four test areas, using the above mentioned manually
extracted validation sets. For each tile and test site, this table shows
the achieved overall accuracy (OA) and F1 score (F1) values together
with the number of samples used to validate each class (px), as well
as the corresponding precision (prec) and recall (recall) values for
each class. These values were computed for both the original MRLC
map used in this work (CGLS at 100 m resolution) and for the
results of the proposed procedure (labeled “this paper” in the table).

A very clear take away message from these numbers is that the
proposed methodology allows to achieve significantly higher

accuracy values on the independent HR validation set than the
CGLS map. This increment is equal to 18.4% for Siberia, 5.9% for
Italy, 24.2% for Brazil and 16.8% for Africa. The improvement can
be also appreciated by the F1 score, with the increment of 15.1% for
Siberia, 5% for Italy, 9.2% for Brazil and 11.5% for Africa. Despite
the MR map was obtained using multispectral data and the new
result is based only on SAR data, the SAR-base methodology
achieves better results thanks to the exploitation of spatio-
temporal features and to the intelligent training point selection
procedure.

Please note that the numbers in Table 2 refer to one specific
result of the procedure, because the first step for training point
selection is a random extraction of points from the MRLC map. To
understand the impact of this random seed, the procedure was
repeated a number of times, and it was found that the overall
accuracy values are stable, with very small standard deviations
within the range [0.5–1]%.

Finally, to understand the source of the classification errors,
Figure 7 depicts the mean feature value vectors for the training set of
each class in each considered region. Although only the average
behaviour per class is shown, it is clear that, apart from water, all the

FIGURE 4
Spatial distribution of validation points in (A) Siberia, (B) Italy, (C) Brazil and (D) Africa (please refer to Table 1 for the class color legend). Reproduced
from Buchhorn et al.(2020), licensed under CC-BY 4.0. Maps Data: Google, ©2023 TerraMetrics
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vegetated land covers have a similar pattern. Still, the small
differences are enough to enable a decent discrimination of the
different land cover classes. Based on the HR validation points -
independently extracted by experts - the produced land cover maps
appear to be very promising, except than for Siberia. As a matter of
fact, discriminating classes in Siberia is complicated by the long cold
season during which the soil is covered with snow and ice. These
harsh conditions effectively reduce the amount of multitemporal
SAR images useful to discriminate among different land cover types.
Still, the proposed methodology achieves good results for specific
land covers (for instance, the producer accuracy for shrublands
increases by 43% with respect to the MRLC map).

The presented research on land cover mapping using
multitemporal Sentinel-1 SAR data has several notable strengths.
These strong points highlight the novelty and significance of the
proposed methodology and its potential implications for global land
use mapping, especially with respect to vegetation classes. First and
foremost, the developed methodology effectively processes
multitemporal SAR data to derive spatio-temporal features that
capture the temporal patterns of various land cover classes. This
innovative approach has not been tried before for SAR data and
provides a comprehensive understanding of vegetation dynamics
over time, enabling eventually a more accurate and detailed land
cover mapping. Another key strength lies in the efficient selection of

FIGURE 5
Qualitative results for the four test areas. Columns refer to 1) the Google Satellite basemap view, 2) the annual mean composite derived by all the VH-
channel images, 3) the CGLSmap at 100 m resolution and 4) our classification result at 10 m resolution. Reproduced fromBuchhorn et al.(2020), licensed
under CC-BY 4.0. Maps Data: Google, ©2023 TerraMetrics
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training points from an existing Medium Resolution Land Cover
(MRLC) map. By strategically choosing representative training
points, the methodology ensures the quality and reliability of the
training data, thereby enhancing the classification results. This
intelligent selection process stands as a notable improvement
over previous studies that rely on alternative methods for
training point selection. Furthermore, this research addresses the
challenges associated with mapping land cover sequences using
radar data only; by focusing on the utilization of Sentinel-1 SAR
time series and considering the compatibility with other sensors, this
study presents a valuable contribution to the field. The possibility to
exchange the multispectral features of optical sensors with the
multitemporal ones of SAR sequences have not been considered
so far. The extensive experimentation carried out on four distinct
regions (Siberia, Italy, Brazil, and Africa) demonstrates the
robustness and generalizability of the proposed methodology
across diverse climate environments. The qualitative and
quantitative results validate the effectiveness and potential of
multitemporal SAR sequences for land cover mapping,
showcasing an improvement in overall accuracy and F1 score
compared to existing global products.To summarize, by

addressing critical research gaps in global land cover mapping
using SAR data only, this research makes a significant
contribution to the existing scientific literature. It offers a novel
methodology that combines multitemporal SAR data processing and
smart training point selection. The outcomes of this study open new
avenues for vegetation mapping on a global scale, leveraging the
capabilities of Sentinel-1 SAR data and paving the way for further
advancements in the field. The strong points of this research lie in its
innovative methodology, the intelligent selection of training points,
the tackling of challenges related to complex land cover class
recognition mapping using only multitemporal SAR data, and the
extensive validation in diverse climatic regions. All these strengths
together highlight the novelty, significance, and potential impact of
this study on land cover mapping using existing SAR systems in
other bands (e.g., COSMO-SkyMed and SAOCOM).

3.1 Limitations and future developments

However, there are some limitations to consider about the proposed
metodology. The first point is the use of a more recent land cover map

FIGURE 6
Small sample areas inside each test site. From left to right: themultispectral Sentinel-2median image of each area, the Sentinel-1 SARmedian image,
the CGLS map at 100 m scale and the result of the proposed procedure at 10 m posting. The color legend is the same as in Figure 5. Reproduced from
Buchhorn et al.(2020), licensed under CC-BY 4.0. Maps Data: Google, ©2023 TerraMetrics
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TABLE 2 Accuracy results for each selected test site using independently extracted high resolution validation points. The table reports the overall accuracy (OA) and F1 score (F1) values for the CGLS map and for the maps
produced by the proposed procedure, the number of validation pixels per class (px), the class precision (prec) and recall (recall). Note: the symbol “-” means there are no MR points in that tile for a specific class.

Siberia Italy Brazil Africa

CGLS This paper CGLS This paper CGLS This paper CGLS This paper

OA 32.1 OA 50.5 OA 70.8 OA 76.7 OA 59 OA 83.2 OA 56.5 OA 73.3

F1 42.7 F1 57.8 F1 72.3 F1 77.3 F1 60.5 F1 69.7 F1 45.4 F1 56.9

LC px prec recall prec recall px prec recall prec recall px prec recall prec recall px prec recall prec recall

1 - - - - - 258 94.6 84.3 91.9 77.7 486 70.4 90.7 92.2 98.2 302 8.8 96.4 37.4 95.8

2 300 55.6 38.5 74.7 38.6 196 49.8 98 60.2 95.2 - - - - - - - - - -

3 300 7.6 56 51 68.3 - - - - - 79 17.7 41.1 11.4 39.1 152 14.4 52.3 44.1 26.5

4 150 6 52 24.7 52.1 107 56 97.6 70 80.4 176 67.6 66.1 92.6 70.9 193 7.7 42.8 68.4 43.3

5 300 57.6 30.4 47 37.7 35 20 63.6 45.7 80 145 78.6 31 67.6 47.1 61 60.6 22.5 41 21.4

6 - - - - - - - - - - - - - - - - - - - -

7 - - - - - - - - - - - - - - - - - - - -

8 300 50.3 92 93 90.9 116 92.1 85.3 87.1 91 546 46.9 98.1 86.6 91.8 1001 86.6 100 91.4 99.9
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free available for the extraction of the training points, such as the
European Space Agency (ESA) WorldCover 10 m 2021 product,
which provides a global land cover map for 2021 at 10 m resolution
based on Sentinel-1 and Sentinel-2 data (Zanaga et al., 2022). The
WorldCover product comes with 11 land cover classes, aligned with
UN-FAO’s Land Cover Classification System, and has been generated in
the framework of the ESA WorldCover project, part of the 5th Earth
Observation Envelope Programme (EOEP-5) of the European Space
Agency. The ESA WorldCover 10 m 2021 v200 product updates the
existing ESA WorldCover 10 m 2020 v100 product to 2021 but is
produced using an improved algorithm version (v200) compared to
the 2020 map. Consequently, since the WorldCover maps for 2020 and
2021 were generated with different algorithm versions (v100 and v200,
respectively), changes between the maps should be treated with caution,
as they include both real changes in land cover and changes due to the
algorithms used.

The ESAWorldCover product has been independently validated
by Wageningen University (statistical accuracy) and the
International Institute for Applied Systems Analysis (IIASA)
(spatial accuracy). The WorldCover 2021 v200 reaches an overall
accuracy of 76.7% (Zanaga et al., 2022).

Another limitation could be reached in the availability of the
SAR data over critical areas of interest. In Siberia, for example, the
Sentinel-1 data do not present a good spatial and temporal coverage
for all the year. The major issue is related to the coverage over a far
more extended area, since is not uniform, and may generate
misclassification effects. For this reason, an adapted strategy for
the features extraction in this region could foresee to consider just
the features computed over a single “season” (not four) to achieve
results for a larger set of tiles and considering a much more
homogeneous data set.

Operational land cover map production over large areas
cannot rely on field campaigns because huge amounts of costly
data have to be collected, most importantly jeopardising the
timeliness of the land cover map. The existing land cover
products represent a valid source of information, but an
improved could be to generate ground reference data to model
more complex classes which require reliable samples that cannot
be extracted from outdated coarse thematic products.In order to
generate the training set to be used for the supervised
classification of the considered study areas, the photo-
interpretation could be a way to follow. Although extremely

FIGURE 7
Mean feature vector values for each class in each test site (class color legend as in Table 1).
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complex and time consuming the photo-interpreted reference
data could be allow the production of high quality training points
which matches the definition of the legend and corresponds to the
exact same time frame. To properly generate a representative
training set for each specific area the label of each sample could be
defined by visual interpretation of high-resolution satellites
images. It is a method very effective for achieving a powerful
land cover recognition, which however requires an unbearable
cost because of the manual extraction.

In the future we intend to perform classification methods able
to identify different classes (as water, urban areas, cropland) with
a proper combination of features sets, alongside multitemporal
approach and RF classification. The aim is improving
classification performance using features that are highly
beneficial to diversify classes with different surface roughness,
in order to achieve better classification accuracy.

4 Conclusion

This work has shown that it is possible to obtain a significant
land cover map in different parts of the world using a year-long
sequence of Sentinel-1 data. Although SAR data has been very
seldom considered for land cover classification in wide areas, in
this work the exploitation of temporal patterns increases the
possibility to discriminate among different land covers, because it
allows distinguishing their periodic growth and development
phenomena over the course of a year. Accordingly, very
encouraging results has been obtained in four very different
geographical locations, with very different environments and land
covers. These results are a first step towards the possibility to obtain
a global land cover map using SAR only. More studies are required
to consider the role of polarimetric measurements and phase (in
addition to intensity) information. There are studies showing that
both are important, and temporal sequences have been used already,
but only for a very limited set of crops, and without the idea to obtain
a methodology working everywhere. This research aims to fully
exploit the potential of year-long multitemporal SAR sequences.

Additionally, it is important to note that the proposed
methodology has also introduced an approach to
automatically select training sets for high resolution mapping
starting from existing medium resolution land cover maps. The
novel approach aims at reducing possible outliers and at training
a better classification model than just considering a random
selection of the points in existing maps. On average, the new
methodology obtained good results, increasing the overall
accuracy by 16% with respect to medium resolution existing
land cover map. This is particularly encouraging because these

maps were obtained considering multispectral data. The
substitution of multispectral measurements at a few dates with
radar backscattering in a dense temporal sequence is the key for
this improved result.
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